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Elementary cellular automata (ECAs) have been studied for their ability to generate com-
plex global behavior, despite their simplicity. One variation of ECAs is obtained by adding
memory to each cell in a neighborhood. This process generates a provisional configuration
in which the application of an evolution rule establishes the dynamics of the system. This
version is known as an ECA with memory (ECAM). Most previous work on ECAMs analyzed
the complex behavior taking chaotic ECAs. However, the present paper investigates revers-
ible ECAMs as obtained from reversible and permutative ECAs. These ECAs have at least one
ancestor for every configuration; thus, the correct permutation of states may specify the
memory function to obtain reversible ECAMs. For permutative ECAs, which are often irre-
versible, we demonstrate that the use of a quiescent state and the correct manipulation of
de Bruijn blocks produce reversible ECAMs.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Elementary cellular automata (ECAs) are dynamical systems that are discrete in time, space, and states. An ECAM is de-
fined by a one-dimensional array of cells. There are two possible states per cell; each cell updates its state according to an
evolution rule that considers the current state of the cell and its two immediate neighbors.

ECAs have been studied in detail because, in some cases, they are able to produce chaotic and complex behavior without
requiring a centralized control mechanism [33,32,14,23]. Thus, ECAs are useful in various applications, for instance, in
unconventional universal systems or random number generators [31,9,19].

One variation of ECAs is an ECA that includes memory (ECAM). In this variant, every cell reviews its past history (if any) to
derive a provisional state (this process specifies a provisional configuration); and thereafter, the application of an evolution
rule results in the evolution of the automaton.

ECAMs are able to exhibit complex behavior from chaotic ECAs; therefore, it is possible to implement unconventional
computing devices using ECAMs [3,6,18,20]. Nevertheless, there are other important aspects to the extension of ECAs to
ECAMs; in particular, reversibility. This property is one of the main topics of interest in cellular automata research; in part,
to allow better understanding of the conservation of information in discrete dynamical systems. For instance, McIntosh
adopts second-order and partitioning techniques to achieve reversibility with ECAs, and de Bruijn diagrams to analyze this
behavior [21,22]. Some studies of reversibility in ECAMs were performed by Alonso-Sanz [1,2], who applied an invertible
XOR boolean operator to produce reversible ECAMs.
. All rights reserved.
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To our knowledge, however, there is no explanation of how the local properties of reversible ECAs could be extended to
obtain reversible ECAMs. In addition, there is no general method of finding the appropriate memory function in ECAMs so as
to obtain reversible behavior from irreversible ECAs.

The present article is intended to provide solutions to the previously discussed issues. In particular, this paper employs
the inverse rule of reversible ECAs and the local properties of permutative ECAs to characterize the memory function needed
to obtain invertible ECAMs.

For an ECAM of memory size n, and given its last n configurations ct�n+1, ct�n+2, . . ., ct, one can calculate the ancestor of ct

and use the remaining n � 1 configurations to obtain the states in ct�n. For reversible ECAs, the correct permutation of states
used as memory achieves the desired behavior. Additional components are considered in the case of permutative ECAs, spe-
cifically, a quiescent state, de Bruijn blocks, and the uniform number of ancestors established by Hedlund in [13].

This paper is organized as follows: Section 2 presents the basic concept of an ECAM. Section 3 characterizes invertible
ECAMs based on reversible ECAs. Section 4 applies these results to the case of permutative ECAs. Section 5 gives illustrative
examples based on the previous results. The final section provides some concluding remarks.

2. Basic concepts

A one-dimensional cellular automaton is an array of locally connected cells. Initially, every cell has a state taken from a
finite set of states. The cells update their states simultaneously by the same evolution rule in a discrete time. The rule takes
as its argument the current state of every cell and its nearest neighbors. Thus, cellular automata are discrete in time, space,
and states. There are several problems that are being studied in one-dimensional cellular automata to understand and take
advantage of their complex behavior, for instance, replication of structures [12], fluctuations in the evolution of number-con-
serving cellular automata [15], simulation of universal systems by means of reversible cellular automata [24], and applica-
tions to the optimization of functions [29].

Elementary cellular automata (ECAs) have previously been studied for their ability to produce complex global behavior, in
spite of their simplicity [31]. An ECA is defined by a binary set of states R = {0,1} and a mapping u: R3 ? R (therefore, each
sequence in R3 is a neighborhood of size 3), and u is the evolution rule of the ECA. The dynamics of the ECA begins at a given
initial condition c1 : Z! R, where the superscript indicates time, c1

i is the i-th cell of c1, and g c1
i

� �
¼ c1

i�1; c
1
i ; c

1
iþ1

� �
constitutes

the neighborhood of c1
i .

The update of every cell c2
i ¼ u � g c1

i

� �
generates a new configuration c2; the �symbol indicates the composition of both

functions, first applying g and then u. This process is indefinitely repeated, constituting the evolution of the ECA.
Building on this basic definition, several variants have been also created so as to realize new behaviors, for example, a

larger number of states [11,28], different neighborhood sizes [8,17], the application of continuous states [25,26], inhomoge-
neous neighborhoods and evolution rules [10,16], or (as in the case of this paper) a memory function that evaluates the his-
tory of every cell in a neighborhood [3,30]. Memory has been used in other automata models to analyze complex behavior
[4,5].

In cellular automata with memory (ECAMs), every cell uses its past states to determine a provisional state. Thereafter, an
evolution rule is applied to the new array of provisional states to obtain the subsequent configuration. This paper proposes a
characterization of the memory needed to conserve and produce reversible behavior in ECAMs.

For a given ECA and some n 2 Zþ, an ECA of memory size n (or ECAM-n) is defined as follows: For every cell ct
i in config-

uration ct, let cnðct
i Þ ¼ ct�nþ1

i ; . . . ; ct
i

� �
be the sequence composed by the current and the past n � 1 states of ct

i . Let us take bn:
Rn ? R. Additionally, let us define a memory function in Eq. (1) that produces a state based on the history of ct

i .
sn ct
i

� �
¼

ct
i if t < n

bn � cnðct
i Þ if t P n

�
ð1Þ
For t < n, the memory function in Eq. (1) simply takes the current state of ct
i . Consequently, with this memory, an ECAM

yields the same behavior as that of the original ECA for the first n � 1 evolutions. In another case, the mapping bn is applied
when there are enough evolutions. The choice of bn is not restricted, provided that it is specified for the set of sequences of
length n. bn is preserved throughout the evolution of the ECAM-n. Let us notice that every sn generates a temporal config-
uration dt between ct and ct+1. In this way, Eq. (2) defines the states of the subsequent configuration.
ctþ1
i ¼ u � g dt

i

� �
ð2Þ
This study considers the mappings bn required to produce memory functions sn that yield reversible ECAMs based on
ECAs. The invertible behavior to be analyzed is defined in the following way.

Definition 1. An ECAM-n is invertible if the configuration ct�n is obtained in a unique way from the configurations
ct�n+1, . . ., ct.
Definition 1 implies (at least) that the last n configurations are known to the ECAM-n. Therefore, we propose the following
process to re-trace the evolution of an ECAM.
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1. Calculate the ancestor of the configuration ct.
2. Define the states in ct�n in a unique way from this ancestor.

The ECAMs to be analyzed are extensions of reversible and permutative ECAs. The process is based on the well-known
properties of the ancestors in this kind of automaton.

3. Invertible memory in reversible ECAs

A reversible ECA (RECA) exhibits invertible behavior, which is induced by an inverse local mapping. RECAs are defined as
follows:

Definition 2. An ECA is reversible iff for u, there exists another evolution rule u�1 such that ct�1
i ¼ u�1 � gðct

i Þ.
There are 256 ECAs, and each ECA can be indicated using Wolfram code [31]. In other words, taking the decimal number

associated with the binary sequence delineated by the evolution rule. The most significant bit is the one that is related to the
evolution of the neighborhood 111.

From these 256 ECAs, there are only six ECAs that fulfill Definition 2 (rules 15, 51, 85, 170, 204, and 240). These rules take
an element at the same position in every neighborhood, and retain the same value or change (based on the evolution rule).
For instance, rule 15 performs the negation of the leftmost state of every neighborhood (see Table 1). In this way, each rule
and its inverse are paired as: 15 M 85, 51 M 51, 170 M 240, and 204 M 204 (see page 436 of [31]).

Given an ECAM-n, the inverse rule u�1 can be applied to ct to determine dt�1. Let P be the set of permutations of R. For
each w 2 Rn�1, let us define Aw ¼ fbnðawÞ : a 2 Rg. The definition of Aw implies jAwj ¼ 1 or jAwj ¼ 2 because the domain of
Aw is R = {0,1}. As a consequence, if bn(0w) = bn(1w) then jAwj ¼ 1; otherwise, jAwj ¼ 2 and Aw is a permutation of R. These
elements are useful to prove the following result.

Proposition 1. Let an ECAM-n be an extension of an RECA such that it includes memory. Then, the ECAM-n is reversible iff every
Aw 2 P.
Proof. For t < n, the ECAM-n has identical behavior to that of the original ECA, because the memory function sn is only copy-
ing ct in dt. Therefore, reversible behavior is (trivially) obtained applying u�1 to ct to produce dt�1 = ct�1. In this way, the
interesting cases are those in which there are t P n evolutions.

According to Eq. (1), for t P n, sn can be described as in Eq. (3). Each row index is a state a 2 R and every column index is
a sequence w 2 Rn�1. Thus, bn(aw) defines the entry (a,w), and the column w represents the set Aw.
Table 1
Evolutio

Neig

000
001
010
011
100
101
110
111
ð3Þ
)) Suppose that the ECAM-n is reversible; in this case, each ct�n
i can be obtained in a unique way from ct�nþ1

i ; . . . ; ct
i

� �
. Let us

take a ¼ ct�n
i , w ¼ ct�nþ1

i ct�nþ2
i � � � ct�1

i , and suppose thatAw R P. As a result,Aw is not a permutation of R. Therefore, all rows of
column w are identical, because jRj = 2 and jAwj ¼ 1, as shown in Eq. (4).
ð4Þ
Moreover, u�1 � g ct
i

� �
¼ b ¼ dt�1

i . However, Eq. (4) indicates that bnð0wÞ ¼ bnð1wÞ ¼ dt�1
i . Therefore, ct�n

i may be either 0
or 1, which contradicts the reversibility of the ECAM-n.

�) Suppose that Aw 2 P for every w 2 Rn�1. Then, each column w is a permutation of R, as shown in Eq. (5).
n rules of the six RECAs.

hborhood 15 51 85 170 204 240

1 1 1 0 0 0
1 1 0 1 0 0
1 0 1 0 1 0
1 0 0 1 1 0
0 1 1 0 0 1
0 1 0 1 0 1
0 0 1 0 1 1
0 0 0 1 1 1
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ð5Þ
For each ct
i , let us take w ¼ ct�nþ1

i ct�nþ2
i � � � ct�1

i and dt�1
i ¼ u�1 � g ct

i

� �
. Then, as the column w in Eq. (5) is a permutation of

R, there is a unique row x 2 R in this column such that bnðxwÞ ¼ dt�1
i . Thus ct�n

i ¼ x; therefore, the ECAM-n is reversible. h
4. Reversible memory for permutative ECAs

This section analyzes other types of irreversible ECAs that might exhibit reversible behavior when used as ECAMs. In par-
ticular, permutative ECAs (PECAs) are discussed, because they are sometimes irreversible; however, their surjective proper-
ties are useful to yield reversible ECAMs.

To better interpret the following results, we will consider the simulation of every ECA by another cellular automaton with
4 states and a neighborhood size of 2 [7,27]. For m 2 Zþ and any sequence w 2 Rm, let w[i] be the i-th state of w. For
1 6 i 6 j 6m, let w[i,j] be the sequence w[i]w[i+1] . . . w[j] in w from position i to position j. For m P 3 and any w 2 Rm, let us
define /(w) as the sequence in Rm�2 generated by the concatenation of u(w[1,3])u(w[2,4]) � � � u(w[m�2,m]). That is to say, /
(w) is the application of the evolution rule to each neighborhood of w without being required to have periodic boundary con-
ditions. Accordingly, for any two sequences u,v 2 R2 where uv is the usual concatenation of sequences, we know that /
(uv) = w 2 R2.

Let M be the square matrix in which row and column indices are the elements of R2, such that every entry of M is defined
in Eq. (6).
Mðu;vÞ ¼ w iff /ðuvÞ ¼ w ð6Þ
The sequences of R2 in M are just the de Bruijn blocks normally used to represent the evolution rule graphically [22,23].
For Q = {0,1,2,3}, let us define a bijection 1: R2 ? Q such that 1: 00 ? 0, 1: 01 ? 1, 1: 10 ? 2, and 1: 11 ? 3. With this

bijection,1 the following definition is given.

Definition 3. em An ECA is permutative (PECA) if each row in its corresponding matrix M is a permutation of Q.

Notice that Definition 3 takes the bijection 1 to implicitly represent the elements of M.
In every PECA, for m 2 Zþ and each sequence w 2 Qm, there exists a set Kw = {v: v 2 Qm+1, /(v) = w} such that jKwj = 4 [13].

In other words, every sequence of length m has 4 different ancestors of length m + 1.
In this case, for any x 2 Q and each w 2 Qm, every sequence in Kwx is an extension of a unique sequence in Kw. This is

because every row in M is a permutation of Q; therefore, for each v 2Kw with rightmost state v[m+1] = a 2 Q, there exists a
unique b 2 Q such that u(ab) = x. Therefore, vb 2Kwx.

Thus, the ancestors of a given sequence may have different states at the same position. Consequently, the previous prop-
erty usually avoids the specification of an inverse evolution rule. In particular, PECA are examples of surjective automata
[21]. However, this property can be used to redefine the memory function sn in Eq. (1) and obtain reversible behavior in
any PECA.

First, a PECA is transformed into an ECAM where all configurations are represented between semi-infinite sequences of
quiescent states #. For any a 2 Q, let us define a state # such that u(a#) = u(#a) = u(##) = #. State # is called ‘quiescent’ be-
cause all its neighborhoods evolve into #. For m 2 Zþ and 1 6 i 6m, every initial configuration c = c1 � � � cm is represented as
C ¼ � � �##c## � � �with ci 2 Q. That is to say, c is finite, and the states of c are not quiescent. For i 2 Z, let Ci be the i-th element
of C; thus, C1 � � � Cm ¼ c. The use of the quiescent state avoids the need to specify periodic boundary conditions in the evolu-
tion of the ECAM.

Let us take cn C
t
i

� �
¼ Ct�nþ1

i ; . . . ; Ct
i

� �
. Then, cnðC

t
i Þ gives the current and the previous n � 1 states of Ci. For n 2 Zþ, let us

redefine bn as follows:
bn : Q n ! Ka for some a 2 Q ð7Þ
In Eq. (7), bn maps every sequence of states of length n onto a complete set of ancestors of a 2 Q. The selection of a is unre-
stricted. For x,y 2 Q and w = xy, let us define a(w) = x and x(w) = y. With these definitions, the memory function sn is refor-
mulated as Eq. (8), specifying a reversible ECAM-n for any PECA.
sn Ct
i

� �
¼

# if Ct
i�1 ¼ C

t
i ¼ #

w 2 KCti if t < n and w � sn Ct
i�1

� �
w 2 ðbn � cnðC

t
i ÞÞ if t P n and w � sn Ct

i�1

� �

8>><
>>:

ð8Þ
where, for v ¼ sn Ct
i�1

� �
, w � v means that v = # or x(v) = a(w). For 1 6 i 6m and t < n, the memory function sn maps the state

in Ct
i onto an ancestor w of the same state. For t P n, sn takes an ancestor w in the set specified by bn. For the cell Ct

1, the
ourse, any other bijection can be used.



Fig. 1. Evolution of an ECAM-n from a PECA. For 1 6 i 6m, Dt
iDt

iþ1 2 KCt
i

if t < n; and Dt
iDt

iþ1 2 bn � cn C
t
i

� �� �
if t P n.
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choice of w is unrestricted. In contrast, from the second to the m-th cell, the initial state of w must be the same as the one
that the final state of the sequence v produced by sn in Ct

i�1. This is always possible, because all the rows of M are permu-
tations of Q. Therefore, for any v ¼ snðCt

i�1Þ, the row in M corresponding to the state x(v) is a permutation of Q. Thus, there
is a unique selection of w such that x(v) = a(w).

The application of sn to Ct yields a temporal configuration Dt ¼ � � �##Dt
1 . . . Dt

mþ1## � � � where Di 2 Q for 1 6 i 6m + 1.
With regard to the quiescent state, notice that sn(#) is not defined if it is on the right of a non-quiescent state. This is not
a problem because any sðCt

i Þ produces a block w 2 Q2. As a result, every position in Dt has a state of Q or a quiescent state.
For t P n, sn can be represented as a table analogous to the one in Eq. (3). The row indices of this table are the states in Q.

The column indices are the sequences in Qn�1. For each x 2 Q and every w 2 Qn�1, bn(xw) describes the entry (x,w). sn is illus-
trated in Eq. (9) for j = 4n�1, wi 2 Qn�1, and t P n.
2 In p
ð9Þ
Fig. 1 describes the generic evolution of an ECAM-n related to a PECA.
As a consequence, the following result can be stated:

Proposition 2. An ECAM-n associated with a PECA is reversible iff for any x,y 2 Q with x – y and for each column w in Eq. (9),
bn(xw) – bn(yw) is also satisfied.
Proof. This proof is analogous to Proposition 1. For t < n and 1 6 i 6m, the memory function of the ECAM-n simply takes an
ancestor of the same Ct

i . Thus, Ctþ1 ¼ Ct , and therefore, obtaining reversible behavior is trivial in this case. The interesting
cases are those in which t P n.
)) Suppose that the ECAM-n is reversible and there exists a column w in Eq. (9) such that bn(xw) = bn(yw). Let us take a

configuration Ct with KCt
i
¼ bnðxwÞ. Such a configuration exists because the ECAM-n is reversible. This implies that Ct�n

i can
be defined by either x or y, which is a contradiction.

�) For x – y, suppose that each column w in Eq. (9) satisfies bn(xw) – bn(yw). There are jQj rows in Eq. (9), and there are
jQj different K sets as well; thus, for every Ct

i , the set KCt
i

only appears in one entry of each column w. Therefore, Ct�n
i is

uniquely defined, which means that the ECAM-n is reversible. h
5. Examples

To illustrate Proposition 1, consider an ECAM-3 that is an extension of RECA rule 15. The functions b3 and s3 for t P 3 are
presented in Eq. (10).2
ð10Þ
Eq. (10) specifies s3 in such a way that each column is a permutation of R. This kind of memory is shown in Fig. 2, which
depicts the evolution of the ECAM-3 taking an initial configuration of 12 cells and periodic boundary conditions. In this
ECAM, black squares are cells in state 1 and white squares are cells in state 0.
articular, s3 is the parity rule.



Fig. 2. Evolution of the ECAM-3. The memory function is the identity for the first two steps. From the third step onwards, the memory function is the
composition of b3 and c3 according to Eq. (1).

Fig. 3. Inverse evolution of the ECAM-3 used to obtain c3.

Fig. 4. Representation of the inverse evolution in the ECAM-3.
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Fig. 3 presents the inverse evolution used to obtain c3. Here, the application of the inverse rule3 to c6 produces d5. Next, for
c5 and c4, configuration c3 is uniquely defined by the permutations of R in each column of Eq. (10). For instance, values
d5

3 ¼ 0; c5
3 ¼ 1, and c4

3 ¼ 0 are associated with a unique entry (a,01) = 0 in Eq. (10); therefore, c3
3 ¼ 1.

Fig. 4 describes the complete backwards evolution.
To illustrate Proposition 2, PECA rule 165 is presented in Eq. (11). The equation also shows the associated matrix M (with

entries in R2 and Q) applying the bijection 1 defined in Section 4.
3 In t
ð11Þ
The irreversibility of this PECA can be easily demonstrated by evaluating periodic boundary conditions. For each m P 2,
the sequence 3m has multiple ancestors, because it is generated by 0m, 1m, 2m, and 3m (Fig. 5).

Consider the matrix M165 that exemplifies Proposition 2. Then, Eq. (12) presents the associated Ka sets for each a 2 Q.
his case, ECA rule 85.



Fig. 5. Irreversibility of PECA rule 165 with four different ancestors for the sequence 3m.

Fig. 6. 5-step evolution of the ECAM-3 from the initial configuration 0112113.

Fig. 7. Obtaining C3 for the ECAM-3 associated with ECA rule 165.
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K0 ¼ f03;12;21;30g
K1 ¼ f02;13;20;31g
K2 ¼ f01;10;23;32g
K3 ¼ f00;11;22;33g

ð12Þ
Eq. (13) describes, in a tabular way and for t P 3, the memory s3 of an ECAM-3 that yields reversible behavior via PECA
rule 165. Notice that there are no identical entries in the columns of Eq. (13).
ð13Þ
Fig. 6 presents a 5-step evolution from the initial configuration 0112113 using the quiescent state #. In this case, C1
1 ¼ 0;

thus, s3 C1
1

� �
¼ v 2 K0 according to Eq. (8). Taking K0 from Eq. (12), v is set to 03; however, any other sequence in K0 could

have been selected. Therefore, x(v) = 3 and C1
2 ¼ 1; thus, s3 C1

2

� �
¼ w 2 K1. Nevertheless, w must maintain a(w) = 3; for this

reason, w = 31. In fact, Proposition 2 dictates that for every v 2K0, there exists a unique w 2K1 such that x(v) = a(w).
There is a similar situation for t P 3 when making use of the memory function s3 defined by b3�c3. For instance, let us

take C3
1 ¼ 0. Then, c3 C

3
1

� �
¼ 000 which is related to entry (0,00) in Eq. (13). Further, b3(000) = K3 and s3ðC3

1Þ ¼ v 2 K3. v
has been selected as 11 from Eq. (12); thus, x(v) = 1. Any other sequence in K3 could have been chosen. For
C3

2 ¼ 1; c3ðC
3
2Þ ¼ 111. Then, taking the entry (1,11) in Eq. (13), we have that b3(111) = K3, so s3ðC3

2Þ ¼ w 2 K3. However, w
must satisfy a(w) = x(v) = 1. For this reason, the only possible choice of K3 is 11 and D3

2D3
3 ¼ 11.
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Let us take the configurations C4; C5, and C6 to show the invertible behavior of the ECAM-3. Following the proof of Prop-
osition 2, for 1 6 i 6 7, the entry KC6

i
must be taken from column C4

i C
5
i in Eq. (13). Thus, the row related to this entry deter-

mines the state of C3
i . For instance, C6

1 ¼ 0 in Fig. 7, so we must use K0. Thereafter, C4
1C

5
1 ¼ 32; thus, we must select the row

with entry K0 in column 32 from Eq. (13). This row has index 0; therefore, C3
1 ¼ 0. This process is applied to every cell in C6 to

obtain C3.

6. Final remarks

This paper shows that the correct permutation of states used as memory extends the reversibility of RECAs to create
ECAMs. A slight modification of this result yields reversible ECAMs from surjective PECAs. This process consists of represent-
ing every PECA with another cellular automaton of 4 states and a neighborhood size of 2 to produce an identical number of
rows and K sets. The application of a quiescent state avoids the need for periodic boundary conditions. These elements facil-
itate the specification of memory functions, which allows reversible behavior.

Therefore, these results offer a general method of obtaining reversible ECAMs from reversible and permutative ECAs; a
method which, to our knowledge, has not been reported before. This technique can be applied to specify systems in which
conservation of information is essential; for instance, in the implementation of computable processes, the main area of inter-
est regarding ECAMs.

In future work, both the extension of these results to one-dimensional cellular automata with any number of states, and
the transformation of non-permutative cellular automata into reversible cellular automata with memory will be pursued.
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