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Abstract 

In this document we considered a model for short term production planning in a market of 
consumer goods. The model assumes a variable number of manufacturing plants, distribution 
centers, retailers, and the corresponding supply chain of the system. These bring a range of varied 
products to meet a random demand on a weekly basis. Each source has its own manufacturing 
costs, production capacities and delivery commitments to the retailers. We develop a strategy 
for building a global production plan that meets a certain level of customer service. Our proposal 
is based on a mixed integer linear programming model with a stochastic approach that meets 
weekly demand requirements at minimum cost, subject to the requirements of inventory, 
production capacity and delivery capabilities of the supply chain. The objective function includes 
fixed and variable costs of production generated in the manufacturer plants, costs of sending 
materials, and inventory holding costs. To optimize the model we use a commercial software 
and then, we explore the probability distribution associated with the cost function. We illustrate 
our proposal with a numerical example reporting the theoretical and practical results. 
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1. Introduction 

Master Production Scheduling (MPS) is the process of scheduling over 
time items that are critical in their impact on lower level components or in 
their requirements for capacity [19]. Items that are master scheduled may be 
end items, intermediate components, or a pseudo item that represents items 
grouped for the purpose of planning. Making the production plan requires a 
variety of inputs from supply chain, operations through to capacity planning 
for the assembly line. Coupled with this complexity, there is often a significant 
disconnection between the sales order input team and the production line 
orders taken without reviewing appropriate lead times or dependencies leaving 
manufacturing with an up hill battle. 

Ensuring the maximize of productivity whilst at the same time managing 
costs is not easy. It is very common in manufacturing that demand profiles 
can fluctuate and customers may only provide a short term horizon of orders 
which makes long term business planning more difficult, and in many cases it 
presents an ideal opportunity to create a smoothed production plan. 

The Supply Chain Management (SCM) is the process of planning, executing 
and managing the actions of the supply chain [3]. A supply chain constitutes 
the movement and storage of the reserves, supplies and finished goods from 
the point-of-origin to the end point, i.e., the point-of-consumption.  

The Supply Chain Managers synchronize and amalgamate these flows 
both within and among companies. The main job of a Supply Chain executive 
or Manager is to manage the supply chain so that the cycle time can be 
reduced. The supply chain should be planned and implemented in a manner 
that there is coordination in the supply system. Thus, supply chain management 
responsible plays a key role in capturing customer demands, creating forecasts, 
developing schedules, ordering and managing inventory, controlling production 
orders, and maximizing customer satisfaction. 

Traditionally, the design of a MPS and managing the SCM are analyzed 
separately and each problem is solved without linking their results. This 
leads to problems of synchronization operations, loss and theft of products, 
delay in delivery, poor inventory management, high transportation costs and 
others. Therefore, it is important to coordinate the planning activities of the 
production plant with the plant capacity, storage capacity, shipment capacity 
and disaggregated demand at retail level. 
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An important rule to meet in the MPS-SCM system is the customer service 
level. This concept is a function of several different performance indices. The 
first one is the order fill rate, which is the fraction of customer demands that 
are met from stock. For this fraction of customer orders, there is no need to 
consider the supplier lead times and the manufacturing lead times. The order 
fill rate could be with respect to a central warehouse or a field warehouse or 
stock at any level in the system. Stockout rate is the complement of fill rate 
and represents the fraction of orders lost due to a stockout. The backorder 
level is the number of orders waiting to be filled. To maximize customer 
service level, one needs to maximize order fill rate, minimize stockout rate, 
and minimize backorder levels. Another measure is the probability of on-time 
delivery, which is the fraction of customer orders that are fulfilled on-time, 
i.e., within the agreed-upon due date [19]. In our proposal we use the 
probability of on-time delivery approach, which is the fraction of customer 
orders that are fulfilled on-time, i.e., within the agreed-upon due date. 

In this project, we are interested in building the MPS of goods-producing 
firm that owns several manufacturing facilities that provide a variable set of 
products to meet customer demand from a random perspective. Here, each 
source, i.e., each plant has different demands, production capabilities and 
fixed and variable costs of production. 

The problem is defined as establishing short-term production levels 
(specifying what to produce and how much to produce) of all manufacturing 
which provides a continuous supply of goods to a network. It is interconnected 
with manufacturing plants, distribution centers and customers to meet 
standards care with a success probability (retailers). Our investigation uses 
the framework stated in Kuska and Römish [11]. 

We are motivated in to develop the program of operation for each period 
specifying the daily production level, subject to fundamental constraints that 
must be satisfied such as the covering of each hourly demand, satisfaction of 
inventory level, and others. It is concerned with setting production rates by 
product group or other broad categories for short-term (days). In our case, the 
main purpose of MPS is to specify the optimal combination of production rate, 
and inventory on hand when the demand forecast tD  for each period t in the 

planning horizon T is given, and then, obtain the optimal delivery of products 
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through the corresponding distribution network. The problem is addressed 
from a stochastic view point because the demands per retailer are considered 
random variables. Two types or random variables representing the demand 
are studied, the discrete and continuous case, and in both, we characterize the 
probability density function (pdf) of the costs function through the properties 
of the moment generating function. We also include fixed and variable costs 
of unitary production and the level of customer service. To optimize the 
instances proposed we use a commercial software to solve these. Comparative 
statistical aspects are reported. 

Our document is organized as follows. Section 2 develops an analysis of 
the literature on the modeling and integration of MPS with SCM. The main 
problem and the proposed solution methodology that is based on solving the 
deterministic equivalent problem at each time step on a rolling horizon basis 
is developed in Section 3. Stochastic convergence properties of the proposed 
model are formalized in Section 4. In Section 5 we illustrate the theoretical 
aspects developing a numerical example. Conclusions are presented in Section 
6. 

2. Background and Literature Review 

Among others, the first approach to the problem is due to Birtran and 
Yanasse [6]. These authors focus on transforming the problem to a deterministic 
model and then, solving it at time zero i.e., in static form calculating one 
time, the plan overall production plan for the entire period. An interesting 
contribution is to obtain bounds for the exact solution of instances. 

Bensoussan et al. [5] consider an infinite horizon stochastic production 
planning problem with the constraint that production rate must be nonnegative. 
They shown that an optimal feedback solution exists for the problem. Their 
solution is characterized and compared with the solution of the unconstrained 
problem. They also obtained, by using a policy iteration procedure, 
computational solutions to the related problems with upper bounds on the 
production rate. 

Parlar [17] created the optimal production planning for a single product 
over a finite horizon. The holding and production costs are assumed quadratic. 
The cumulative demand is compound Poisson and a chance constraint is 
included to guarantee that the inventory level is positive with a probability of 
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at least α at each time point. The resulting stochastic optimization problem is 
transformed into a deterministic optimal control problem with control variable 
and the optimal solution is presented. 

In Fleming et al. [10], the approach considers an infinite horizon stochastic 
production planning with demand assumed to be a continuous-time Markov 
chain. The problems with control (production) and state (inventory) constraints 
are treated. They shown that a unique optimal feedback solution exists, after 
first showing that convex viscosity solutions to the associated dynamic 
programming equation are continuously differentiable. In Kelle et al. [13], 
authors developed an extended version of the well known economic lot 
scheduling problem applying it to a single machine with various products 
and random demands. They focus their investigation to find out the optimal 
length of production cycles that minimizes the sum of set-up costs and 
inventory hold costs. 

Clay and Grossman [8] developed a two stage fixed resource problem with 
stochastic right hand side terms and stochastic coefficient costs (fixed costs). 

Mula et al. [16] provide information to date, doing a detailed description 
of the most relevant models for production planning under uncertainty. 

In Lai et al. [14], authors develop a stochastic programming model with 
additional constraints. A set of data from a multinational lingerie company in 
Hong Kong is used to demonstrate the robustness and effectiveness of the 
proposed model. 

In Sodhi and Tang [20], authors extend the linear programming model of 
deterministic supply-chain planning to take demand uncertainty and cash 
flows into account for the medium term. Their stochastic model is similar to 
that of asset liability management (ALM), for which the literature using 
stochastic programming is extensive. They survey various modeling and 
solution choices developed in the ALM literature and discuss their applicability 
to supply chain planning. 

In relation to the problem of linking the MPS with the SCM, Alonso-
Ayuso et al. [2], developed a two-stage 0-1 model to represent the supply 
chain management under uncertainty. Authors split the problem in two stages, 
in the first one they obtain the solution for the strategic decisions determining 
the production topology, plan sizing, product selection, product allocation 
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among plants and vendor selection for raw materials. They related the second 
scenario with the tactical decisions for a better utilization of the supply chain 
along a time horizon with uncertainty in the product demand and price, and 
production and raw material costs. They proposed a two-stage version of a 
branch and fix coordination algorithmic approach for stochastic 0-1 program 
solving. 

Mirzapour et al. [15] developed a multi-objective two stage stochastic 
programming model to deal with a multi-period multi-product and multi-site 
production-distribution planning problem for a midterm planning horizon. 
They involve majority of supply chain cost parameters such as transportation 
cost, inventory holding cost and shortage cost. Also, production cost, lead 
time, outsourcing, employment, dismissal, workers productivity and training 
are considered. They assumed that cost parameters and demand fluctuations 
are random variables departing from a pre-defined probability distribution 
and considering the traditional production-distribution-planning problem. 
This is one of the most important documents when authors includes (i) the 
minimization of the expected total cost of supply chain, (ii) the minimization 
of the variance of the total cost of supply chain and (iii) the maximization of 
the workers productivity through training courses that could be held during 
the planning horizon. They solved the model applying a hybrid algorithm, that 
is, a combination of Monte Carlo sampling method. 

Regarding the determination of the convergence in distribution of the costs 
function of stochastic models, the literature is sparse and almost nonexistent. 
In this paper we are interested in studying the pdf of the cost function when 
we know the pdf of the demand for products, and how it determines the 
corresponding pdf of shipments between production plants and distribution 
centers, and between distribution centers and retailers or consumers. 

3. Mathematical Model 

We assume that the firm can produced any kind of product ,, I∈ii  in 
any plant ,, J∈jj  and all the production generated is sent immediately to 
any of the k distribution centers (DC), .K∈k  Demand of product i in the 
distribution center k is consolidated from the sum of demands from retailers 

,, L∈ll  and once manufactured, the finished products are sent immediately 
to the distribution center, i.e., inventories are not allowed at the production 
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plants. Furthermore, each product has assigned a storage volume previously 
known. Finally, each product i should be delivered at each retailer l, to 
satisfy their demand at time t, Figure 1. 

Let the planning horizon be discretized into Tt ∈  uniform subintervals, 
we define the sets KJI ,,  and L  to identify the products, manufacturing 
plants, distribution centers and retailers, respectively. 

 

Figure 1. The system considered: Manufacturing plants, distribution centers 
and retailers. 

3.1. Notation Used 

The following notation is used to develop the mathematical model: 

=ijtx  Amount of product i manufactured in plant j during time t, in 

pieces. 

=iktI  Inventory level of product i, in the distribution center k, at the end 

of time t, in pieces. 

=ijtc Variable cost of producing one unit of i product in plant j at time t. 

=ikth  Inventory holding cost per day of product i, in the distribution 

center k, at time t. 

=ijtC  Fixed cost associated with the production of product i in the plant j 

at time t. 
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=ijkty  Amount of product i shipped from plant j to distribution center k, 

at time t, in pieces. 

=iltD  Demand of product i requested by the retailer l, at time t, in 

pieces/day. 

=ikltz  Amount of product i shipped from distribution center k to retailer 

l at time t, in pieces. 

=ξijkt  Unit cost of shipping product i from plant j to distribution center 

k at time t. 

=ζiklt  Unit cost of shipping product i from distribution center k to 

retailer l at time t. 

=ϑijt  Production capacity of product i in plant j at time t, in pieces. 

=θikt  Storage capacity of product i in distribution center k at time t, in 

pieces. 

Thus, the problem can be defined as follows. For each ,,,, TtliDilt ∈∈∈ LI  

we should obtain the optimal vector ( )∗∗∗∗∗∗∗ βθ=η ,,,,, zyIx  such that 

( ) min,←η∗g  

where each component of ∗η  is itself a vector whose entries are the variables 

already defined. Subsequently, we present a more detailed discussion about 

the size of the components .,,,,, ∗∗∗∗∗∗ βθzyIx  

The entire collection of ∗η  values are an optimized realization of the 

stochastic process 

{ ( )} ,,,,,,: 1
T
tijtiktkiltijktiktijtt zyIx =βθ=ε=ε  

,,,, LKJI ∈∈∈∈ lkji  

and due the randomness of demand, this means that even if the initial condition 
(or starting point) is known, there are many possibilities the process might go 
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to, but some paths may be more probable and others less so. Our task is to 
develop an optimal schedule for each t in a horizon of length .T  

Then, the mathematical model can be written as the minimization of all 
the costs generated by the operation of the system, subject to their technological 
constrains. Thus, we should minimize 

( ) ( )∑ ∑ ∑∈ ∈ ∈
β+=η

Tt j i ijtijtijtijt Cxcg
J I

 

∑ ∑ ∑∈ ∈ ∈
+

Tt k i iktikt Ih
K I

 

∑ ∑ ∑ ∑∈ ∈ ∈ ∈
ξ+

Tt k j i ijktijkt y
K J I

 

.∑ ∑ ∑ ∑∈ ∈ ∈ ∈
ζ+

Tt l k i ikltiklt z
L K I

 (1) 

Subject to 

,,,, Ttjix ijtijtijt ∈∈∈ϑβ≤ JI  (2) 

,,,1 TtixD
l j

ijtilt ∈∈α−=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
≤∑ ∑

∈ ∈

I
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P  (3) 

∑
∈

∈∈∈=
K

JI
k

ijtijkt Ttjixy ,,,,  (4) 
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∈

∈∈∈θ≤
J

KI
j

iktijkt Ttkiy ,,,,  (5) 

( ) ∑ ∑
∈ ∈

− ∈∈∈−+θ=θ
J L

KI
j l

ikltijkttkiikt Ttkizy ,,,,1,,  (6) 

( ) ∑ ∑
∈ ∈

− ∈∈∈−+=
J L

KI
j l

ikltijkttikikt TtkizyII ,,,,1,  (7) 
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L

KI
L
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iktiktilt TtkiID ,,,,  (8) 

∑ ∑
∈ ∈
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J L

KI
j l

ikltijkt Ttkizy ,,,,  (9) 
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∑ ∑∑
∈ ∈∈

∈∈≥
L LK

I
l l

ilt
k

iklt TtiDz ,,,  (10) 

∑
∈

∈∈∈=
K

LI
k

iltiklt TtliDz ,,,,  (11) 

⎩
⎨
⎧=β

case,otherin,0
,duringplantth-theatedmanufacturisproductif,1 tji

ijt  (12) 

0,,, ≥ikltiktiktijt zyIx  and integers, ( ),1,0∈α  (13) 

where [ ]xP  represents the probability of x. 

In the above formulation, equation (2) defines the limits of production 
capacity for each product in each plant. Equation (3) represents the customer 
service level measure, understood here, as the probability of on-time delivery 
or the fraction of customer orders that are fulfilled on-time, i.e., within the 
agreed-upon due date. Equation (4) ensures that shipments to the distribution 
centers are equal to the manufactured products. In turn, shipments received 
in the distribution centers are limited by the storage capacity of these, 
equation (5). Regarding the storage capacity, equation (6) represents the 
balance equation of the storage capacity linking the products received and the 
demand required by the retailers. 

The inventory balance equation (7), says that the amount of inventory in 
the next time period must equal to the current inventory, plus the received 
products from all the production plants, minus the demand required by the 
retailers. Equation (8) ensures that inventories are lower bounded by a level 
of security given by a percentage �  of the average demand for each product, 
and upper bounded by its storage capacity at the corresponding distribution 
center. The flow balance at the distribution centers is given by equation (9), 
i.e., all the shipments to the retailers must be equal to the availability of 
inventory at the distribution centers. 

Equations (10) and (11) ensure compliance of total demand itD  and per 

retailer respectively, where 

∑
∈

∈∈=
L

I
l

iltit TtiDD .,,  (14) 
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Equation (12) is an indicator variable related with the fixed charges of 
the problem. Finally, equation (13), expresses the non-negativity and integrity 
conditions, and the range of α. The integrity conditions can be easily removed 
in cases where the model required a continuous demand. 

For treatment of equation (3), assume that the probability density function 
(pdf) of the random variable itD  is known for all ,Tt ∈  and it is given by 

( ).ξitDf  Then, equation (3) is equivalent to 

( )∫∑
ρ

∈

α−=ξ=
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
≤

0
,1itD

j
ijtit FdxD

J

P  (15) 

where ( )∑ ∈
∈α=ρ

Jj ijtx ,1,0,  and itDF  is the cumulative density function 

(cdf) of the random variable .itD  

If the pdf of itD  is a “nice” theoretical distribution then, equation (3) is 
well defined. Otherwise, when we only have sample realizations of it, the pdf 
of itD  can be estimated from historical data or using Monte Carlo Method 
and equation (3) can be get from simple rules of an ( )sS,  inventory system. 

3.2. About the number of constraints and variables 

The model formulated above grows disproportionately as a function of its 
subscripts. In practice, the simplex algorithm is quite efficient and can be 
guaranteed to find the global optimum if certain precautions against cycling 
are taken. The simplex algorithm has been proved to solve “random” problems 
efficiently, i.e., in a cubic number of steps [7], which is similar to its behavior 
on practical problems [9] and [21]. 

Our model uses integer variables due to some situations involving MPS 
and SCM cannot be modeled by linear programming, but are easily handled 
by integer programming. Although one can model a binary decision in linear 
programming with a variable that ranges between 0 and 1, there is nothing 
that keeps the solution from obtaining a fractional value such as 0.5, hardly 
acceptable to a decision maker. Integer programming requires such a variable 
to be either 0 or 1, but not in between. Unfortunately, integer programming 
models of practical size are often very difficult or impossible to solve. Linear 
programming methods can solve problems orders of magnitude larger than 
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integer programming methods. In practice, models must be both tractable, 
capable of being solved and valid, representative of the original situation. 
These dual goals are often contradictory and are not always attainable. It is 
generally true that the most powerful solution methods can be applied, the 
simplest or most abstract the model. 

The characterization for the number of variables and constraints that 
each instance contains is discussed below. The number of variables involved 
in this model (considering known the initial conditions) is given by Table 1. 

[ ] [ ].22 TTTNv LJKIKJI ++++=  (16) 

Table 1. The number of variables required in the model. 
Variable Size 

ijtx  TJI  

iktI  ( )1+TKI  

ijtβ  TJI  

ijkty  TKJI  

ikltz  TLKI  

iktθ  ( )1+TKI  

Table 2. The number of constraints required in the model. 
Equation Constrains 

2 TJI  

3 TI  

4 TJI  

5 TKI2  

6 ( )1+TKI  

7 ( )1+TKI  

8 KI2  

9 TKI  

10 TI  

11 TLI  

12 TJI  
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Similarly, the number of constraints is given by (Table 2) 

[ ] .4253 KILKJI ++++= TNc  (17) 

Integer programs often have the advantage of being more realistic than 
linear programs, but the disadvantage of being much harder to solve. Thanks 
to the advances in computing of the past decade, linear programs with a few 
thousand variables and constraints are nowadays viewed as “small”. Problems 
having tens or hundreds of thousands of continuous variables are regularly 
solved; tractable integer programs are necessarily smaller, but are still 
commonly in the hundreds or thousands of variables and constraints. Therefore, 
and given the objectives of this research, the solution of each instance was 
obtained using a commercial software. 

4. Stochastic Convergence of the Model 

Stochastic convergence formalizes the idea that a sequence of random 
variables can sometimes be expected to settle into a pattern. The convergence 
of sequences of the random variables involved in our analysis is now developed. 

From equation (14), we enable the moment generating function of the 
random variable ,itD  denoted by itDm  and defined as 

.,,0,, TtihhhFdem it
it

it D
D

D ∈∈>≤ϕ≤−= ∫
∞

∞−

ϕ I  

Formally 

Theorem 1. If titi DD L,,1 K  are independent random variables and the 

moment generating function of each exist for all hh <ϕ<−  for some ,0>h  

let ∑ ∈
=

Ll tilit DD  then, the moment generating function of itD  is given by 

( ) .,,0,, Ttihhhmm
l DD iltit ∈∈>≤ϕ≤−ϕ= ∏ ∈

I
L

 (18) 

Proof. From equations (11) and (14), the proof is trivial; see Mood et al. 
[1]. 

Theorem 2. For each ,Tt ∈  let Z  be the random variable defined by Z  

,∑ ∑ ∑∈ ∈ ∈
=

L K Il k i ikltz  then 

( ) .,0,, Tthhhmm
l i Dilt ∈>≤ϕ≤−ϕ= ∏ ∏∈ ∈L IZ  (19) 
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Proof. From equations (11) and (14) and by the definition of Z  we have 

∑ ∑ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈ ∈ ∈

===
L K I L I I

Z
l k i l i i

itiltiklt DDz .  (20) 

Then for each ,Tt ∈  assuming that the moment generating function of each 

itD  exists, and applying the results of Theorem 1 we obtain 

( )∏ ∏ ∏∈ ∈ ∈
ϕ=== ∑ ∈ I L IZ

I i l i DDD iltiti it
mmmm ,  

and the theorem is proved. 

Corollary 1. For each ,Tt ∈  let YXD ,,  and Z  be the random variables 
defined as the total demand required by retailers, the total production 
manufactured in plants, the total volume of shipments from manufacturing 
plants to distribution centers, and the total volume of shipments from 
distribution centers to retailers respectively, then, under the assumptions of 
Theorems 1 and 2 the four variables are identically distributed. 

Proof. The proof is easily constructed from previously obtained results. 
From the definitions of YX ,  and Z  we have that, for each :Tt ∈  

∑ ∑ ∑∑ ∑
∈ ∈ ∈∈ ∈

==
K J IJ I

YX
k j i

ijkt
j i

ijt yx ,,  

and 

∑ ∑ ∑
∈ ∈ ∈

=
L K I

Z
l k i

ikltz .  

From equation (20) it is obvious that DZ =  as ( ) ( ).∑ ∈ ϕ=ϕ
I

Z i itDmm  Similarly, 

from equation (9) it is satisfied 

∑ ∑ ∑∑ ∑ ∑
∈ ∈ ∈∈ ∈ ∈

=
L K IK J I l k i

iklt
k j i

ijkt zy .,  

i.e., ZY =  as ( ) ( ).ϕ=ϕ ZY mm  Applying the same arguments to equation (4), 

and by transitivity the results are evident. 

Other obvious and immediate result arising from the proposed model is 
also formalized. 



    A MULTI PERIOD STOCHASTIC MODEL TO LINK THE SUPPLY … 

Advances and Applications in Statistical Sciences, Volume 6, Issue 4, July 2011 

269

Corollary 2. In the developed model, the total inventory of product i at the 
distribution centers is constant for Tt ∈  and it is equal to the initial inventory 
proposed. 

Proof. By Corollary 1 and from equation (7), we have that for 1≥t  

( ) ∑ ∑ ∑∑ ∑ ∑∑ ∑∑ ∑
∈ ∈ ∈∈ ∈ ∈∈ ∈

−
∈ ∈

−+=
L K IK J IK IK I l k i

iklt
k j i

ijkt
k i

tik
k i

ikt zyII 1,  

( )∑ ∑
∈ ∈

− −+=
K I

ZY
k i

tikI 1,  

i.e., ( )∑ ∑ ∑ ∑∈ ∈ ∈ ∈ −=
K I K Ik i k i tikikt II ,1,  thus, solving this equality from 

1=t  we obtain the proposed result. 

In order to approximate the distribution of the costs function, we assume 
that the random variables ikltz  are independent and identically distributed, 

i.e., extending the results of Theorem 2, we can formalize the following result. 

Corollary 3. Assume that the variables ikltz  are independent and identically 

distributed. The pdf of the objective function (1) can be characterized through 
its moment generating function as follows 

( ) ( ) ( ) ,0,,ˆ >≤ϕ≤−ϕ= ωψφη hhhmmmvmg  (21) 

where the estimator v̂  can be approximated by 

( ).expˆ ϕ
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+β= ∑ ∑ ∑ ∑ ∑ ∑

∈ ∈ ∈ ∈ ∈ ∈Tt j i Tt k i
iktiktijtijt IhCv

J I K I

 (22) 

Proof. Let ω and 1ω  be the random variables defined as 

∑∑ ∑ ∑ ∑
∈∈ ∈ ∈ ∈

ζ=ωζ=ω
IL K I i

ikltiklt
Tt l k i

ikltiklt zz ., 1  

Then, for ,,, KL ∈∈∈ klTt  and 0, >≤ϕ≤− hhh  we have 

( )∏∑
∈

ζ
∈

ω
ϕ=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ζ=

II i
z

i
ikltiklt ikltikltmzm ,exp1 E  
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Similarly, for ∑ ∑ ∑∈ ∈ ∈
ζ=ω=ω

K K Ik k i ikltikltk z12  

( )∏∑
∈

ω
∈

ω
ϕ=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
ω=

KK kk
k mm 12
1expE  

( )∏∏
∈ ∈

ζ ϕ=
K Ik i

zikltikltm .  

Then for ω, its moment generating function is 

( ) .0,, >≤ϕ≤−ϕ= ∏ ∏ ∏ ∏∈ ∈ ∈ ∈ ζω hhhmm
Tt l k i zikltikltL K I

 (23) 

Proceeding in a similar way with the variables 

∑ ∑ ∑∑ ∑ ∑ ∑
∈ ∈ ∈∈ ∈ ∈ ∈

=φξ=ψ
Tt j i

ijtijt
Tt k j i

jiktjikt xcy
J IK J I

,,  

and for 0, >≤ϕ≤− hhh  we have 

( )∏ ∏ ∏ ∏∈ ∈ ∈ ∈ ξψ ϕ=
Tt k j i yjiktijktmm

K J I
,  (24) 

( )∏ ∏ ∏∈ ∈ ∈φ ϕ=
Tt j i xc ijtijtmm

J I
,  (25) 

Therefore, equation (1) can be rewritten as 

( ) ∑ ∑ ∑∑ ∑ ∑
∈ ∈ ∈∈ ∈ ∈

+β+ω+ψ+φ=η
Tt k i

iktikt
Tt j i

ijtijt IhCg
K IJ I

 (26) 

,v+ω+ψ+φ=  

where 

∑ ∑ ∑∑ ∑ ∑
∈ ∈ ∈∈ ∈ ∈

+β=
Tt k i

iktikt
Tt j i

ijtijt IhCv
K IJ I

,  

and by the arguments used above 

( ) ( ) ( ) .0,,ˆ >≤ϕ≤−ϕ= ωψφη hhhmmmvmg  (27) 

For modeling continuous demand, the normal distribution is the most used [18, 
19]. And for discrete demands, some authors use the Poisson distribution 
[12]. In the first case, when demand is modeled by a normal distribution, i.e., 
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when ( ),,~ iltiltiltD σµN  for each Ttli ∈∈∈ ,, LI  and iltµ  and 2
iltσ  are 

known, the results are as follows. As we showed, YX ,  and Z  are identically 
distributed for each ,Tt ∈  when D  is defined as in Corollary 1, thus, for the 
entire sample on the horizon, and using equations (20) and (23), it is reasonable 
to assume that ( ),,~ 2

ωω σµω N  where 

∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

ω ζµ=µ
Tt l k i

iklt
L K I

,  (28) 

∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

ω ζσ=σ
Tt l k i

iklt
L K I

222  (29) 

and 

,
IL

L I
T

Tt l i
ilt

ziklt

∑ ∑ ∑
∈ ∈ ∈

µ

=µ≈µ  (30) 

.

2

2
IL

I
T
Tt i

ilt

zikl

∑ ∑
∈ ∈

σ

=σ≈σ  (31) 

Similarly, ( )2,~ φφ σµφ N  and ( )2,~ ψψ σµψ N  where 

∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

ψ ξµ=µ
Tt k j i

ijkt
K J I

,  (32) 

,222 ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

ψ ξσ=σ
Tt k j i

ijkt
K J I

 (33) 

∑ ∑ ∑
∈ ∈ ∈

φ µ=µ
Tt j i

ijtc
J I

,  (34) 

.222 ∑ ∑ ∑
∈ ∈ ∈

φ σ=σ
Tt j i

ijtc
J I

 (35) 

Finally, by equation (27) 

( ) ( )222,~ φψωφψω σ+σ+σ+µ+µ+µη vg N  

( )tottot σµ= ,N  (36) 
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The case when demand is discrete is also considered. Suppose now, ikltz  are 

independent Poisson random variables for ,,,, Ttlki ∈∈∈∈ LKI  i.e., each 
( ).~ λPziklt  Thus, by Theorem 2 we have 

( )∏∏∏
∈ ∈ ∈

ϕ=
Tt l i

DZ iltmm
L I

~  

( ) ,0,,1exp >≤ϕ≤−−λ= ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

ϕ hhhe
Tt l k i

iklt
L K I

 (37) 

where ∑ ∑ ∑ ∑∈ ∈ ∈ ∈
= Tt l k i ikltzZ

L K I
.~  Therefore, under the hypothesis 

of Corollary 3 we have that an estimator for λ is 

,ˆ
IKL

L K I
T

Tt l k i iklt∑ ∑ ∑ ∑∈ ∈ ∈ ∈
λ

=λ  (38) 

and by equation (23) 

( ) ,0,,1ˆ >≤ϕ≤−−λζ= ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

ϕ
ω hhhem

Tt l k i
iklt

L K I

 

i.e., 

( ) ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

ω ζλ=ω=λ
Tt l k i

iklt
L K I

ˆVar  (39) 

analogously 

( ) ,ˆ ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

ψ ξλ=ψ=λ
Tt k j i

ijkt
K J I

Var  (40) 

( ) ,ˆ∑ ∑ ∑
∈ ∈ ∈

φ λ=φ=λ
Tt j i

ijtc
J I

Var  (41) 

finally, and by equation (36) 

( ) ( ).Exp~ vg +λ+λ+λη φψω  (42) 

These results are interesting and show that, for the model developed, we 
can estimate the probability distribution associated with the function of costs 
in terms of the parameters of the demand from retailers. 
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5. Numerical Example 

To illustrate our proposal, consider a system consisting of 2=J  
manufacturing plants, which must produce 8=I  different products. They 
are shipped to 2=K  different distribution centers which in turn, must be 
distributed to 3=L  retailers at the end of the chain. 

Table 3. Unit transport costs throughout the supply chain. 
  DC’s Retailers 

Products 1-4 1 2 1 2 3 

Plants 
1 26 28 – – – 
2 24 25 – – – 

DC’s 
1 – – 18 14 15 
2 – – 22 13 18 

  DC’s Retailers 
Products 5-8 1 2 1 2 3 

Plants 
1 21 22 – – – 
2 18 20 – – – 

DC’s 
1 – – 14 10 9 
2 – – 16 18 22 

Unitary shipping costs used in this instance are shown in Table 3. In our 
example we consider a short planning period within 4=T  days, therefore, 
we will use the same shipping cost for each .Tt ∈  Similarly, we assume that 
the firm only works 240 days per year. Table 4 shows the fixed and variable 
unit costs for each product, and Table 5 shows the values of the expected 
demand for each retailer and their respective variance for .4,,1 K=t  

In this instance, the inventory holding costs per day are considered as a 
percentage of the manufacturing cost for each ,,, tki  i.e., ( ) ,240ijtikt ch ξ=  

where =ξ  total inventory holding cost (expressed as a percentage). Typical 
annual values of ξ are 25 percent to 40 percent, but ξ can be as high as 60 
percent [19]. In our case we use 30=ξ  percent for each .,, tki  Initial inventories 

0ikI  are evaluated by the software (note that they can easily be included in 
the program giving them any value as initial conditions), inventory level used 
at the distribution centers is 10=�  percent of the total demand. 
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Table 4. Unit production costs (fixed and variable), .4,,1 K=t  

i tic 1  tic 2  tiC 1  tiC 2  

1 40 35 250 210 

2 50 42 230 260 

3 24 50 310 300 

4 28 60 290 270 

5 30 55 180 200 

6 60 62 190 200 

7 65 70 250 300 

8 55 60 290 320 

Table 5. Parameters of the demand random variable for .4,,1 K=t  

 tiD 1  tiD 2  tiD 3  itD  

i ti1µ  ti1σ  ti2µ  ti2σ  ti3µ  ti3σ  itµ  itσ  

1  175  10  170  8  200  12  545  30 

2  237  9  230  11  214  12  681  32 

3  245  8  220  10  250  10  715  28 

4  282  12  231  12  260  5  773  29 

5  286  10  239  11  260  8  785  29 

6  190  5  191  5.6  191  5.1  572  15.7 

7  201  5.5  200  7.2  196  5  597  17.7 

8  200  4  210  6  200  7.3  610  17.3 

In our experience, 100 samples of the random variable demand were obtained 
by using the Monte Carlo method. These were incorporated directly to equations 
(8), (10) and (11), and then, solved using a commercial software devoted to 

linear programming. Thus, if ( ),,~ 2
iltiltiltD σµN  then 

.,,,~ 2 TtiD
l

ilt
l

iltit ∈∈⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
σµ ∑∑

∈∈

IN
LL

 (43) 
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Therefore, if ( ) itDitD µ=E  and ( ) ,2
itDitD σ=Var  equation (15) can be written 

as follows. 

,1
2

α−=
⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

σ

µ−⎟
⎠
⎞⎜

⎝
⎛

≤
∑ ∈

it

it

D

Dj ijtx
JZP  (44) 

where ( ).1,0~ NZ  Let iKα  be the standard value such that ( )iit KFD α  

,1 iα−=  then, equation (44) is satisfied if and only if 

,
2

1
i

it

it
K

x

D

D
n

j ijt
α

= ≥
σ

µ−⎟
⎠
⎞

⎜
⎝
⎛∑

 

So, in our formulation and for this distribution, we replace equation (15) by 

∑
∈

α ∈∈σ+µ≥
J

I
j

DDijt TtiKx itiit .,,  (45) 

The production capacity for each product in each plant for 4,3,2,1=t  
and the storage capacities for product i at each distribution center is shown in 
Table 6. 

Table 6. Production and storage capacities values used in this instance for 
.4,,1 K=t  

i  1  2  3  4 
ti1ϑ   600  500  600  650 
ti2ϑ   900  800  950  1000 
ti1θ  1000  1500  1600  1600 
ti2θ  1450  1600  1600  1600 

i  5  6  7  8 
ti1ϑ   600  800  900  850 
ti2ϑ   900  890  900  1200 
ti1θ  1700  1500  1650  1700 
ti2θ  1650  1500  1500  1550 

5.1. Results of the experimentation 

For space reasons we report only the solutions non zero associated with 
the maximum and minimum values obtained in the process, Table 7. 
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Table 7. The two extreme values of the experimental results. 
Value 121x  221x  311x  411x  515x  621x  711x  811x  122x  222x  312x  322x  412x  422x  624x  
Min 537 703 721 786 745 572 598 617 517 665 600 101 650 108 555 
Max 567 699 714 797 811 575 594 604 535 688 600 115 650 145 576 
Value 512x  522x  622x  712x  812x  123x  223x  313x  323x  413x  423x  513x  523x  623x  713x  
Min 600 168 562 595 616 553 679 600 98 650 114 600 173 574 583 
Max 600 194 573 583 614 528 672 600 142 650 132 600 177 578 597 
Value 813x  124x  224x  314x  324x  414x  424x  514x  524x  624x  714x  814x  1211y 1221y 2211y
Min 613 516 631 600 83 650 127 600 202 555 579 606 371 166 450 
Max 613 546 688 600 135 650 115 600 205 576 591 617 397 170 472 
Value 2221y 3111y 4111y 5111y 6211y 7111y 8111y 1212y 1222y 2212y 2222y 3112y 3222y 4112y 4222y

Min 253 721 786 745 572 598 617 352 165 427 238 600 101 650 108 
Max 227 714 797 811 575 594 604 535 0 688 0 600 115 650 145 
Value 5112y 5212y 6212y 7112y 8112y 1213y 1223y 2213y 2223y 3113y 3223y 4113y 4223y 5113y 5213y

Min 600 168 562 595 616 395 158 453 226 600 98 650 114 600 173 
Max 600 194 573 583 614 528 0 672 0 600 142 650 132 600 177 
Value 6213y 7113y 8113y 1214y 1224y 2214y 2224y 3114y 3224y 4114y 4224y 5114y 5214y 6214y 7114y

Min 574 583 613 341 175 420 211 600 83 650 127 600 202 555 579 
Max 578 597 613 546 0 688 0 600 135 650 115 600 205 576 591 
Value 8114y 1111z 1131z 1221z 2111z 2131z 2221z 3111z 3121z 4111z 4121z 4131z 3131z 5111z 5121z

Min 606 177 194 166 238 212 253 251 215 255 288 236 255 262 228 
Max 617 177 220 170 247 225 227 242 227 245 308 232 245 299 245 
Value 5131z 6111z 6121z 6131z 7111z 7121z 7131z 8111z 8121z 8131z 8131z 8131z 8131z 1112z 1122z
Min 255 198 188 186 197 200 201 201 216 200 173 0 179 173 0 
Max 267 194 187 194 206 194 194 202 205 197 180 158 197 180 158 
Value 1132z 1222z 2112z 2122z 2132z 2222z 3112z 3122z 3132z 3222z 4112z 4122z 4132z 4222z 5112z

Min 179 165 222 0 205 238 249 103 248 101 297 95 258 108 275 
Max 197 0 237 238 213 0 255 94 251 115 316 77 257 145 308 
Value 5122z 5132z 6112z 6122z 6132z 7112z 7122z 7132z 8112z 8122z 8132z 1113z 1123z 1133z 1223z

Min 230 263 188 193 181 206 196 193 198 211 207 182 0 213 158 
Max 222 264 188 190 195 198 198 187 195 213 206 169 159 200 0 
Value 2113z 2123z 2133z 2223z 3113z 3123z 3133z 3223z 4113z 4123z 4133z 4223z 5113z 5123z 5133z

Min 234 0 218 226 242 118 240 98 279 111 260 114 292 223 258 
Max 232 229 211 0 250 87 263 142 271 107 272 132 282 232 263 
Value 6113z 6123z 6133z 7113z 7123z 7133z 8113z 8123z 8133z 1114z 1124z 1134z 1134z 2114z 2124z

Min 193 197 184 204 191 188 195 219 199 160 0 181 175 223 0 
Max 195 189 194 204 203 190 202 215 196 171 170 205 0 239 229 
Value 2134z 2224z 3114z 3124z 3134z 3224z 4114z 4124z 4134z 4224z 5114z 5124z 5134z 6114z 6124z

Min 197 211 240 126 234 83 289 102 259 127 301 236 265 176 188 
Max 220 0 251 87 262 135 270 122 258 115 310 237 258 192 197 
Value 6134z 7114z 7124z 7134z 8114z 8124z 8134z ktI1  ktI2  ktI3  ktI4  ktI5  ktI6  ktI7  ktI8  
Min 191 192 189 198 193 209 204 18 24 25 27 25 20 20 21 
Max 187 199 196 196 201 211 205 19 24 24 27 28 20 20 21 
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The other analyses are as follows. The first result is associated with the 
analysis of the pdf of the variables ZYX ,,  and .D  According to Theorem 1, 

they are identically distributed and therefore, all their statistical match. The 
general fit statistics are shown in Table 8. The histogram associated to the 
samples is shown in Figure 2. The results of the analysis of goodness of fit 
test using the chi-square, the Anderson-Darling and the Kolmogorov-Smirnov 
tests are shown in Table 9. The analysis was done using Best Fit [5]. 

Regarding the estimates obtained from equation (30) and Table 5 we have that 
.92.219=µ  In the same way, from equation (31) and Table 5 it is determined 

that .447.752 =σ  All other values are easily obtained from the model developed: 

=µ=σ=µ=σ=µ φψψωω ,12.825,202,5,67.434,647,78.221,818,3,028,665 22  

.38.902,574,12,00.418,691 2 =δφ  The magnitudes 

∑ ∑ ∑
∈ ∈ ∈

β=ϒ
Tt j i

ijtijtC
J I

1  and ∑ ∑ ∑
∈ ∈ ∈

=ϒ
Tt k i

iktikt Ih
K I

.2  

Table 8. Statistics generated for the random variables ZYX ,,  and .D  

 Fit  Input 

Function Risk Normal N/A 
 (21058.430; 89.8320)  
µ 21058. 43 N/A  

σ 89.8323 N/A 
Minimum – Infinity  20847.00 
Maximum +Infinity  21270,00 
Mean 21,058.430 21058.43 
Mode 21,058.430 21071.00 [est] 
Median 21,058.430 21058.50 
Std. Deviation 89.832 89.832 
Variance 8069.844  7989,15 
Skewness 0,0000 0,0240 
Kurtosis 3.0000  2.7152 
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were obtained from the average of the samples observed and their estimates 
are 00.950,81 =ϒ  and ,70.872 =ϒ  respectively. Equation (36) is now 

( ) ( ).28.21595949,36.2012918~ Ng η  

This means that the average cost to be obtained for a sufficiently large 
sample is $2,012,918.36 and the standard deviation is approximately $4,647.14. 
Table 9 shows the fit statistics obtained for the random variable variable ( ),ηg  

and Figures 3 and 4 show the corresponding histogram and the cumulative 
curve associated to the samples generated. 

 

Figure 2. Histogram obtained from the sample values of the random variables 
ZYX ,,  and .D  

Finally, statistic analysis of the goodness of fit tests for the random variable 
( ),ηg  are shown in Table 10. 

Comparative results for the case analyzed are shown in Tables 10 and 11. 
Note that, the relative error obtained is highly significant, however, this may 
be due to sample size. 



    A MULTI PERIOD STOCHASTIC MODEL TO LINK THE SUPPLY … 

Advances and Applications in Statistical Sciences, Volume 6, Issue 4, July 2011 

279

Table 9. Statistics of the goodness fit of the random variables ZYX ,,  and .D  
N/A Chi-Sq A-D K-S 
Test Value 9.340 0.2772 0.05744 
P Value 0.5002 > 0.25  > 0.15 
Rank 4 1 1 
C.Val @ 0.75 6.7372 N/A N/A 
C.Val @ 0.5 9.3418 N/A N/A 
C.Val @ 0.25 12.5489  0.4664 N/A 
C.Val @ 0.15 14.5339 0.5567 0.0769 
C.Val @ 0.1 15.9872 0.6262 0.0813 
C.Val @ 0.05 18.3070 0.7462 0.0888 
C.Val @ 0.025 20.4832 0.8663 0.0988 
C.Val @ 0.01 23.2093 1.0271 0.1027 
C.Val @ 0.005  25.1882 1.1501 N/A 
C.Val @ 0.001 29.5883 N/A N/A 

Table 10. Statistics generated for the random variables ( ).ηg  

 Fit Input 
Function Risk Normal 

(1672136.7; 7464.1) 
N/A 

µ 1672136.73 N/A 
σ 7464.0805 N/A 
Left X 1659859 1659859 
Left P 5.00%  6,00% 
Right X 1684414 1684414 
Right P 95.00% 93,00% 
Diff. X 2.4555E + 04 2.4555E + 04 
Diff. P 90.00% 87.00% 
Minimum – Infinity 1654706 
Maximum + Infinity 1690001 
Mean 1672136.7 1672137 
Mode 1672136.7 1679093 [est] 
Median 1672136.7 1671889 
Std. Deviation 7464.1  7464.1 
Variance 55712497.7 55155373 
Skewness 0.0000 0.0305 
Kurtosis 3.0000 2.7948 
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Figure 3. Histogram obtained from the sample values of the random variable 
( ).ηg  

 
Figure 4. Cumulative distribution function of the sample set generated for 
the random variable ( ).ηg  
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Table 11. Statistics of the goodness fit of the random variable ( ).ηg  

N/A Chi-Sq A-D K-S 

Test Value 6.480  0.2654  0.06494 
P Value 0.7735 > 0.25  > 0.15 
Rank 3 1 2 
C.Val @ 0.75 6.7372 N/A N/A 
C.Val @ 0.5 9.3418 N/A N/A 
C.Val @ 0.25 12.5489 0.4664  N/A 
C.Val @ 0.15 14.5339 0.5567 0.0769 
C.Val @ 0.1 15.9872 0.6262 0.0813 
C.Val @ 0.05 18.3070 0.7462 0.0888 
C.Val @ 0.025 20.4832 0.8663 0.0988 
C.Val @ 0.01 23.2093 1.0271 0.1027 
C.Val @ 0.005 25.1882 1.1501 N/A 
C.Val @ 0.001 29.5883 N/A N/A 

Table 12. Comparative analysis for the normal distribution fit of the random 
variable ( ).ηg  

Parameter Real value Estimated value Relative error 

totµ  2,012,918.36 1,672,136.73 16.93 

totσ  4,647.17 7,464.00 60.61 

6. Conclusions 

In this paper we develop a model for production planning linked to their 
corresponding supply chain. This scenario represents the simplest case found 
in practice, concerning the size of the supply chain as we consider only 
producers, distribution centers and retailers. The results show that the 
magnitude of the problem (in terms of number of variables and constraints) 
increases markedly and can reach back to the model impractical. However, its 
structure is valuable for situations such as described herein and methods of 
solution are an interesting challenge to deal with emerging alternatives such 
as heuristic and meta-heuristic methods. 
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The assumptions made about the probability distribution of retailers 
demand led to interesting results regarding the probability distribution of the 
shipments made from manufactures plants to distribution centers, and from 
them to retailers, as well as the costs function of the model. 

Future investigations in this area should consider the computational 
complexity of the model to include finer details in it, such as suppliers and / 
or subcontractors, cash flows or approaches to determine the probability 
distributions that are generated when the samples of the demand are rare 
(scattered or small). The estimation of bounds on the cost function is another 
promising line to be addressed. 
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