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Abstract 

In this document we develop a non-linear, stochastic and integer model for the problem of 
determining the optimal hourly schedule of power generation in a hydrothermal power system. 
We consider a power generation system comprising thermal and hydro units and the problem 
concerns the scheduling of operation levels for all power units and considering the hydro constrains, 
such that the operation costs over the time horizon are minimal. The level of customer service 
equation is introduced and the power balance constraint, total water discharge constraint, reservoir 
volume limits and constraints on the operation limits of the hydrothermal generator and the 
thermal generator are fully accounted for. The proposed problem is illustrated and tested on two 
model systems using a random search technique and genetic algorithm. We report the practical 
and theoretical results. 

1. Introduction 

The systematic coordination of the operation of a system formed by 
hydroelectric generation plants is a classical problem involving the planning 
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of the operation of a hydraulic generation system and a thermal system. The 
generation scheduling problem consists of determining the optimal operation 
strategy for the next scheduling period, subject to a variety of constrains. In 
literature this is known as the hydrothermal generation scheduling problem 
(HGSP) [9]. Most versions involve the allocation of generation among the 
hydro-electric and thermal plants so as to minimize the total operation costs 
of thermal plants while satisfying the various constrains on the hydraulic 
and power systems network. Usually, the short term period covers from 1 to 7 
days, and then, this period is subdivided into smaller time intervals of 1 to 4 
hours in which the information of the system is known and the decision 
variables should be optimized. 

This is one of the most important problems associated with the management 
of a power utility and can be viewed as a problem of production planning, 
where the good produced is electricity and it is generated from two sources, a 
set of hydroelectric generating plants and a set of thermal power plants. 
Here, the problem of inventories does not exist because, the good produced 
must be delivered to the customer at time that it is generated. The master 
programming scheduling (MPS) is to develop the programming of system 
operation for each period specifying the state and the generation level of the 
thermal set, subject to fundamental constrains that must be satisfied such 
that the covering of each hourly load (demand), satisfaction of spinning, reserve 
requirements and transmission capacity limits, the limited energy storage 
capability of water reservoirs and other. Under some assumptions (such as 
determinism, for example), the mathematical model can be written in terms 
of a nonlinear objective function subject to a set of linear or nonlinear 
constrains. In the stochastic approach, the model includes some parameters 
as random variables, where the most representative is the required demand. 
To model the problem more realistically, the load demand, the water inflow 
rate and the reservoir levels of the hydroelectric plants are considered random 
and therefore, the mathematical complexity increases significantly. Anyway, 
an efficient generation schedule not only reduces the production cost but also 
increases the system reliability securing valuable reserves, regulating margins, 
and maximizing the energy capability of the reservoirs [34]. In this paper a 
new model is proposed using the framework stated in [12]. We addresses the 
hydrothermal generation scheduling problem from a stochastic view point. In 
our approach, we include the level of customer service, and the variable costs 
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of operation, the demand and the spillage are considered as random variables. 
In our approach we use a random search method and a genetic algorithm to 
solve the problem. Comparative aspects of accuracy and speed of convergence 
are reported. 

The rest of the paper is organized as follows: Section 2 presents and 
discusses related work, Section 3 presents the proposed mathematical model. 
In Section 4 a numerical example is developed. Section 5 proposes a scheme 
using a random search method and genetic algorithms, and Section 6 presents 
our conclusions. 

2. Literature Review 

The solution methods of the HGSP problem have been approached from 
several perspectives, however, literature comprises them in five major areas: 
(a) Lagrangian relaxation, (b) Metaheuristic decomposition, (c) Bender’s 
decomposition, (c) Dynamic programming, and (d) Mixed integer programming. 

The Lagrangian relaxation technique uses the Lagrange multipliers to 
relax system wide demand and reserve requirements. This method decomposes 
the main problem into unit-wise subproblems that are much easier to solve. 
Then, the Lagrange multipliers are updated at the high level, typically using 
a subgradient method [18]. There are many variants of this technique [2, 19, 
25, 26, 28-31, 33] but all of them are underpinned by the idea of forming an 
objective function penalized with model constrains forming the Lagrangian 
function. 

Metaheuristics are a class of approximate methods that have been 
developed strongly since their inception in the early 1980’s. They are designed 
to optimize complex problems where classical heuristics and optimization 
methods have failed to be effective and efficient. Metaheuristics include, but 
are not limited to: constraint logic programming, genetic algorithms, greedy 
random adaptive search procedures, neural networks, non-monotonic search 
strategies, problem and heuristic space-search, simulated annealing, tabu 
search, threshold algorithms, and others [23]. In connection with the HGSP, 
there is an important class of techniques called the heuristic decomposition 
methods. These techniques decompose the HGSP problem into hydro and 
thermal subproblems. The hydro optimization subproblems use either the 
thermal cost functions or the thermal system marginal cost to efficiently 
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allocate the water resources within the scheduling horizon [5, 7, 34]. Then, 
the hydro generation and reserve contributions are subtracted from the load 
and reserve requirements; the thermal subproblems solves a standard unit 
commitment problem. 

Benders decomposition is used to solve the multiperiod HGSP problem 
and is a natural way to decompose it because the 10  variable decisions are 
decoupled from continuous variables 17. In general, the method fixes the 
start-up and shut-down schedules of the thermal units, while the Benders 
subproblem solves a multiperiod optimal power flow. Then, the subproblem 
sends to the master problem marginal information on the goodness of the 
proposed start-up and shut-down schedule, which allows the master problem 
to suggest an improved start-up and shut-down schedule and, so on [3, 16]. 

In the general approach of dynamic programming, the problem is 
decomposed into a thermal subproblem and a hydro subproblem. The algorithm 
obtains the non discrete states to substitute the discrete states of water 
volume levels at each time period and then determines an optimal generation 
schedule while achieving the minimum fuel cost of the power system. The 
spinning reserve of all units provided can satisfy the requirements of the 
system for any unexpected change in load or loss of maximum on line generation 
unit, [6, 10, 27, 32]. 

This paper proposes the use of random coefficients with minimum variance 
cost (due to the use of short periods of planning) in the objective function, 
demand as a random variable normally distributed, and water inflow to the 
dam and spillage are also random variables. An important consideration, is 
the use of a reliability function associated to the power balance equation 
(customer service level), and the variable and fixed costs of each production 
unit. Thus, this model can be characterized as a stochastic, non-linear and 
integer problem. For a more completed survey of literature on the various 
optimization methods applied to solve the problem see Farhat and El-Hawary 
[22]. 

3. The Mathematical Model 

In the construction of our proposal we use some ideas developed in [12], 
i.e., we also consider the scheduling of start-up/shutdown decisions and 
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operation levels for all power units as a stochastic process. Let the planning 
horizon be discretized into Tt ∈  uniform subintervals, we define the sets S  
and ,H  of thermal and hydro units respectively, each with its own reservoir 
and turbine of power generation, as shown in Figure 1. Thus, for all S∈i  
and ,H∈j  the notation used is1 

t Time interval index (hour). 

itp  Power output of i-th thermal unit in megawatts at time t. 

min
ip  Minimum power output of i-th thermal unit in megawatts. 

max
ip  Maximum power output of i-th thermal unit in megawatts. 

ig  Fixed operating costs of i-th thermal unit in .h$  

jtp  Power output of j-th hydro plant in megawatts. 

min
jtp  Minimum power output of j-th hydro plant in megawatts. 

max
jtp  Maximum power output of j-th hydro plant in megawatts. 

jtq  Water discharge rate of j-th hydro plant during interval t, in .hm3  

min
jtq  Lower bound for water discharge, during interval t, in .hm3  

max
jtq  Upper bound for water discharge, during interval t, in .hm3  

tD  Random energy demand in megawatts. 

jtk  Fixed operating costs of j-th hydro plant in .h$  

jW  Capacity of the j-th reservoir in .m3  

tjw ,  Storage volume of j-th reservoir at end of t in .hm3  

                                                      
1 The standard measurement unit of water flow quantities is ,sm3  however, in this document 

the water flow quantities are expressed in hm3  to avoid the use of conversion coefficients in 
equations. 
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min
,tjw  Lower bound of storage volume of j-th reservoir at end of t, in .m3  

tjS ,  Spillage rate over j-th reservoir during t, in .hm3  

tjr ,  Random water inflow rate of j-th reservoir during t, in .hm3  

In this formulation we assume that the cost of thermal units at time t is 

given by the function ,2
ititititit pcpba ++  where the coefficients ba,  and c 

are considered as random variables, for all S∈i  and .T∈t  Then, for each 
,Tt ∈  the mathematical model is to minimize the function 

 
Figure 1. The system considered. 

( ) ( ) ,2
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
++++= ∑∑

∈∈ HS j
jtjt

i
ititititititit zkgpcpbaypg E  (1) 

Subject to 

,1 α−=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
+≤ ∑∑

∈∈ HS j
jt

i
itt ppDP  (Power balance) (2) 

( ).1,0∈α  

( )trsqww jtjtjttjjt +−−= −1,  (Water balance), (3) 

2
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maxmin
iiti ppp ≤≤  (Operating limits of i-th thermal unit), (5) 

maxmin
jtjtjt qqq ≤≤  (Water discharge rate limits), (6) 

,min
jtjt ww ≥  (Limit of water stored in reservoir j-th at the end of (t)), (7) 

⎩
⎨
⎧=

case,otherin,0
,duringoperatingisunitthermalth-theif,1 ti

yit  (8) 

⎩
⎨
⎧=

case,otherin,0
,duringoperatingisunitthermalth-theif,1 tj

z jt  (9) 

,,,,0,,, HS ∈∈∈∀≥ jiTtwqpp jjji  (10) 

where E is the mathematical expectation operator, such that ( ) =cba ,,E  

( ),,, cba  and the operating costs related to each thermal unit includes variable 

and fixed production costs. The function ,2
ititititit pcpba ++  expresses the 

variable costs, and constant ig  represents the sum of the fixed costs associated 

to the operation of the i-th thermal unit during interval t. Similarly, constant 

jk  represents the sum of fixed costs associated to the operation of the j-th 

hydro plant during period t. In practice, these costs are well identified [20], 
and can be summarized as: loss of water during maintenance; wear and tear 
of the windings due to temperature changes during the start-up; wear and 
tear of mechanical equipment during the start-up; malfunctions in the control 
equipment during the start-up; and loss of water during the start-up. In this 
formulation, equation (2) can be viewed as the customer service level. 

Thus, for all ,Tt ∈  and by the properties of the mathematical expectation, 
equation (1) can be simplified as minimize 

( ) ( ) ( ) .2
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Assume that the probability density function (pdf) of the random variable D 
is known for all ;,,1 Tt K=  and it is given by ( ) ., TtfD ∈∀ξ  Then, equation 

(2) is equivalent to 
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where ( ).1,0~ NZ  Let iKα  be the standard value such that ( ) =αit KFD  

.1 iα−  Note that, expression (13) is satisfied if and only if 
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i
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The function of water flow through turbines is assumed known and it has the 
form (See [27]) 

( ) ,2
210 jjj ppph β+β+β=  (15) 

where 210 ,, βββ  are unknown constants. 

Finally, and using the binary variables y and z, equations (5) and (6) can 
be decomposed as follows 

,,0max S∈≥− ipyp ititit  (16) 

,,0min S∈≥− iypp ititit  (17) 
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,,0max H�∈≥− ipzp jtjtjt  (18) 

.,0min H∈≥− izpp jtjtjt  (19) 

Note that ity  and ,jtz  can be characterized as “one-shot” outlays or fixed 

charges variables. 

4. Numerical Example 

To illustrate our proposal we used information from [27] and [11]. We 
consider 3 hydro plants using Francis turbins and 3 thermal units. The 
characteristics of the system analyzed are shown in Tables 1 to 4. Table 1 
shows the mathematical expectation for each component ( )cba ,,  the limits of 

power generation of thermal units and their respective fixed operating costs. 
Table 2 shows the coefficients proposed for evaluating water requirements as a 
function of power demand in each turbine and the operating limits of power 
generation of hydro plants. The corresponding fixed costs are ,000,90=jk  

.3,2,1=j  The periods considered and demand parameters are shown in Table 

3, where, ⎣ ⎦,iKGm DD ασ+µ=  i.e., the largest integer less than ( ).iKDD ασ+µ  

Table 1. Technical characteristics of thermal units. 

i a  b  c  min
itp  max

itp  ig  

1 561 7.92 0.001562 200 400 79,284 

2 310 7.85 0.00194 300 400 105,665 

3 780 7.97 0.00482 100 200 20,750 

Table 2. Technical characteristics of hydro units. 

j 0β  1β  2β  min
jtp  max

jtp  

1 51216.863 1173.829 16.382 10 100 

2 50834.983 1082.417 15.551 10 100 

3 49816.928 1168.097 12.052 50 150 
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Table 3. Intervals and demand parameters ( 96.1=αik  for ).05.0=α  

t 1 2 3 4 5 6 

Dµ  500 520 550 560 610 670 

Dσ  20 21 30 20 22 21 

Gm 540 562 609 600 654 712 

t 7 8 9 10 11 12 

Dµ  730 790 820 850 900 1000 

Dσ  15 15 18 24 25 20 

Gm 760 820 856 898 949 1040 

T 13 14 15 16 17 18 

Dµ  1100 1150 1200 1210 1215 1225 

Dσ  16 18 18 12 10 10 

Gm 1132 1186 1236 1234 1235 1245 

t 19 20 21 22 23 24 

Dµ  1200 1150 1090 980 800 750 

Dσ  14 14 15 17 19 20 

Gm 1228 1178 1120 1014 838 790 

With respect to the water inflows, in literature it is common to use the 
following random variables to estimate them [17]: (a) Normal distribution, (b) 
Lognormal distribution (used to describe the flood flows), (c) Gamma 
distributions (used to model many natural phenomena, including daily, 
monthly and annual streamflows as well as flood flows) [4], (d) Log-Pearson 
type 3 distribution (this distribution has found wide use in modelling flood 
frequencies and has been recommended for that purpose [4, 15]), (e) Gumbel 
and GEV (Generalized Extreme Value) distributions (in recent years, these 
have been used as a general model of extreme events including flood flows, 
particularly in the context of regionalization procedures [14]). For a deeper 
analysis of the stochasticity from water inflows and energy load see Uhr [21]. 
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In our proposal we use the gamma distribution with pdf, mean and variance 
given by 

( )
( )

( ) ( ) 21 Var,,,, θα=θα=
αΓθ

=θα
α

θ−
−α XXexxf

x
X E  

and to project the simulated value we use the product ( ( )) ,1 �×µ−
XF  with 

.3600=�  Here, ( ( )) ( )1,01 U∈×− uuFX  represents the inverse transform of the 

cumulative distribution function of gamma density. Table 4 shows the operating 
conditions of the hydro system and the parameters used in the gamma 
function to estimate the inflows to each reservoir for all .Tt ∈  

4.1. Solution schemes 

To solve the instance proposed we use two approaches. In the first one, 

we use a random search technique and for each Tt ∈  we obtain ( )∗∗∗ = ji ppp ,  

such that ( ) .min←∗pg  The entire collection of ∗p  values are an optimized 

realization of the stochastic process { ( ,,,,,,,: tjtjttjtjtitt xswDqpp=ξ=ξ  

)} .,,1 HS ∈∈= jiz T
tt  This means that even if the initial condition (or starting 

point) is known, there are many possibilities the process might go to, but 
some paths may be more probable and other less so. In our second proposal, 

we use a genetic algorithm and obtain at once all .∗p  Then, using the above 

mentioned method we optimize the problem described, Figure 2. The flow 
chart of both algorithms is depicted in Figure 3. 

Table 4. Technical characteristics of thermal units, .23,,1 K=t  

Hydro units characteristics Gamma parameters 

j jW  min
jq  max

jq  0jw  tjw  24,jw  jα  jθ  �  

1 7102.5 ×  60,000 340,000 45,000,000 40,000,000 40,000,000 1.41 47.92 3600 

2 7101.2 ×  60,000 320,000 16,000,000 12,000,000 10,200,000 1.62 47.92 3600 

3 6101.5 ×  135,000 500,000 21,000,000 14,000,000 14,000,000 1.28 42.81 3600 
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Table 5. Comparative aspects of the implementation and optimal solutions. 

Method  Hydro system Thermal system Total Storage volume Total cost  

 t ∗
1p  ∗

2p  ∗
3p  ∗

1p  ∗
2p  ∗

3p  ρ tw1  tw2  tw3  ( )pg  
∗p  

RSM 1 88 97 132 209 303 0 829 4.5156 E7 1.5945 E7 2.0695 E7 4.5984 E5  
GA 1 0 0 148 0 337 125 610 4.5293 E7 1.6337 E7 2.0794 E7 2.2144 E5 √ 

RSM 2 119 79 141 368 0 0 707 4.5156 E7 1.5945 E7 2.0695 E7 3.5431 E5  
GA 2 99 0 0 264 0 350 630 4.5055 E7 1.6451 E7 2.0861 E7 2.2209 E5 √ 

RSM 3 112 94 140 340 0 0 686 4.5140 E7 1.6032 E7 2.0056 E7 3.5378 E5 √ 
GA 3 0 71 78 373 371 196 1089 4.5192 E7 1.6413 E7 2.0766 E7 3.9545 E5  

RSM 4 120 92 135 362 0 0 709 4.4838 E7 1.6246 E7 2.0069 E7 3.5419 E5  
GA 4 0 43 0 0 397 180 620 4.5423 E7 1.6557 E7 2.0950 E7 3.2252 E5 √ 

RSM 5 96 97 134 240 0 184 751 4.5065 E7 1.6056 E7 2.0103E7 4.5937 E5  
GA 5 0 0 125 349 0 194 668 4.5988 E7 1.7181 E7 2.1068 E7 1.9606 E5 √ 

RSM 6 76 87 145 213 312 0 833 4.4804 E7 1.6296 E7 2.0182 E7 4.5998 E5  
GA 6 0 0 149 396 400 125 1070 4.5993 E7 1.7190 E7 2.0624 E7 3.0525 E5 √ 

RSM 7 91 88 139 219 310 0 847 4.4719 E7 1.6289 E7 2.0714 E7 4.6005 E5  
GA 7 0 100 0 340 341 0 781 4.4609 E7 1.6996 E7 2.0696 E7 2.8160 E5 √ 

RSM 8 103 94 137 201 383 0 918 4.5473 E7 1.6182 E7 2.0509 E7 4.6046 E5  
GA 8 0 0 150 400 391 0 941 4.6246 E7 1.7185 E7 2.0367 E7 2.8260 E5 √ 

RSM 9 103 90 143 260 337 0 933 4.5513 E7 1.6266 E7 2.0768 E7 4.6092 E5  
GA 9 71 0 0 287 394 137 889 4.6241 E7 1.7436 E7 2.0536 E7 3.0433 E5 √ 

RSM 10 96 98 145 238 378 0 955 4.5246 E7 1.6306 E7 2.0596 E7 4.6096 E5  
GA 10 0 0 0 350 369 185 904 4.6417 E7 1.7646 E7 2.0674 E7 2.1511 E5 √ 

RSM 11 118 77 142 251 396 0 984 4.5024 E7 1.6366 E7 2.0567 E7 4.6133 E5  
GA 11 100 94 0 393 387 0 974 4.6216 E7 1.7517 E7 2.0776 E7 3.7250 E5 √ 

RSM 12 120 75 138 248 385 0 966 4.5059 E7 1.7000 E7 2.0122 E7 4.6118 E5  
GA 12 99 0 147 247 400 196 1089 4.6068 E7 1.7732 E7 2.0478 E7 3.9460 E5 √ 

RSM 13 115 69 142 321 397 0 1044 4.4820 E7 1.6877 E7 1.9938 E7 4.6252 E5  
GA 13 95 0 149 400 344 172 1160 4.5894 E7 1.7899 E7 2.0137 E7 3.9521 E5 √ 

RSM 14 112 98 141 331 369 0 1051 4.5426 E7 1.6824 E7 1.9524 E7 4.6244 E5  
GA 14 100 0 100 400 400 200 1200 4.5746 E7 1.8119 E7 2.0015 E7 3.9601 E5 √ 

RSM 15 119 98 94 222 361 0 894 4.5329 E7 1.6700 E7 1.9487 E7 4.6056 E5  
GA 15 0 96 150 400 400 197 1243 4.5796 E7 1.7888 E7 1.9600 E7 3.9598 E5 √ 

RSM 16 116 79 150 326 398 0 1069 4.4997 E7 1.7280 E7 1.9221 E7 4.6262 E5  
GA 16 100 99 145 400 387 198 1329 4.5512 E7 1.7643 E7 1.9204 E7 4.8586 E5 √ 

RSM 17 90 93 140 360 384 195 1262 4.6309 E7 1.9664 E7 2.0450 E7 5.7052 E5  
GA 17 100 100 144 298 398 200 1240 4.5366 E7 1.7550 E7 1.8925 E7 4.8507 E5 √ 

RSM 18 108 96 149 348 396 152 1249 4.7720 E7 2.0194 E7 2.1461 E7 5.6999 E7  
GA 18 77 100 150 375 398 150 1250 4.5365 E7 1.7514 E7 1.8664 E7 4.8528 E5 √ 

RSM 19 103 91 146 347 382 183 1252 4.9004 E7 2.1000 E7 2.2799 E7 5.7014 E5  
GA 19 100 100 150 400 400 200 1350 4.5144 E7 1.7338 E7 1.8298 E7 4.8601 E5 √ 

RSM 20 117 70 149 388 373 186 1283 5.0193 E7 2.1000 E7 2.4001 E7 5.7088 E5  
GA 20 99 97 125 325 385 175 1206 4.5133 E7 1.7398 E7 1.8202 E7 4.8494 E5 √ 

RSM 21 115 82 107 396 400 198 1298 5.1632 E7 2.1000 E7 2.5181 E7 5.7141 E5  
GA 21 0 0 150 387 400 198 1135 4.5309 E7 1.7609 E7 1.7889 E7 3.0587 E5 √ 

RSM 22 118 97 142 392 345 185 1279 5.2000 E7 2.1000 E7 2.7580 E7 5.7069 E5  
GA 22 0 0 148 398 392 172 1110 4.5588 E7 1.7931 E7 1.7671 E7 3.0564 E5 √ 

RSM 23 107 86 136 228 392 189 1138 5.1953 E7 2.1000 E7 2.7487 E7 5.6828 E5  
GA 23 97 0 0 316 342 193 948 4.5419 E7 1.8113 E7 1.7788 E7 3.0464 E5 √ 

RSM 24 119 100 116 375 369 0 1079 5.1954 E7 2.0925 E7 2.7280 E7 4.6327 E5  
GA 24 0 99 124 0 394 184 801 4.5689 E7 1.8116 E7 1.7657 E7 3.1253 E5 √ 
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Figure 2. Approaches used: (a) RMS (A single optimum realization), (b) GA 
(selection of the optimal realization from a total sample). 

The formal description of both procedures is as follows. 

The random search method (RSM) 

Monte Carlo optimization is a class of algorithms that seek a maximum 
by sampling, using a pseudo-random number generator. It is a technique for 
estimating the solution, x of a numerical mathematical problem by means of 
an artificial sampling experiment. The estimate is usually given as the average 
value, in a sample, of some statistic whose mathematical expectation is equal 
to x. 

Let Ω be the feasible set of the problem, i.e., any set of all possible 
solutions ( )ji ppp ,=  that satisfy restrictions imposed to the problem in any 

.Tt ∈  Let ( )kη  be a sequence of i.i.d. random vectors obtained at random from 
with uniform probability. In our first approach, the algorithm keeps the best 
point found so far until a better point is detected: 

( ) ( )
( ) ( )⎩

⎨
⎧

≥η
<ηη

=
+

++
+ ,if,

,if,
1

11
1

nnn

nnn
n pggp
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where ,: 11 η=p  and for ∗→∞→ ppn n,  a.s. In this sense, ∗p  is such that 

( ) .min←∗pg  
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The convergence properties of (20), are widely discussed in Pflug [24]. 
This algorithm was designed to optimize unconstrained problems, however, 
we eliminate this inconvenience obtaining samples directly from Ω. Also, 
restricting the search to integer values, we satisfy the integrity constraint 
imposed on the model. Although seemingly simple to use, it requires a large 
number of samples to obtain a feasible optimal solution and time consuming 
during the process as the search is seeking to the boundary of Ω, i.e., when 
the solution must meet the higher demand values and close to the generation 
limits, equations (5) and (6). The average time required by the algorithm 
using MATLAB is around 354 seconds, to evaluate 100,000 iterations. 

   
(a) (b) 

Figure 3. (a) RMS and (b) Genetic algorithm Lay-out. 
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The genetic algorithm method (GA) 

In order to minimize the cost of generating the required demand, a binary 
genetic algorithm was also implemented with probability 1µ  for crossover, 
and 32, µµ  for mutation and point mutation probabilities, respectively. Firstly, 
a set of feasible random initial solutions is generated, each solution represents 
the decisions about using or not a thermal or an hydro unit, and the amount 
of power generated by each unit. In this way, every solution represents a 
sequence of decisions for 24 hours given by the process ξ. To obtain feasible 
solutions, an initial solution for the i-th hour is randomly generated, this one 
is checked for reviewing that the minimum required power for this hour is 
produced, and all restrictions about water and power bounds are fulfilled. If a 
non-feasible solution is obtained, hence it is discarded, another random one is 
calculated, and this process is repeated until a feasible solution is produced 
for the i-th hour. Then, the capacities of reservoirs are updated for the next 
hour, and the same procedure is achieved to yield other random solution for 
the ( )-1+i th hour. 

In each hour, every power unit is described by 11 bits; where the first 10 
bits represent the power required for this unit and the last one is the binary 
flag indicating if the unit is online in this hour. In this sense, the complete 
solution in every hour has associated 66 bits; and every solution is composed 
by 1584 bits. 

In our genetic approach, 40 random solutions are generated, and each are 
evaluated in the model to obtain its corresponding cost. Tournament is used 
for selecting the new set of solutions, looking for minimizing the cost of them. 
With this new set of refined solutions, a crossover is performed with a 
probability of ,1µ  between two random solutions, where a single-point crossover 
is used. 

The new chains of bits so obtained are reviewed, in order to know if they 
are feasible; on the contrary, they are discarded a other 2 new solutions are 
calculated in the same way until to obtain feasible solutions. These new ones 
replace the 2 parents previously selected. In this particular problem, since 
the required demand in every hour is often far from the maximum power 
generation of the system, there is a high probability of producing feasible 
solutions in a crossover. 
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Mutation is similarly achieved, a solution is selected with a probability of 
,2µ  hence a bit of this solution is inverted with a probability of ;3µ  where ;3µ  

15841  following the criteria specified in [13]. Once a solution is mutated, its 
feasibility is checked; in case that a non-feasible solution is obtained; mutation 
is reversed. This algorithm was also implemented in MATLAB, and it takes 
about 135 sec. for calculating 40 iterations with 40 solutions. 

4.2. Results obtained 

The implementation of algorithms (RSM) and (GA) produced the results 
shown in Table 5. Here, we show comparative aspects of implementation and 
optimal solution obtained by each algorithm and the optimal solution is 
highlighted by using the symbol √. 

Total costs for each alternative were $10,200,000.00 for RSM and 
$8,256,568.00 for the GM method. Obviously, the genetic algorithm approach 
improves significantly the results obtained by the RSM. Naturally, these 
quantities are only a lottery of the random variable that represents the global 
cost of the MPS. If the process is repeated κ times, each solution is different, 
with mean and variance finite. By the above, it is also possible to obtain the 
probability density function (pdf) of the total cost and its parameter values. 

The time required for convergence were also significant. RMS needed 
100,000 iterations and the total cost of this alternative is $ 8,256,568.00 which 
improves the one obtained by Monte Carlo sampling method. 

5. Conclusions 

In this document we proposed a non-linear stochastic and integer 
programming model to obtain the MPS of the hydrothermal coordination 
problem. We use two approaches to solve it. The first algorithm is the well- 
known procedure to deal with the minimization of functions in this setting, 
the so called Stochastic Approximation Method that can be viewed as a 
recursive Monte-Carlo optimization method. In this variant we selected 
random samples of P from Ω so that, these contain only integer components 
to secure the integrity of the model. 

The other alternative used was a genetic algorithm. For the instances 
showed, this method was more efficient than RMS either the time required 
and the accuracy obtained. However, experience showed that the time required 
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to obtain solutions in both algorithms where power demand is approaching 
the upper limits of generation capacity (equations (2), (5) and (6)) grows 
significantly. 

The approach used in this research, proved to be sufficient but not 
efficient. However, the application of opyimization is straightforward opening 
the way for the application of meta heuristics such as simulated annealing, ant 
colony or particle swarm optimization. Our main contribution in this proposal 
is the use of reliability functions to ensure that, the power generated meets 
the average demand with certain probability. 

The next activity in this research involves the application of alternative 
techniques and compare their results (accuracy and speed of convergence) 
with the ones obtained here. 
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