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ABSTRACT

Hexagonal cellular automata (CA) were studied with inter-
est as a variation of the famous Game of Life CA, mainly
for spiral phenomena simulations; where the most interest-
ing constructions are related to the Belousov-Zhabotinsky
reaction. In this paper, we study a special kind of hexago-
nal CA known as the Spiral rule. Such automaton displays
a non-trivial complex behaviour related to discrete models
of reaction-diffusion chemical media, dominated by spiral
guns that easily emerge from random initial conditions.
Computing abilities of Spiral rule automata are shown by
means of logic gates, defined by collisions between mobile
self-localizations. Also, a more extended classification of
complex self-localization patterns is presented, including
some self-organized patterns.

KEYWORDS: hexagonal cellular automata, gliders,
guns, collisions, logic gates, complexity.

1. ANTECEDENTS

Spiral rule is a synchronous totalistic three-state two-
dimensional hexagonal CA introduced by Adamatzky and
Wuensche in 2005 [13]. Such automaton displays an non-
trivial complex dynamics behaviour dominated by mobile
and stationary self-localizations (gliders or particles),

including the emergence of spiral guns producing mobile
self-localizations.

In [6] some computing capacities and the fundamental
complex activity of the Spiral rule are introduced. Also, a
summary of complex structures, basic collisions, and basic
properties of the Spiral rule are displayed on Wuensche’s
home page (are shown in DDLab [7]).1

The rule therefore is yet on study. Our interest and con-
tribution in this paper is the implementation of univer-
sal logic gates produced by collisions among mobile self-
localizations yielded from spiral guns. Besides, a more
complete classification of their complex structures is given,
consequently reporting new complex patterns in Spiral rule.

2. THE SPIRAL RULE CA

The Spiral rule is a two-dimensional three-state CA evolv-
ing on a hexagonal lattice. The hexagonal local function
f is a variation of Moore’s function as an isotropic V =7-
neighbourhood (Fig. 1), as follows:

f(V)t → xt+1
i,j (1)

Let Σ = {0, 1, 2} be the alphabet and the local function
f : ΣV → Σ takes into account 2187 neighbourhoods.

1http://www.cogs.susx.ac.uk/users/andywu/multi value/spiral rule.html
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Figure 1. Hexagonal Lattice and a 7-Neighbourhood
Respectively.

However, the Spiral rule is a totalistic CA which com-
presses the number of neighbourhoods by the sum of their
states [12]. Thus the Spiral rule is coded by a number of
cells in Σi on V as:

766555444433333222222111111100000000 Σ2

010210321043210543210654321076543210 Σ1

001012012301234012345012345601234567 Σ0

000200120021220221200222122022221210

This means, for example, that given seven cells in state 2
and none in state 1 or 0 on V , hence this neighbourhood
evolves into 0 in the next generation. For simplicity, we
can represent the totalistic code in hexadecimal notation as
020609a2982a68aa64; although looking for a more trans-
parent representation, the totalistic evolution rule can be
represented as a triangular matrix [6].

|Σ1|
0 1 2 3 4 5 6 7

0 0 1 2 1 2 2 2 2
1 0 2 2 1 2 2 2
2 0 0 2 1 2 2

|Σ2| 3 0 2 2 1 2
4 0 0 2 1
5 0 0 2
6 0 0
7 0

(2)

This matrix representation [6] describes the number of cells
in state 1 as columns, the number of cells in state 2 as rows
and, the number of cells in state 0 is deduced by 7−(|Σ1|+
|Σ2|). For example, whether we have three cells in state 2
and two cells in state 1 hence there are two cells in state 0
and the neighbourhood evolves to state 2.

3. COMPLEX DYNAMICS IN SPIRAL
RULE

The Spiral rule opens a new universe of complex patterns
emerging on the hexagonal evolution space. In this section
we present a number of new structures on the Spiral rule
CA. Eventually such complex patterns become very useful
to develop a number of computing devices, or for another
potential engineering devices indeed.

3.1. Mobile Self-Localizations: Gliders

The Spiral rule has a great diversity of gliders travelling
in the evolution space. These mobile self-localizations (or
gliders in CA literature), can be described by a number of
particular properties as: mass, volume, period, translation,
and speed.

Figure 2. Gliders in Spiral Rule; State 2 is Represented
in Black, State 1 in Grey, and the Stable Background

(state 0) in white.

We have enumerated 50 gliders, several of them are new
with regard to other analysis. Figure 2 displays all the
known gliders in the Spiral rule starting from basic or
primitive gliders up to large and composed ones (including
those which can be extended). Experimentally we have ob-
served that several of them do not have a high probability
to emerge from random initial conditions and inclusively
survive for few generations, because they are very sensitive
to small perturbations.

Table 2 depicts general properties for every glider in the
Spiral rule; where mass represents the number of cells
in state 1 and 2 inside of each volume glider, whether it
has more than one form during its period hence the mass
is the biggest number of cells. Period is the number of
evolutions needed for each glider to return to the same
shape, translation is the number of cells where such
pattern move given its period, and finally speed of particles
is calculated as the rate of its translation between its period.

With such a diversity of gliders, we can refine a clas-
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Table 1. Glider Properties in Spiral Rule. State
Substrate (State 2), Activator (State 1), and Inhibitor

(State 0).
glider mass period translation speed
g1 5 1 1 1
g2 5 2 2 1
g3 5 2 2 1
g4 5 2 2 1
g5 6 1 1 1
g6 8 1 1 1
g7 9 1 1 1
g8 10 1 1 1
g9 10 1 1 1
g10 10 4 4 1
g11 11 1 1 1
g12 11 4 4 1
g13 11 4 4 1
g14 11 4 4 1
g15 11 4 4 1
g16 11 4 4 1
g17 12 1 1 1
g18 12 2 2 1
g19 12 4 4 1
g20 14 2 2 1
g21 14 2 2 1
g22 14 2 2 1
g23 15 2 2 1
g24 16 2 2 1
g25 16 2 2 1

sification given a family or specie of them. This way,
Tab. 3 presents three main branches of species of gliders
in the Spiral rule. In particular, extendible gliders can be
configured and connected as mobile polymers over their
six possible directions. Extendible glider means that they
have extensions inside structure preserving the basic form.

(a) (b)

Figure 3. Still-life Configurations in the Spiral Rule.
Also (b) Has All Possible Variations (memory) on its

Outer Shell (For Details See [4]).

3.2. Static Stationary Localizations: Still-Life Con-
figurations

Spiral rule has basically a pair of basic or primitives static
stationary localizations known as still-life configurations in
CA. Such patterns can live on the evolution space without
alteration; of course, in the lack of any perturbation.
Figure 3 displays these still-life patterns that can be also
connected as polymers as well to yield extensions of such
patterns.

Table 2. Glider Properties in Spiral Rule. State
Substrate (State 2), Activator (State 1), and Inhibitor

(State 0).
glider mass period translation speed
g26 16 2 2 1
g27 17 2 2 1
g28 17 4 4 1
g29 17 4 4 1
g30 18 4 4 1
g31 18 4 4 1
g32 19 4 4 1
g33 19 8 8 1
g34 20 8 8 1
g35 22 4 4 1
g36 23 4 4 1
g37 24 4 4 1
g38 25 4 4 1
g39 25 8 8 1
g40 26 8 8 1
g41 29 4 4 1
g42 29 8 8 1

Table 3. Species of Gliders in the Spiral Rule.
specie glider

primitive g1, g2, g3, g4, g5, g29
compound g6, g7, g9, g10, g12, g13, g14, g15, g16, g17, g19, g27, g35

g8, g11, g18, g20, g21, g22, g23, g24, g25, g26, g28, g30,
extendible g31, g32, g33, g34, g36, g37, g38, g39, g40, g41, g42, g43,

g44, g45, g46, g47, g48, g49, g50

Firstly, the still life ‘e1’ (Fig. 3a) has a mass of 12 active
cells while the second still life ‘e2’ (Fig. 3b) has a mass of
13 active cells. The last still life can be used as a counter
of binary strings for a memory device [4, 15], producing a
family of still-life configurations.

A remarkable characteristic (similar to Life) is that both
still-life configurations work as “eaters.” An eater is a con-
figuration which generally deletes gliders coming from a
given direction. This structure eventually becomes very
useful to control a number of signals or values in a specific
process. For example, deleting values in a computation,
where some bits are not needed anymore.

3.3. Periodic Stationary Localizations: Oscillators

Oscillator patterns are able to emerge in the Spiral rule as
well; we can see here an interesting diversity of static pat-
terns oscillating periodically. They are frequently a com-
position of still-life configurations turning ON and OFF bits
periodically.
Figure 4 presents six kinds of oscillators in the Spiral rule.
They are composed by fundamental still-life configurations
connected, all of them oscillating and changing few values
in their structures. Thus, it is not complicated to develop
more extended and complex oscillators in the Spiral rule.
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(a)

(b)

(c)

(d)

(e)

Figure 4. Oscillators Configurations in the Spiral Rule.

Table 4. Oscillator Properties in the Spiral Rule: o1
(a), o2 (b), o3 (c), o4 (d), and o5 (e).

oscillator mass period
o1 20 6
o2 20 6
o3 24 4
o4 24 4
o5 20 3

Table 4 shows general properties for each oscillator in
Fig. 4. Additionally these oscillators are capable to work
as eater configurations as well. However, no simple blink-
ers or flip-flop configurations are still reported.

3.4. Glider Guns

One of the most notable features in the Spiral rule CA
is the diversity of glider guns that can appear into its
evolution space. A glider gun is a complex configuration
generating gliders periodically. In the CA literature, the
existence of a glider gun also represents the solution of the
unlimited-growth problem [8].

The Spiral rule has two types of glider guns: fixed and
in movement. A fixed gun cannot change of place and
position, while a moving gun can travel along some
direction emitting gliders also.

Figure 5. Stationary Glider Guns in the Spiral Rule. A
Number of non-Natural Guns are Presented Too.

Table 5 and Fig. 5 show general properties and dynamics
of fixed guns evolving in the Spiral rule respectively. The
most frequent glider guns produced by the Spiral rule
from random initial conditions are gun6 and gun7. They
have a high and slow frequency emitting six g2 and g1
gliders respectively. While gun6 produces six g2 gliders
every six generations, gun7 yields six g1 gliders every 22
generations (see Tab. 5). Other gun variations are obtained
adding still life or oscillators, affecting the production of
gliders or changing their identity and number. Of course,
they are not basic guns but they can be modified to yield
a different number or kind of gliders and its frequency as
well, see guns gun1–gun5, gun8–gun11 to look modified
guns.

Particularly stationary glider guns gun6 and gun7 (ba-
sic guns in Spiral rule) describe characteristic “spiral
guns” in chemical reactions, as we can see in Belousov-
Zhabotinsky phenomena [3, 2, 9], gliders are CA analogs
of wave-fragments (localized excitations) propagating in
sub-excitable reaction.
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Figure 6. Mobile Glider Guns in the Spiral Rule (First
Set).

Also, the Spiral rule has a large number of mobile glider
guns, generally they are formed by complex structures
generating more than two gliders. However, the guns are
very sensitive to any perturbation, consequently destroying
the gun configuration. While natural spiral guns (gun6 and
gun7) are very robust to defend their structures from many
collisions, there are few of them that are able to destroy
these structures as well. Figure 6 and 7 present the broad
diversity of mobile glider guns in the Spiral rule, having
up to 38 different types.

Thus, there is always a way to yield basic gliders in the
Spiral rule from some glider gun.

4. LOGIC GATES AND BEYOND

This section describes constructions to simulate computing
devices in the Spiral rule by glider collisions, imple-
menting universal logic gates and other useful computing
devices. They are inspired by previous developments as
in the Game of Life CA [8]. Thus, the presence of gliders
represents bits in state 1 and its complement (absence)
represents bits in state 0.

The first construction implementing a logic gate in the

Figure 7. Mobile Glider Guns in the Spiral Rule
(Second Set).

Spiral rule was to design a NOT gate.2 This one presents a
NOT gate processing the string ¬(1111110). Here a high
frequency spiral gun gun6 produces six gliders where five
localizations are suppressed by eaters to preserve only one.
Thus the first spiral gun (east position) yields periodically
the sequence 1111 . . .. Hence other two slow frequency
spiral guns of kind gun7 generate additional eaters to
delete a bit of such sequence, given the string (1111110)∗.
Finally a fourth spiral gun gun6 (north position) produces
the NOT operation obtaining the string (0000001)∗ by
annihilation reactions.

Gaps between spiral guns can be manipulated to get a
desired string. For example, Fig. 8 displays another NOT
gate processing the string ¬(1100110).

This way, we have constructed specific initial conditions
to simulate: OR (Fig. 9) and AND (Fig. 10) logic gates.
Of course, additional still life patterns and spiral guns
configurations are needed in each design to synchronize

2Please see an animation from http://www.youtube.com/watch?v= bC5ucq sKc.
The construction was done using DDLab software, to ac-
quire the file ‘notGt sr.eed’ please download it from
http://uncomp.uwe.ac.uk/genaro/Papers/Thesis.html.
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Table 5. Properties of Stationary Glider Guns in the
Spiral Rule.

gun production frequency period volume gliders
emitted

gun1 g1 1 6 15×15 1
gun2 g1, g3 2 6 15×15 2
gun3 g1, g2, g3 3 6 14×15 3
gun4 3g1, 2g2 5 12 16×17 3
gun5 5g1 5 12 19×17 3
gun6 6g2 6 6 8×9 6
gun7 6g1 6 22 12×12 6
gun8 3g1, 4g2 7 12 14×14 4
gun9 3g1, 2g2, 2g4 7 12 15×17 4
gun10 5g1, 2g5 7 12 15×15 4
gun11 13g1, 4g5 17 30 15×17 45.SpiralRule66

Fig.5.15:CompuertaNOTenlareglaspiral.

Figure 8. NOT Gate Implementation in the Spiral Rule
String ¬(1100110).

multiple collisions, and controlling a respective sequence
of bits.

Additionally, a low frequency DELAY device has been de-
signed as well using a gun1 spiral gun. The goal is to re-
flect the original input by three reflection reactions which
preserve the same sequence at the end. Of course, the delay
time can be manipulated increasing the gap among each re-
flection. Such device is useful to synchronize multiple sig-
nals in order to generate more sophisticated computations
in further works.

5. FINAL REMARKS

Universal logic gates and other computing devices in the
Spiral rule have been implemented, showing the potential
of this hexagonal CA to exhibit complex patterns and
synchronize multiple collisions.3 The next step will be

3Implementations of capacitor and reflection devices in Spiral rule
can be watched in http://www.youtube.com/watch?v=Cx5QYxvfF9g,

5. Spiral Rule 68

Fig. 5.17: Compuerta OR en la regla spiral.

Figure 9. OR Gate Implemented in the Spiral Rule.

the design of full logic circuits working together to get a
complete implementation for a given computable function.
Consequently, it is necessary to engineer of the Spiral
rule constructions, based on such logic gates to get a full
universality, employing similar constructions done in other
hexagonal CA models [11, 5].

About unconventional computing, these results make a
bluepring to implement reaction-diffusion computers on
Belousov-Zhabotinsky systems [3]. Here, mobile self-
localizations are represented as a fragment of waves and
their interactions are a scheme for three states: substrate
(state 2), activator (state 1), and inhibitor (state 0); where
the spiral guns represent a discrete analogy for a classical
spiral wave in an excitable media. An interesting study de-
termining spiral forms in CA can be consulted in [10]. The
spiral guns can also be related to crystallization computers
[1] where a crystallized way will be precisely a glider
travelling on such direction. Experimental laboratory tests
are working in this direction at the ICUC.4

All simulations were done with SpiralSimulator5, and
DDLab6 software [14].

http://www.youtube.com/watch?v=Cx5QYxvfF9g, and
http://www.youtube.com/watch?v=H2xvG-UHM9o.

4International Centre of Unconventional Computing, University
of the West of England, Bristol, United Kingdom. Home page
http://uncomp.uwe.ac.uk/.

5Here you can download SpiralSimulator software and
source files to reproduce every logic gate designed in this paper
http://uncomp.uwe.ac.uk/genaro/Papers/Thesis.html.

6Here you can download DDLab software http://www.ddlab.org/.
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5. Spiral Rule 67

Fig. 5.16: Compuerta AND en la regla spiral.

Figure 10. AND Gate Implemented in the Spiral Rule.
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