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Abstract: In this document we develop a non linear stochastic integer model formulation for the unit commitment problem 
of thermal and hydro units to management demand and optimal short-term operation of a hydrothermal electric facility. We 
consider a power generation system comprising thermal and hydro units and the problem concerns the scheduling of 
operation levels for all power units and considering the hydro constrains, such that the operation costs over the time horizon 
are minimal. The concept of reliability functions is introduced to ensure the meet demand with certain probability. Inflows 
to reservoirs, cost coefficients and spillage are considered random. We use the Monte Carlo sampling to optimize the 
instances required each period. We report the practical and theoretical results.  
 
 

1. INTRODUCTION 
 

The systematic coordination of the operation of a system formed by hydroelectric generation plants is a classical problem 
involving the planning of the operation of a hydraulic generation system and a thermal system. The generation scheduling 
problem consists of determining the optimal operation strategy for the next scheduling period, subject to a variety of 
constrains, in literature this is known as the hydrothermal generation scheduling problem (HGSP) (Gil et al. 2003). The 
most versions involves the allocation of generation among the hydro-electric and thermal plants so as to minimize the total 
operation costs of thermal plants  while satisfying the various constrains on the hydraulic and power systems network. 
Usually, the short term period covers from 1 to 7 days, and then, this period is subdivided into smaller time intervals of 1 to 
4 hours in which the information of the system is known and the decision variables should be optimized. 

This is one of the most important problems associated with the management of a power  utility  and can be viewed as a 
problem of production planning,  where the good produced is electricity and it is generated from two sources, a 
hydroelectric generating plant and a thermal power plant.  Here, the problem of inventories does not exist because the good 
produced must be delivered to the customer at the time that it is generated.  The master programming scheduling (MPS) is 
to develop the programming of system operation for each period specifying the state and the generation level of the thermal 
set, subject to fundamental constrains that must be satisfied such that the covering of each hourly load (demand), 
satisfaction of spinning reserve requirements and transmission capacity limits, the limited energy storage capability of 
water reservoirs and other.  Under some assumptions (such determinism for example), the mathematical model  can be 
written in terms of  a nonlinear objective function subject to a set of linear or nonlinear constrains. In stochastic approach, 
the model includes some parameters as random variables, which the most representative is the load required. To model the 
problem more realistically, the load demand the water inflow rate and the reservoir levels of the hydroelectric plants are 
considered random and therefore the mathematical complexity of the model significantly increases. Anyway, an efficient 
generation schedule not only reduces the production cost but also increases the system reliability securing valuable 
reserves, regulating margins, and maximizing the energy capability of the reservoirs, Zoumas et al., (2004).  
 
 

2. LITERATURE REVIEW 
 

The solution methods of the HGSP problem have been approached from several perspectives, however, literature comprises 
them in five major areas: a) Lagrangian relaxation, b) Metaheuristic decomposition,       c) Bender's decomposition, d) 
Dynamic programming, e) Mixed integer programming. 

The Lagrangian relaxation technique uses the Lagrange multipliers to relax system wide demand and reserve 
requirements decomposed the main problem into unit-wise subproblems that are much easier to solve. Then, the multipliers 
are updated at the high level typically using a subgradient method Lu et al., (1998). There are many variants of the 
technique Zuang and Galiana (1988), Virmani et al., (1989), Yan Guan and Rogan (1993) and (1994), Merlin and Sandrin 
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(1983), Aoki et al., (1987),  Osman and Laporte (1996), Brannlund et al., (1986);  but all they are underpinned by the idea 
of forming an objective function penalized with model constrains forming the Lagrangian function. 

Metaheuristics are a class of approximate methods that have been developed strongly since their inception in the 
early 1980's. They are designed to optimize complex optimization problems where classical heuristics and optimization 
methods have failed to be effective and efficient. Metaheuristics include, but are not limited to: constraint logic 
programming, genetic algorithms, greedy random adaptive search procedures, neural networks, non-monotonic search 
strategies, problem and heuristic space-search, simulated annealing, tabu search, threshold algorithms and others (Aoki et 
al., (1987)). In connection with the HGSP, there is an important class of techniques called the heuristic decomposition 
methods. These, decompose the HGSP problem into hydro and thermal subproblems. The hydro optimization subproblems 
use either the thermal cost functions or the thermal system marginal cost to efficiently allocate the water resources within 
the scheduling horizon Zoumas et al., (2004), Osman and Laporte (1996), and Brannlund et al., (1986). Then, the hydro 
generation and reserve contributions subtracted from the load and reserve requirements, the thermal subproblems solves a 
standard unit commitment problem. 

Benders decomposition is used to solve the multiperiod HGSP problem and is a natural way to decompose it 
because the 0/1 variable decisions are decoupled from continuous variable decision (Duncan et al., (1985)). In general, the 
method fixes the start-up and shut-down schedules of the thermal units, while the Benders subproblem solves a multiperiod 
optimal power flow. Then, the subproblem sends to the master problem marginal information on the goodness of the 
proposed start-up and shut-down schedule, which allows the master problem to suggest an improved start-up and shut-
down schedule and so on (Alguacil and Conejo (1985), Geofrion (1972)) .  
In the general approach of the dynamic programming, the problem is decomposed into a thermal subproblem and a hydro 
subproblem. The algorithm obtains the non discrete states to substitute the discrete states of water volume levels at each 
time period and then determines an optimal generation schedule while achieving the minimum fuel cost of power system. 
The spinning reserve of all units provided can satisfy the requirements of the system for any unexpected change in load or 
loss of maximum on line generation unit (Lasdon (1970), Yang and Chen (1989), Gorenstin et al., (2002), Dillon et al., 
(1978)).  

This paper proposes the use of random coefficients with minimum variance cost (due to the use of short periods of 
planning) in the objective function, demand as a random variable normally distributed, and water inflow to the reservoirs 
and spillage are also random variables. An important consideration also include, is the use of a reliability function 
associated to the power balance equation (customer service level), and the variable and fixed costs of each production unit. 
Then, this model can be characterized as a nonlinear, stochastic and integer problem. 
 
 

3. THE MATHEMATICAL MODEL 
 
In the construction of our proposal we use some of the ideas developed in Gröwe and Römish (2005), i.e., we also consider 
the scheduling of start-up/shutdown decisions and of operation levels for all power units as a stochastic process. Let the 
planning horizon be discretized into � ∈ � uniform subintervals, we define the sets � and �, of thermal and hydro units 
respectively, and for all � ∈ � and � ∈ �, the notation used is1: 
 �  Time interval index (hour). �	
 , �	
 , 
	
 Cost coefficients of thermal units, assumed here as random variables. �	
 Power output of �th thermal unit in megawatts (operation level). �	
�	� Minimum power output of �th thermal unit in megawatts. �	
��� Maximum power output of �th thermal unit in megawatts. �	
 Fixed operating costs of �th thermal unit in $/h. ��
 Power output of �th hydroplant in megawatts (operation level). ��
�	� Minimum power output of �th hydroplant in megawatts. ��
��� Maximum power output of �th hydroplant in megawatts. ��
 = ℎ(��
) Water flow rate through the turbine during interval �, in m3/h. ��
�	� Lower bound for the water discharge, during interval �, in m3/h. ��
��� Upper bound for the water discharge, during interval �, in m3/h. 

                                                           
1 The standard measurement unit of water flow quantities is m3/s, however, in this document the water flow quantities are expressed in m3/h to avoid the 
use of conversion coefficients in equations. 
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�
 Energy demand in megawatts, assumed here a random variable. ��
 Fixed operating costs of �th hydroplant in $/h. ��  Capacity of the �th reservoir in m3.  ��,
 Storage volume of �th reservoir at end of � in m3. ��,
�	�
 Lower bound of storage volume of �th reservoir at end of � in m3. ��,
 Spillage rate over �th reservoir during � in m3/h., assumed here a random variable. ��,
 Water inflow rate of �th reservoir during �, in m3/h., assumed here a random variable.  �
 Volume required of �th reservoir at end of �, in m3. 

 
Then, for each �!�, the mathematical model is 
 

Minimize )* +,(�	
-	 + �	
�	
 + 
	
�	
/ + �	
-	) + , ��
0�
�12	13 4,            (1)  
 
Subject to 
 

6 7�
 ≤ , �	
 +	∈3 , ��
�∈2 9 = 1 − ;, � ∈ �, � ∈ �, ; ∈ (0,1)  (Power balance), 
 

                                        (2) 

��
 = ��,
FG − (��
 − ��
 + ��
)�, � ∈ �   (Water balance), 
 

        (3) 

��
 = KL + KG��
 + K/��
/ , � ∈ �    (Water use rate characteristics), 
 

(4) 

�	�	� ≤ �	
 ≤ �	��� , � ∈ �  (Operating limits of �th thermal unit), 
 

(5) 

��
�	� ≤ ��
 ≤ ��
���, � ∈ �  (Water Vlow rate through the turbine limits), 
 

(6) 

��
 ≥ ��
�	� , � ∈ �  (Limit of water stored in reservoir � at the end of �), 
 

(7) 

-	
 = ]1, if the �th thermal unit is operating during �, �!�,0, in other case, ^ 
 

(8) 

0�
 = ]1, if the �th hydroplant unit is operating during �, �!�0, in other case ^ 
 

(9) 

�	 , �	 , �� , �� ≥ 0, (10) 
 
where ) is the mathematical expectation operator, b = (�, �, 
) is a random vector such that )(b) = c�,d  �,d  
̅f and the 
operating costs related to a thermal unit include variable and fixed production costs. The function �	
  +  �	
  �	
  +  
	
  �	
/ , 
expresses the variable costs, and the constant �	 represents the sum of the fixed costs associated to the operation of the �th 
thermal unit during �. Similarly, the constant �� represents the sum of fixed costs associated to the operation of the �th 
hydroplant during the period �. In practice these costs are well identified (Nilsson and Sjelvgren (2002)), and can be 
summarized as: loss of water during maintenance; wear and tear of the windings due to temperature changes during the 
start-up; wear and tear of mechanical equipment during the start-up; malfunctions in the control equipment during the start-
up; and loss of water during the start-up. In this formulation, equation (2) can be viewed as the customer service level.  
Thus, for any � ∈ �, and by the properties of the mathematical expectation, equation (1) can be simplified as 
 

Minimize +,( �g	�	
 + 
	̅�	/) + ,(�	 − �g	)	13 -	 + , ��0��12	13 4 ,   � = 1, … , �,          (11) 
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Assume that the probability density function (pdf) of the random variable � is known and it is given by ij(ξ), ∀ � ! �. 
Then, equation (2) is equivalent to 
 

6 7�
 ≤ , �	
 +	∈3 , ��
�∈2 9 = l mnj(ξ) =o
L 1 − ;, ; ∈ (0,1) (12) 

 
where p = ∑ �	
	13 + ∑ ��
�12  
 
In particular, if  �~s(t, u/), with v(�) = tj and  wxy (�) = u/, equation (11) can be written as follows. 
 

6 z{ ≤ (∑ �	
 + ∑ ��
�12 ) − tj	13 √u/ } = 1 − ;, (13) 

 
where {~s(0,1). Le~�
 be the standard value such that nj(~�
) = 1 − ;	. Note that, expression (11) is satisfied if and 
only if 
 (∑ �	
 + ∑ ��
�12 ) − tj	13 √u/ ≥ ~�
 ,  

 
thus, constrain (2) is equivalent to 
 , �	
	∈3 + , ��
�∈2 ≥ tj + u~�
 , (14) 

 
The function of water flow through turbines is assumed known and it has the form (See Wood and Wollenberg (1996)) 
 ℎc��f = KL + KG�� + K/��/,  (15) 
 
where KL, KG, K/ are unknown constants. 
 
Finally, and using the binary variables - and 0, equation (4) and (5) can be decomposed as follows 
 �	
��� − �	
-	
 ≥ 0, �!�, (16) 
  -	
(�	
 − �	
�	� ≥ 0, �!�, (17) 
  ��
��� − ��
0�
 ≥ 0, �!�, (18) 
  0�
(��
 − ��
�	� ≥ 0, �!�, (19) 
 
 

4.   NUMERICAL EXAMPLE 
 
To illustrate our proposal we used information from Wood and Wollenberg (1996) and Loucks and  Bee (2005). We 
consider 3 hydro plants using Francis turbins and 3 thermal units. The characteristics of the system analyzed are shown in 
Tables (2) to (4). Table (1) shows the mathematical expectation of b for each component (�, �, 
), the limits of power 
generation of thermal units and their respective fixed operating costs. Table (2) shows the coefficients proposed for 
evaluating water requirements as a function of power demand in each turbine, the operating limits of power generation of 
hydro plants and their fixed operating cost. The periods considered and demand parameters are shown in Table (3). 
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Table 1: Technical characteristics of thermal units. 
 

Unit � �g �g 
̅ �	
�	� �	
��� �	 
1 
2 
3 

561 
310 
78 

7.92 
7.85 
7.97 

0.001562 
0.00194 
0.00482 

200 
300 
100 

400 
400 
200 

79,284 
105,665 
20,750 

 
Table 2: Technical characteristics of hydro units. 

 
Unit � KL KG K/ggg ��
�	� ��
��� �� 

1 
2 
3 

51216.863 
50834.983 
49816.928 

1173.829 
1082.829 
1168.829 

16.382 
15.551 
12.052 

50 
10 
10 

120 
100 
150 

90,000 
90,000 
90,000 

 
Table 3: Intervals and demand parameters (~�	 = 1.96  for ; = 0.05). 

 � 1 2 3 4 5 6 7 8 9 10 11 12 tj 800 670 668 675 720 780 800 850 860 900 900 900 uj 10 8 9 12 15 15 20 30 32 28 26 26 tj + uj~�	 820 686 686 699 750 810 840 909 923 955 951 951 
 

 13 14 15 16 17 18 19 20 21 22 23 24 tj 990 990 850 1000 1150 1210 1214 1225 1240 1245 1100 1050 uj 27 21 20 24 26 15 15 16 18 16 14 10 tj + uj~�	 1041 1031 889 1047 1200 1240 1244 1257 1276 1277 1127 1070 
 
 

With respect to the water inflows, in literature is common to use the following random variables to estimate them (Bobe 
and Ashkar (1991), IACWD (1982)) : a) Normal distribution, b) Lognormal distribution (used to describe the flood flows), 
c) Gamma distributions (used to model many natural phenomena, including daily, monthly and annual stream flows as well 
as flood flows, (IACWD (1982)), d) Log-Pearson type 3 distribution (this distribution has found wide use in modelling 
flood frequencies and has been recommended for that purpose (IACWD (1982), Hosking and Wallis (1997)), e) Gumbel 
and GEV (Generalized Extreme Value) distributions (In recent years, these have been used as a general model of extreme 
events including flood flows, particularly in the context of regionalization procedures (GOVE Hidroelectric Development 
(2010)). In our proposal we use the gamma distribution with pdf, mean and variance given by  
 i�(�, ;, b) = ��FG ���/�

*��(�) , v(�) = ;b, wxy(�) = ;b/           (21) 

 
and to project the simulated value we use the product (n�FG (�)) × ϱ, with  ϱ =  3600. Here (n�FG (�)),   � ∈ �(0,1)   
represents the inverse transform of the cumulative distribution function of gamma density. Table (4) shows the operating 
conditions of the hydro system and the parameters used in the gamma function to estimate the inflows to each reservoir for 
all � ∈  �. 
 

Table 4: Technical characteristics of thermal units, � =  1, … , 23. 
 

Hydro units characteristics Gamma parameters � �� ���	� ����� ��,L ��,
 ��,/� ;� b� ϱ 
1 5.2 × 10� 150,000 500,000 45,000,000 40,000,000 40,000,000 1.41 47.92 3600 
2 2.1 × 10� 140,000 500,000 16,000,000 12,000,000 10,200,000 1.62 47.92 3600 
3 5.1 × 10� 100,000 500,000 21,000,000 14,000,000 14,000,000 1.28 42.81 3600 

Monte Carlo optimization is a class of algorithms that seek a maximum by sampling, using a pseudo-random number 
generator. It is a technique for estimating the solution, �, of a numerical mathematical problem by means of an artificial 
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sampling experiment. The estimate is usually given as the average value, in a sample, of some statistic whose mathematical 
expectation is equal to �. As a first approximation, we generate � =  100 random vectors (�	 , ��) ! �� containing feasible 
solutions and then, ordered them to select the lowest. Feasible solutions were obtained under the scheme “here and now”. 
Table (5) shows the optimal MPS for one sequence of 24 hrs. 
 

Table 5: An optimal solution obtained by Monte Carlo sampling method 
 

Hydro system Termo system Total Storage volumen Total cost � �G∗ �/∗ ��∗ �G∗ �/∗ ��∗ p �G
 �/
 ��
 �(�) 
1 88 97 132 209 303 0 829 45156097.72 15945837.88 20695336.95 459,843.24 
2 119 79 141 368 0 0 707 45156097.72 15945837.88 20695336.95 354,313.88 
3 112 94 140 340 0 0 686 45140387.99 16032810.17 20056662.95 353,782.47 
4 120 92 135 362 0 0 709 44838183.17 16246749.62 20069122.52 354,197.95 
5 96 97 134 240 0 184 751 45065120.47 16056126.87 20103801.78 459,379.18 
6 76 87 145 213 312 0 833 44804304.03 16296334.41 20182240.40 459,982.67 
7 91 88 139 219 310 0 847 44719135.25 16289213.02 20714623.16 460,052.56 
8 103 94 137 201 383 0 918 45473154.95 16182718.32 20509411.93 460,463.11 
9 103 90 143 260 337 0 933 45513187.46 16266613.30 20768735.61 460,929.89 
10 96 98 145 238 378 0 955 45246629.63 16306052.93 20596405.56 460,963.23 
11 118 77 142 251 396 0 984 45024348.36 16366587.77 20567803.24 461,333.82 
12 120 75 138 248 385 0 966 45059659.40 17000254.17 20122423.05 461,183.66 
13 115 69 142 321 397 0 1044 44820407.61 16877648.01 19938379.10 462,523.03 
14 112 98 141 331 369 0 1051 45426772.86 16824458.46 19524150.19 462,442.67 
15 119 98 94 222 361 0 894 45329118.55 16700476.76 19487504.11 460,563.73 
16 116 79 150 326 398 0 1069 44997328.70 17280566.94 19221139.74 462,622.55 
17 90 93 140 360 384 195 1262 46309322.18 19664068.90 20450200.24 570,527.45 
18 108 96 149 348 396 152 1249 47720729.67 20194828.68 21461092.08 569,997.43 
19 103 91 146 347 382 183 1252 49004902.58 21000000 22799384.98 570,144.75 
20 117 70 149 388 373 186 1283 50193503.87 21000000 24001180.09 570,885.59 
21 115 82 107 396 400 198 1298 51632331.87 21000000 25181604.15 571,417.21 
22 118 97 142 392 345 185 1279 52000000 21000000 27580788.33 570,697.44 
23 107 86 136 228 392 189 1138 51953426.05 21000000 27487774.95 568,285.56 
24 119 100 116 375 369 0 1079 51954872.34 20925351.19 27280450.19 463,276.36 

 
 

5. CONCLUSSIONS 
 
In this document we proposed a non linear stochastic and integer programming model to obtain the MPS of the 
hydrothermal coordination problem. We use a random search technique based on Monte Carlo sampling to optimize the 
given instance. The problem was programed in Excel and Math Lab to evaluate the instances generated. Experience showed 
that the time required to obtain solutions where power demand is approaching the upper limits of generation capacity 
(equations (2), (5) and (6)) grows significantly. In our results the water inflow to dams was greater than the needs of water 
flow through the turbines; this caused spillages in reservoirs 1 and 2. 

The approach used in this research, proved to be sufficient but not efficient. However, opening the way for the 
application of meta heuristics such a genetic algorithms or ant colony. Our main contribution in this proposal is the use of 
reliability functions to ensure that, the power generated meets the average demand with certain probability. The use of fixed 
and variables costs and the consideration of that, the water inflow rate and the corresponding spillage rate are random 
variables. 

The next activity in this research involves the application of alternative techniques and to compare their results 
(accuracy and speed of convergence) with obtained here. 
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