Growth of Algebras

Brandon George, Luis Angel Herrera Flores, Brittany Schlomer Advisor: Dr. Harold Ellingsen
SUNY Potsdam REU
July 16, 2009

Some Definitions and Notation

Throughout, $F=\mathbb{R}$ or \mathbb{C} and $0 \in \mathbb{N}$.

Definition

Let A be a vector space over F equipped with an additional binary operation from $A \times A$ to A, denoted here by . (i.e. if x and y are any two elements of $A, x \cdot y$ is the product of x and $y)$. Then A is an algebra over F (a F-algebra) if the following hold for all elements x, y, and z in A, and all elements a and b in F :

- $(x+y) \cdot z=x \cdot z+y \cdot z$
- $x \cdot(y+z)=x \cdot y+x \cdot z$
- $(a x) \cdot(b y)=(a b) \cdot(x y)$.

More Definitions and Notation

Definition

Let A be an F-algebra. We say that A is finitely generated provided there is $\left\{a_{1}, a_{2}, \cdots, a_{r}\right\} \subseteq A$ such that every element of A can be written as a finite linear combination of monomials in $a_{1}, a_{2}, \ldots, a_{r} . V$ will denote the F-span of $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\} . V$ is called a finite dimensional generating subspace (fdgs) for A.

Subspaces of Interest

Definition

Let A be an F-algebra with finite dimensional generating subspace $V=\operatorname{span}\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$. The length of a monomial in A is the number of letters that make up the monomial, counting repetitions. Define $V^{0}=F$ and for $n \geq 1, V^{n}$ as the F-span of monomials in a_{1}, \ldots, a_{r} of length n and $A_{n}=\sum_{i=0}^{n} V^{i}$.

Proposition

For the A_{n} 's as defined above, $A_{0} \subseteq A_{1} \subseteq A_{2} \subseteq \cdots$ is an ascending chain of finite dimensional subspaces of A and $A=\bigcup_{n=0}^{\infty} A_{n}$.

Definition of a Growth Function for an Algebra

Definition

Define a growth function of A with respect to $V, d_{V}: \mathbb{N} \rightarrow \mathbb{N}$ by $d_{V}(n)=\operatorname{dim}\left(A_{n}\right)=\operatorname{dim}\left(\sum_{i=0}^{n} V^{i}\right)$.

Question

What types of functions can these growth functions be?

Example (1)

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?

Example (1)

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?
- fdgs: $V=\operatorname{span}\{x\}$.

Example (1)

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?
- fdgs: $V=\operatorname{span}\{x\}$.
- The growth function $d_{V}(n)=\operatorname{dim}\left(A_{n}\right)=\operatorname{dim}\left(\sum_{i=0}^{n} V^{i}\right)$.

Example (1)

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?
- fdgs: $V=\operatorname{span}\{x\}$.
- The growth function $d_{V}(n)=\operatorname{dim}\left(A_{n}\right)=\operatorname{dim}\left(\sum_{i=0}^{n} V^{i}\right)$.
- Each $V^{n}=\operatorname{span}\left\{x^{n}\right\}$, so $\left\{x^{n}\right\}$ is a basis for V^{n}.

Example (1)

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?
- fdgs: $V=\operatorname{span}\{x\}$.
- The growth function $d_{V}(n)=\operatorname{dim}\left(A_{n}\right)=\operatorname{dim}\left(\sum_{i=0}^{n} V^{i}\right)$.
- Each $V^{n}=\operatorname{span}\left\{x^{n}\right\}$, so $\left\{x^{n}\right\}$ is a basis for V^{n}.
- Since $\left\{1, x, \ldots, x^{n}\right\}$ is a basis for polynomials of at most degree $n, d_{V}(n)=\operatorname{dim}\left(A_{n}\right)=n+1$.

Example (2)

- What is a growth function for $\mathbb{R}[x, y]$, the commutative polynomial algebra in two variables?

Example (2)

- What is a growth function for $\mathbb{R}[x, y]$, the commutative polynomial algebra in two variables?
- fdgs: $V=\operatorname{span}\{x, y\}$.

Example (2)

- What is a growth function for $\mathbb{R}[x, y]$, the commutative polynomial algebra in two variables?
- fdgs: $V=\operatorname{span}\{x, y\}$.
- Each basis element of V^{n} will be of the form $x^{a} y^{b}$, where $a+b=n$. There are $n+1$ choices for a and one corresponding b for each a, so each V^{n} will have $n+1$ basis elements.

Example (2)

- What is a growth function for $\mathbb{R}[x, y]$, the commutative polynomial algebra in two variables?
- fdgs: $V=\operatorname{span}\{x, y\}$.
- Each basis element of V^{n} will be of the form $x^{a} y^{b}$, where $a+b=n$. There are $n+1$ choices for a and one corresponding b for each a, so each V^{n} will have $n+1$ basis elements.
- $d_{V}(n)=\sum_{i=0}^{n}(i+1)=\frac{n^{2}+3 n+2}{2}$.

Example (3)

- What is a growth function for $\mathbb{R}\langle x, y\rangle$, the free algebra in two variables? Note that x and y do not commute.

Example (3)

- What is a growth function for $\mathbb{R}\langle x, y\rangle$, the free algebra in two variables? Note that x and y do not commute.
- fdgs: $V=\operatorname{span}\{x, y\}$.

Example (3)

- What is a growth function for $\mathbb{R}\langle x, y\rangle$, the free algebra in two variables? Note that x and y do not commute.
- fdgs: $V=\operatorname{span}\{x, y\}$.
- Each V^{n} has 2^{n} basis elements since there are two choices for each letter of a monomial of length n.

Example (3)

- What is a growth function for $\mathbb{R}\langle x, y\rangle$, the free algebra in two variables? Note that x and y do not commute.
- fdgs: $V=\operatorname{span}\{x, y\}$.
- Each V^{n} has 2^{n} basis elements since there are two choices for each letter of a monomial of length n.
- Thus $d_{V}(n)=\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$.

Ideals, Free Algebras, Representation

Definition

A subspace I of A is called an ideal if for all $a \in A$ and $x \in I$, $a x \in I$ and $x a \in I$.

Theorem

Every finitely generated algebra is isomorphic to a quotient of a finitely generated free algebra. In particular, $A \approx F\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle / I$, for some ideal I of $F\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle$.

- We can view elements of I as "zero".

Ideals, Free Algebras, Representation

Definition

A subspace I of A is called an ideal if for all $a \in A$ and $x \in I$, $a x \in I$ and $x a \in I$.

Theorem

Every finitely generated algebra is isomorphic to a quotient of a finitely generated free algebra. In particular, $A \approx F\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle / I$, for some ideal I of $F\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle$.

- We can view elements of I as "zero".
- In order to calculate the growth function for various finitely generated algebras, we may calculate them for quotients of finitely generated free algebras.

Ideals Generated by Monomials

- In particular, we will look at quotients whose ideals are generated by finitely many monomials in $x_{1}, x_{2}, \ldots, x_{r}$. We will refer to monomials as words and denote them by $m_{1}, m_{2}, \ldots, m_{k}$.

Ideals Generated by Monomials

- In particular, we will look at quotients whose ideals are generated by finitely many monomials in $x_{1}, x_{2}, \ldots, x_{r}$. We will refer to monomials as words and denote them by $m_{1}, m_{2}, \ldots, m_{k}$.
- An ideal generated by the set $\left\{m_{1}, m_{2}, \ldots, m_{k}\right\}$ is the set of linear combinations of monomials who contain at least one of $m_{1}, m_{2}, \ldots, m_{k}$ as a factor (subword) denoted $I=\left(m_{1}, m_{2}, \ldots, m_{k}\right)$. Such ideals are called monomial ideals.
- From now on, we will let $A=F\left\langle x_{1}, x_{2}, \ldots, x_{r}\right\rangle / I$ where I is a monomial ideal.
- Since words in I are considered zero, every element of A can be written as a linear combination of words not in I.
- Let \mathcal{B} be the collection of words not in I including 1 , i.e., \mathcal{B} consists of the words that do not have any of $m_{1}, m_{2}, \ldots, m_{k}$ as a subword.

Proposition

$$
\mathcal{B} \text { is a basis for } A \text {. }
$$

- $V=\operatorname{span}\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ is a fdgs.
- $V^{n}=$ the span of words in \mathcal{B} of length n.
- So, $\operatorname{dim} V^{n}=$ number of words in \mathcal{B} of length n.
- Since $A_{n}=\sum_{i=0}^{n} V^{i}$ and \mathcal{B} is a basis for A, $\operatorname{dim} A_{n}=$ the number of words in \mathcal{B} of length at most n.

Example

Determine a growth function for $\mathbb{R}\langle x, y\rangle / I$ where $I=(x y)$.

- Any word with $x y$ as a subword is zero.

n	Words in \mathcal{B} of length n
0	1
1	x, y
2	$x^{2}, y^{2}, y x$
3	$x^{3}, y^{3}, y^{2} x, y x^{2}$

Example

Determine a growth function for $\mathbb{R}\langle x, y\rangle / I$ where $I=(x y)$.

- Any word with $x y$ as a subword is zero.

n	Words in \mathcal{B} of length n
0	1
1	x, y
2	$x^{2}, y^{2}, y x$
3	$x^{3}, y^{3}, y^{2} x, y x^{2}$

- Given $n \geq 1$, there is only one word of length n in \mathcal{B} beginning with x, namely x^{n}. There are n such words beginning with y, namely $y^{k} x^{n-k}$ for $1 \leq k \leq n$.

Example

Determine a growth function for $\mathbb{R}\langle x, y\rangle / I$ where $I=(x y)$.

- Any word with $x y$ as a subword is zero.

n	Words in \mathcal{B} of length n
0	1
1	x, y
2	$x^{2}, y^{2}, y x$
3	$x^{3}, y^{3}, y^{2} x, y x^{2}$

- Given $n \geq 1$, there is only one word of length n in \mathcal{B} beginning with x, namely x^{n}. There are n such words beginning with y, namely $y^{k} x^{n-k}$ for $1 \leq k \leq n$.
- So there are $n+1$ words of length n in \mathcal{B}, i.e., $\operatorname{dim} V^{n}=n+1$. Thus, $d_{V}(n)=\sum_{i=0}^{n}(i+1)=\frac{n^{2}+3 n+2}{2}$.

We need a better way to count our words. One way involves using a directed graph.

Definition

A directed graph is a set V of vertices with a set E of ordered pairs of vertices called arrows.

Definition

Let u, v be words. We say u is a prefix of v provided there is a word w for which $v=u w$. We say u is a suffix of v provided that there is a word z for which $v=z u$.

Example

$x^{2} y$ is a prefix of $x^{2} y^{3} x$ and $y x$ is a suffix of $x^{2} y^{3} x$

- Let $d+1$, where $d \geq 2$, be the maximum length of the generators in I and $\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$ be words in \mathcal{B} of length d. We use this set of words as vertices for a directed graph.
- We draw an arrow from w_{i} to w_{j} provided there is a word in \mathcal{B} of length $d+1$ whose prefix of length d is w_{i} and whose suffix of length d is w_{j}. We will call our graph the overlap graph for \mathcal{B}, and denote it by Γ.

Example

$I=\left(y x^{2}, y^{2} x, x y x, y x y\right)$
$d+1=$ maximum length of generators in $I=3$
$d=\max$ length $-1=2$.
vertices: $x^{2}, y^{2}, x y, y x$
$x^{2} \rightarrow x y$ provided there is a word of length 3 in \mathcal{B} whose prefix is x^{2} and suffix is $x y$.
Words of length 3 in $\mathcal{B}: x^{3}, y^{3}, x^{2} y, x y^{2}$

$y x$

Cycles

Definition

A path in a directed graph is a sequence of arrows in the same direction. We call path $u_{1} \rightarrow u_{2} \rightarrow \cdots \rightarrow u_{t} \rightarrow u_{1}$ a cycle provided $u_{i} \neq u_{j}$ for $i \neq j$. The length of a path is the number of arrows in it.

Proposition

Each path of length j, for $j \geq 0$, corresponds to a unique word in \mathcal{B} of length $d+j$. Each word in \mathcal{B} of length $d+j$ corresponds to a unique path in our graph with j arrows.

Example

$$
\begin{array}{cc}
\text { path } & \text { word } \\
x^{2} \rightarrow x y & x^{2} y \\
x^{2} \rightarrow x y \rightarrow y^{2} & x^{2} y^{2}
\end{array}
$$

Theorem (Ufnarovski)

If Γ has two intersecting cycles, then the growth function for A is exponential.
If Γ has no intersecting cycles, then the growth function for A is bounded above and below by two polynomials of degree s where s is the maximal number of distinct cycles on a path in Γ.

Example Revisited

Example

$I=\left(y x^{2}, y^{2} x, x y x, y x y\right)$
$d+1=$ maximum length of generators in $I=3$
$d=$ max length $-1=2$.
vertices: $x^{2}, y^{2}, x y, y x$
The overlap graph for \mathcal{B} has two cycles, so the growth function is bounded by a polynomial of degree 2 .

Exponential Growth

It is known that growth functions for our algebras are either exponential or polynomial. We would like to know more specifically, for a given d, what types of growth functions are attainable.

Proposition

For some ideal I generated by words of at most length $d+1$, the corresponding algebra $F\langle x, y\rangle / I$ has exponential growth.

Proof.

Consider $I=\left(y^{d+1}\right)$. Then the following cycles intersect: $x^{d} \rightarrow x^{d}$ and $x^{d} \rightarrow x^{d-1} y \rightarrow x^{d-2} y x \rightarrow x^{d-3} y x^{2} \rightarrow \cdots \rightarrow y x^{d-1} \rightarrow x^{d}$. So by Ufnarovski's Theorem, $F\langle x, y\rangle / I$ has exponential growth.

Dr. Ellingsen's Conjecture

Conjecture (Dr. Ellingsen's)

If I is generated by words of at most length $d+1$, then the growth function is either exponential or is bounded by a polynomial with degree at most $d+1$.

$d=2$

We have shown for $d=2$ that the growth function must be either exponential or bounded by a polynomial of degree at most 3 .

$I=\left(y^{2} x, y x^{2}\right)$

$d=3$

Additionally, we have shown that for $d=3$, the growth function must be either exponential or bounded by a polynomial of degree at most 4.

$$
I=\left(y x^{4}, x y x y, y x y x, y^{2} x^{2}, y^{3} x\right)
$$

$$
d=4
$$

What about $d=4$?

$$
d=4
$$

$$
\begin{aligned}
& y x^{3} \\
& x^{2} y^{2} \\
& y^{3} x \\
& x y x^{2} \quad y x y x \quad y^{2} x y \\
& x^{4} \\
& y x^{2} y \\
& x^{2} y x \\
& \text { xyxy } \\
& y x y^{2} \\
& x^{3} y \\
& x^{2} y^{2} \\
& x y^{3}
\end{aligned}
$$

$$
d=4
$$

$$
\begin{aligned}
& y x^{3} \\
& x^{2} y^{2} \\
& y^{3} x \\
& x y x^{2} \quad y x y x \quad y^{2} x y \\
& C x^{4} \\
& y x^{2} y \\
& x y^{2} x \\
& y^{4} \\
& x^{2} y x \\
& \text { xyxy } \\
& y x y^{2} \\
& x^{3} y \\
& x^{2} y^{2} \\
& x y^{3}
\end{aligned}
$$

$$
d=4
$$

$$
\begin{aligned}
& y x^{3} \\
& x^{2} y^{2} \\
& y^{3} x \\
& x y x^{2} \quad y x y x \quad y^{2} x y \\
& C^{7} x^{4} \\
& x^{3} y \\
& x^{2} y x \\
& \text { xyxy } \\
& y x y^{2} \\
& x^{2} y^{2} \\
& x y^{3}
\end{aligned}
$$

$$
d=4
$$

$$
\begin{aligned}
& y x^{3} \\
& x^{2} y^{2} \\
& y^{3} x \\
& x y x^{2} \quad y x y x \quad y^{2} x y \\
& C^{x^{4}} \\
& y x^{2} y \\
& x y^{2} x \\
& y^{4} \\
& x^{3} y \longrightarrow x^{2} y^{2} \\
& x y^{3}
\end{aligned}
$$

$$
d=4
$$

$$
\begin{aligned}
& y x^{3} \\
& x^{2} y^{2} \\
& y^{3} x \\
& x y x^{2} \quad y x y x \quad y^{2} x y \\
& C x^{4} \\
& x^{3} y \longrightarrow x^{2} y^{2} \\
& y x y^{2} \\
& x y^{3}
\end{aligned}
$$

$$
d=4
$$

$$
d=4
$$

$$
d=4
$$

$$
d=4
$$

$$
d=4
$$

$$
d=4
$$

$$
d=4
$$

$$
d=4
$$

$$
d=4
$$

Maximum Possible Degrees of Polynomials

$$
d=4
$$

Maximum Possible Degrees of Polynomials

$$
d=4
$$

Maximum Possible Degrees of Polynomials

$$
d=4
$$

Maximum Possible Degrees of Polynomials

$$
d=4
$$

Maximum Possible Degrees of Polynomials

$$
d=4
$$

Maximum Possible Degrees of Polynomials

$$
d=4
$$

Maximum Possible Degrees of Polynomials

$$
d=4
$$

Maximum Possible Degrees of Polynomials

$$
d=4
$$

Introduction

$$
I=\left(y x^{4}, x y x^{3}, y x y x^{2}, y^{2} x^{2} y, y x^{2} y^{2}, x^{2} y^{3}, y x y^{2} x, y^{2} x y x, y^{3} x^{2}, x y^{2} x y, y^{4} x\right)
$$

$$
d=4
$$

$I=\left(y x^{4}, x y x^{3}, y x y x^{2}, y^{2} x^{2} y, y x^{2} y^{2}, x^{2} y^{3}, y x y^{2} x, y^{2} x y x, y^{3} x^{2}, x y^{2} x y, y^{4} x\right)$
Thus, the conjecture fails for $d=4$ because of the 6 cycles!

```
Definitions for Periodic Words
Lower Bound on Finding Upper Bound
Maximum Possible Degree for }d=4\mathrm{ and }d=
Counting Cycles
```


High Upper Bound

We would like to look at maximum possible degrees of polynomial growth functions.

Theorem (Ellingsen)

If there are $d+i$ words of length d, the growth function is either exponential or bounded by a polynomial of degree $i+1$.

This gives us a really high upper bound on the possible degrees for our growth functions. There are 2^{d} words of length d, which we can write as $d+\left(2^{d}-d\right)$ words, so the growth of our algebra with corresponding ideal generated by words of length at most $d+1$ is either exponential or bounded by a polynomial of degree $2^{d}-d+1$.

Definitions

Definition

Let v be a word of length p and w a word of length $d \geq p$. w is periodic provided w is a prefix of v^{j} from some positive integer j. We call v a base for w and the length p is a period for w. The smallest possible period is the minimal period.

Example

1.) Let $w=x^{2} y x^{2} y x$. Then w has minimal period 3 with base $x^{2} y$. Note that w also has period 6 with base $x^{2} y x^{2} y$.
2.) Let $u=x^{2} y x^{2}$. Interestingly u has periods 3 and 4 with bases $x^{2} y$ and $x^{2} y x$ respectively.

Definitions

Definition

Let $w=a_{0} a_{1} \ldots a_{d-1}$ be a word of length d. Then any word of the form $a_{i} a_{i+1} \ldots a_{d-1} a_{0} \ldots a_{i-1}$ is called a cyclic permutation of w.

Note that we can draw an arrow from any word to exactly one cyclic permutation of itself, namely $a_{0} a_{1} \ldots a_{d-1} \rightarrow a_{1} a_{2} \ldots a_{d-1} a_{0}$.

Example

Let $w=x y^{2} x y$. Then the cyclic permuations of w are $x y^{2} x y, y^{2} x y x, y x y x y, x y x y^{2}, y x y^{2} x$. Note these all connect and give us a cycle: $x y^{2} x y \rightarrow y^{2} x y x \rightarrow y x y x y \rightarrow x y x y^{2} \rightarrow y x y^{2} x \rightarrow x y^{2} x y$.

Lemma

Let w be a word of length d. If the minimal period of w is d, then w and its cyclic permutations form a cycle of length d.

Proposition

For some ideal I generated by words of length at most $d+1$, the corresponding algebra has growth function of degree $d+1$.

Proof.

Consider the path $x^{d} \rightarrow x^{d-1} y \rightarrow x^{d-2} y^{2} \rightarrow \cdots \rightarrow x^{2} y^{d-2} \rightarrow x y^{d-1} \rightarrow y^{d}$. We have cycles of length 1 at x^{d} and y^{d}. Let $1 \leq i \leq d-1$. Each $x^{d-i} y^{i}$ has period d. By the lemma, they are on cycles of length d. Each vertex on a cycle has $d-i x$'s and the different number of x 's makes the cycles distinct.

Case $d=4$

We would like to know the maximum possible degree that is attainable for $d=4$. We can do this by putting as many distinct cycles on a path as possible by using the smallest cycles first. For $d=4$, there are $2^{4}=16$ possible vertices to use in cycles. We want to start by finding all the cycles which contain only one vertex, namely, x^{4} and y^{4}. By exhaustion, we can find all cycles containing 2,3 , and 4 vertices.

Number of vertices in a cycle	Number of cycles
1	2
2	1
3	2
4	3

Introduction
How to Calculate Growth Functions
Using Graphs to Count
Conjecture
Maximum Possible Degrees of Polynomials

Case $d=4$

- Two distinct cycles with one vertex

$$
\begin{aligned}
& y x^{3} \quad x^{2} y^{2} \quad y^{3} x \\
& x y x^{2} \quad y x y x \quad y^{2} x y
\end{aligned}
$$

Introduction

Case $d=4$

- One distinct cycle with two vertices

Introduction

Case $d=4$

- Two distinct cycles with three vertices

$$
\begin{aligned}
& y x^{3} \quad x^{2} y^{2} \quad y^{3} x
\end{aligned}
$$

Introduction
How to Calculate Growth Functions Using Graphs to Count

Conjecture
Maximum Possible Degrees of Polynomials

Case $d=4$

- Three distinct cycles with four vertices

Case $d=4$

By using two cycles with 1 vertex, one cycle with 2 vertices, two cycles with 3 vertices, and one cycle with 4 vertices, we use 14 out of the total 16 possible vertices $1(2)+2(1)+3(2)+4(1)=14$. Thus, we could potentially connect these 6 cycles in a path which would correspond to a maximum possible degree of 6 for the growth function.

Counting Cycles

We need a better way to count cycles of small lengths.

Lemma

Let w be a word of length d. If w has a minimal period $p \leq d, w$ is a vertex on a cycle of length p. Additionally, every vertex on a cycle of length $p \leq d$ must be periodic with period of length p. Moreover, the bases of length p for any two words on these cycles are cyclic permutations of each other.

Case $d=5$

Using the previous lemma, we are able to count the cycles with up to 5 vertices.

Number of vertices in a cycle	Number of cycles
1	2
2	1
3	2
4	3
5	≥ 4

Similarly to the $d=4$ case, we can count the number of distinct cycles that we can put in a path using only $2^{5}=32$ vertices. $1(2)+2(1)+3(2)+4(3)+5(2)=32$. This gives us an upper bound of 10 cycles.

Prime Cyclic Permutation

Proposition

For d prime, there are $\frac{2^{d}-2}{d}$ disjoint cycles of length d.

Example

- For $d=5$, we have $\frac{2^{5}-2}{5}=6$ cycles of length 5 .
- We have connected all 6 cycles of length 5 on a path.

Introduction
How to Calculate Growth Functions Using Graphs to Count

Conjecture
Maximum Possible Degrees of Polynomials

High Upper Bound Definitions for Periodic Words Lower Bound on Finding Upper Bound Maximum Possible Degree for $d=4$ and $d=5$ Counting Cycles

- We have also done this for $d=7$ and obtained a growth of degree 20!
- We are currently working on finding an algorithm that allows us to do this for any d prime.
- We are also looking for a better way to count the cycles of small lengths and use them to find upper bounds on the degrees of our growth functions.

Conjecture

For d prime, all of the $\frac{2^{d}-2}{d}$ cycles of length d can be connected on a path.

Bibliography

- Ellingsen, Harold W. Jr., Growth of algebras, words, and graphs, Ph.D. Dissertation, April 1993.
- Krause, G.R. and T.H. Lenagan. Growth of algebras and Gelfand-Kirillov dismension, volume 116 of Research Notes in Mathematics. Pitman Publishing Inc., London, 1985.
- Ufnarovski, V.A., A growth criterion for graphs and algebras defined by words. Math. Notes, 31(3):238-241, March 1982.

