Universidad Autónoma del Estado de Hidalgo
    • English
    • español
  • English 
    • English
    • español
  • Login
View Item 
  •   RIA-UAEH Home
  • Ciencias Básicas e Ingeniería
  • Matemáticas y Física
  • Artículos
  • View Item
  •   RIA-UAEH Home
  • Ciencias Básicas e Ingeniería
  • Matemáticas y Física
  • Artículos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

THE C*-ALGEBRAS ASSOCIATED TO TIME-t AUTOMORPHISMS OF MAPPING TORI

Thumbnail
View/Open
Benja2.pdf (252.3Kb)
Date
2006
Author
Itzá Ortiz, Benjamín Alfonso
Metadata
Show full item record
Abstract
We find the range of a trace on the K0 group of a crossed product by a time-t automorphism of a mapping torus. We also find a formula to compute the Voiculescu-Brown entropy for such an automorphism. By specializing to the commutative setting, we prove that the crossed products by minimal time-t homeomorphisms of suspensions built over strongly orbit equivalent Cantor minimal systems have isomorphic Elliott invariants. As an application of our results we give examples of dynamical systems on (compact metric) connected 1-dimensional spaces which are not flip conjugate (because of different entropy) yet their associated crossed products have isomorphic Elliott invariants.
URI
https://repository.uaeh.edu.mx/bitstream/handle/123456789/11357
Collections
  • Artículos

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Theme by 
@mire NV
 

 

Browse

All of RIA-UAEHCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.

Theme by 
@mire NV