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Col. Nueva Industrial Vallejo, Distrito Federal, 07738 México, Mexico
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A R T I C L E I N F O

Article history:

Received 22 August 2014

Received in revised form 24 March 2015

Accepted 29 March 2015

Available online

Keywords:

Lattice model

Prey–predator

Scaling

Oscillatory behavior

Particle swarm optimization

A B S T R A C T

A lattice prey–predator model is studied. Transition rules applied sequentially describe processes such as

reproduction, predation, and death of predators. The movement of predators is governed by a local

particle swarm optimization algorithm, which causes the formation of swarms of predators that

propagate through the lattice. Starting with a single predator in a lattice fully covered by preys, we

observe a wavefront of predators invading the zones dominated by preys; subsequent fronts arise during

the transient phase, where a monotonic approach to a fixed point is present. After the transient phase the

system enters an oscillatory regime, where the amplitude of oscillations appears to be bounded but is

difficult to predict. We observe qualitative similar behavior even for larger lattices. An empirical

approach is used to determine the effects of the movement of predators on the temporal dynamics of the

system. Our results show that the algorithm used to model the movement of predators increases the

proficiency of predators.
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1. Introduction

The relationship between the long-term dynamics and the
patterns observed in population dynamics and in particular in
prey–predator spatial models has been a matter of extensive
research in theoretical ecology: reaction diffusion equations,
cellular automata, patch models, coupled map lattices and
individual based models are only a subset of the tools used to
analyse phenomena such as phase transitions (Antal and Michel,
2000; Bagnoli et al., 2001), scaling and finite size effects (Suther-
land and Jacobs, 1994; Pascual and Levin, 1999; Pascual et al.,
2002; Xu et al., 2005), oscillatory behavior (Blasius et al., 1999;
Lipowski, 1999; Zhang et al., 2006), chaos (Jansen, 2001; Li et al.,
2005; Maionchi et al., 2006; Gibson and Wilson, 2013) and noise
induced effects (Fiasconaro et al., 2004; La Cognata et al., 2010).
Given the nature of ecological models, most of these phenomena
are closely related.
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The dispersal of individuals is one of the central mechanisms
behind pattern formation in spatially explicit models (Hosseini,
2006; Filotas et al., 2008). A good approach to model such
phenomenon is to use transition rules that describe a diffusion
process: in Comins et al. (1992), the authors study a host-
parasitoid model on a rectangular grid of patches. The effects of the
diffusion on the spatial dynamics of the model manifest as a
wavefront of hosts traveling at constant speed; this event is
followed by a front of parasitoids that consumes the original wave
of hosts. Depending on the fraction of hosts that disperse each
generation several spatial patterns might be observed including
spatial chaos, spirals and ‘‘crystal’’ patterns. The authors note that
despite the fact that the presence of any of these patterns leads to
the coexistence of both species, there is a threshold for the size of
the grid below which extinction is always observed.

A comparative study of the effects of diffusion processes in
spatial models appears in Sherrat et al. (1997). The authors analyse
the behavior of four different spatial prey–predator models
(reaction–diffusion equations, coupled map lattices, cellular
automata and integrodifference equations) where prey suffer
the invasion of predators. Simulations of one-dimensional versions
of each model show the expected wave front of predators invading
the prey-only state and leaving behind a coexistence state. The
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authors focus their attention on the spatial dynamics behind the
initial wavefront of predators where three different phenomena
are observed:

� Regular spatio-temporal oscillations. For this case, periodic
travelling waves moving at a different speed than the
original front are observed. Such waves correspond to a family
of solutions for the model based on reaction diffusion equations.
� Irregular spatio-temporal oscillations. For the reaction diffusion

equations, certain parameters might force the travelling wave
solution into irregular oscillations, the authors note that such
pattern might be associated with spatial chaos. Irregularities
expand from the focus of the invasion suggesting again that such
dynamics are chaotic.
� Irregular fluctuations. Here, there is a band of periodic waves

immediately behind the invasive front. Following this band there
are irregular oscillations with no apparent pattern. This behavior
corresponds to a transient phase due to an unstable periodic
wave solution.

Similar patterns were obtained in Arashiro and Tomé (2007) for
a probabilistic cellular automaton. By carrying numerical simula-
tions, the authors were able to obtain the critical exponents for the
automaton, thus allowing the classification of the model into the
directed percolation universality class.

Diffusion-like transition rules offer a simple and mathemati-
cally tractable way to describe the dispersal of individuals. In
Filotas et al. (2008) the authors state that because of a lack of
common rules behind the dispersal of species, ecologists often
have to make the simplest assumptions (e.g., a density
independent rate of dispersion) when modeling such phenome-
non; even if for many species factors such as the local population
size, resource availability, or habitat quality influence the
mobility of individuals. However, there has been efforts to
develop strategies that better mimic the phenomena found in
natural ecosystems (Li et al., 2005; Boccara et al., 1994;
Rozenfeld and Albano, 2001; Szwabiński, 2012; Wang et al.,
2012). In these approaches, cooperation is neglected in favour of
intraspecific competition, i.e., only the negative effects of the
aggregation of individuals are considered. However, it is
reasonable to expect that under certain circumstances, a group
of individuals has better chances of survival than those that
remain isolated, e.g., to flee from a predator, or to hunt for prey.
Allee effects are a good example where aggregation leads to
positive density dependence, albeit only for small populations;
however recent works have shown that such effects are key for
the stability of a prey–predator system (Wang et al., 2011), or
even determine the success of an invading species (Mistro et al.,
2012). In some animal communities, social behavior is also the
source of many extraordinary patterns, e.g., bird flocking or
insect swarms. By incorporating social behavior on the dispersal
rules of predators, we attempt to study the effects that such
process have on the global dynamics of an ecosystem.

In the present paper we analyse a prey–predator lattice model
where a local Particle Swarm Optimization (PSO) algorithm is used
to model social interactions among the individuals of the predators
species. PSO is an evolutionary computation algorithm typically
used to find an optimal solution in a search space that defines the
set of possible solutions to a particular problem. The foundations of
the algorithm come from the observation of the social behavior of
animal communities previously mentioned: insect swarms, bird
flocks or fish schools (Trelea, 2003). In a PSO algorithm there is a
population of particles called the ‘‘swarm’’, the position of each
particle determines a candidate solution to the problem under
study. Typically, social interactions among the members of the
swarm occurs through one of two information sharing schemes:
� Global. A particle moves according to its own knowledge of the
search space, and the information it receives from the particle at
the location that represents the best solution found by the
swarm.
� Local. In this scheme, a neighborhood comprising a particle and

some of its nearest neighbors is created. To move, a particle uses
its own knowledge of the search space and the information
provided by the particle with the ‘‘best’’ position among its
neighbors.

In our model, these interactions help a predator to determine
the best direction of movement in order to secure food for its
survival and reproduction. Cooperation among predators manifest
itself as an interesting spatial pattern: predators group into
clusters that maintain cohesion as they move through the lattice
hunting for preys; the analysis of such phenomenon is the main
focus of the present article. In a previous work (see Martı́nez
Molina et al., 2013) we showed that the population dynamics
corresponding to the formation and propagation of clusters of
predators is characterized by oscillations with a very regular
period. Similar behavior has been associated with variations in the
mobility of the individuals of a species (Boccara et al., 1994;
Shigefumi et al., 2014), large migration rates in patch models
(Blasius et al., 1999; Li et al., 2005), or the aggregation of
populations at small or intermediate scales (Pascual and Levin,
1999; Pascual et al., 2001; Durrett, 1994; Mobilia et al., 2007). In
light of these results, we investigate the relationship between the
social behavior of predators and the observed population
dynamics. The main result of this work is that cooperation through
a local PSO increases the proficiency of predators, which behavior
is characterized by a transient phase followed by an oscillatory
regime. Such behavior was taken into account to build a mean field
model that accurately predicts the mean densities of the
populations.

The proposed model is defined in Section 2; here, we describe
each stage of the model, and explain the main consequence of
the use of a local PSO algorithm for the movement of predators, i.e.,
the grouping of predators into swarms. In Section 3 we analyse the
invasion of prey dominated zones by predators using initial
conditions close to the absorbing state where the lattice is full of
preys. In Section 4 we show that the movement of predators
reduces the death probability of predators, which in turn increases
the death rate of preys. Finally, in Section 5 we explore some
properties of the model for different sizes of the lattice. Our
conclusions appear in Section 7.

2. Proposed model

Our model describes the interactions between a sessile prey
and its predator, such interactions are local in nature and occur on
a two-dimensional lattice L where periodic boundaries have been
implemented. Each site of the lattice may be occupied by a prey, a
predator, both or be empty. Time proceeds in discrete time steps.
The evolution of the model is controlled by a life cycle, known as
‘‘season’’, that determines the transition function that is applied at
each time step. Depending on the function being applied, preys
and predators may interact within a neighborhood whose size
(the number of sites within the neighborhood) is defined as
follows:

jMrj ¼ ð2r þ 1Þ2 (1)

where r is the radius of the neighborhood. Thus an
M1 neighborhood comprises the eight nearest neighbors of a
particular site, and the site itself; an M2 neighborhood the nearest
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24 neighbors, and the site itself, and so on. The transition functions
are as follows:

1. Intraspecific competition. During this stage the probability that a
prey dies due to competitive pressure is given by:

ay

jMcj � 1
(2)

The quantity a 2 [0, 1] is the intraspecific competition
coefficient, which determines the intensity of the competition
exercised by other preys in the neighborhood Mc of a site, y is the
number of preys within such neighborhood.

2. Migration. When migrating, predators move from zones where
the density of preys is low, to zones highly populated by preys.
The movement occurs according to a local PSO algorithm, which
give predators the capacity to interact with other members of
their species.

3. Reproduction of predators. During the reproduction stage, each
predator chooses randomly a site in its reproduction neighbor-
hood. If the site is not already populated by a predator, then a
new predator is created at the chosen site, otherwise, no
reproduction occurs. This process is repeated as many times as
the reproductive capacity eZ of the species allows.

4. Death of predators. If a predator is not located at a site containing
a prey, it dies with probability 1.

5. Predation. If a prey is located at a site containing a predator, it
dies with probability 1.

6. Reproduction of preys. Like predators, preys spawn new
individuals at random within a My neighborhood. Reproduction
is only successful if the chosen sites do not contain already a
predator.

With exception of the migration rule, which is applied for five
consecutive time steps, all other rules are applied during a single
time step. Therefore, a season is equivalent to 10 time steps. The
following pseudocode illustrates how the transition functions are
scheduled in the proposed model. Such ‘‘architecture’’ is useful to
observe the model after a transition function has been applied, and
not only when a season ends.

function MAIN

INITIALIZE

for j   1, totalTimeSteps do

NEXTGEN

end for

end function

function INITIALIZE

nextStage   INTRASPECIFICCOMPETITION " Store address of function

migrationCounter = 0

end function

function NEXTGEN

nextStage "Call the function pointed by nextStage

end function

function INTRASPECIFICCOMPETITION

for i   1, totalPreys do

Determine if the prey i dies due to competition

end for

nextStage   MIGRATION " Store address of function
end function

function MIGRATION

for i   1, totalPredators do

Update the position of predator i according to the PSO
algorithm

end for

migrationCounter   migrationCounter + 1

if migrationCounter = 5 then

migrationCounter = 0

nextStage   REPRODUCTIONOFPREDATORS

end if

end function

function REPRODUCTIONOFPREDATORS

for i   1, totalPredators do

for birthCount   1, eZ do

If possible spawn a new predator at a randomly chosen site

end for

end for

nextStage   DEATHOFPREDATORS

end function

function DEATH OF PREDATORS

for i   1, totalPredators do

Kill all predators not located in a cell without a prey

end for

nextStage   PREDATION

end function

function PREDATION

for i   1, totalPreys do

Kill all preys located in a cell with a predator

end for

nextStage   REPRODUCTIONOFPREYS

end function

function REPRODUCTIONOFPREYS

for i   1, totalPreys do

for birthCount   1, eY do

If possible spawn a new prey at a randomly chosen site

end for

end for

nextStage   INTRASPECIFICCOMPETITION

end function

The migration stage deserves additional explanation; however, a
deep review of PSO algorithms is beyond the scope of this article,
detailed information can be found in Kennedy and Eberhart
(2001). In order to use PSO as a migration algorithm, it is necessary
to enhance the capabilities of the predators. In particular each
predator records the position of the site with the highest density of
preys visited so far. Such a measure is assigned to every site of the
lattice based on the number of preys in a neighborhood of size
Mc. Each predator also possesses a velocity vector which indicates
the current magnitude and direction of its movement. As stated in
Section 1, PSO is commonly used to solve optimization problems,



Fig. 1. Local position updating.

Fig. 2. Swarms of predators moving through the lattice. Preys are depicted in green,

predators in red, and preys invaded by a predator are depicted in yellow. (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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e.g., finding the maximum or the minimum of a given function. We
adapt such behavior to model the movement of predators: when
moving, a predator aims to maximize its chances of survival, it does
so by moving to zones with a high density of preys. In contrast to a
typical local PSO where the neighbors of a given particle remain
fixed, in our algorithm the neighborhood of a predator changes as it
moves through the lattice. During the migration stage, the position
of every predator in the lattice is updated using the following
equations:

Vtþ1
i ¼ vVt

i þ k1q1ðPt
i � Xt

i Þ þ k2q2ðPt
li
� Xt

i Þ (3)

Xtþ1
i ¼ Xt

i þ Vtþ1
i (4)

where Xt
i is the position of predator i at time step t and Vt

i is the
velocity vector of predator i at time step t. Each term of Eq. (3)
plays a different role in the PSO algorithm:

� The term vVt
i is responsible for keeping the current direction of

movement of the particle, this term is known as the inertia
component. The parameter v 2 [0, 1] is called inertia weight;
values of v close to one produces long range movements, while
values close to zero produce small movements. It must be noted
that the value of v is linearly decreased over the duration of the
algorithm. If v were to remain constant, then a predator would
move around a zone with a high density of preys; however it is
unlikely that the final position of the predator would be within
such zone. Thus, during the first iterations predators execute
long range movements that favours the exploration of their
neighborhood. As migration nears its end, the movement of
predators is more constrained, which encourages the search in
zones with a good density of preys.
� The term k1q1ðPt

i � Xt
i Þ is known as the cognitive component and

serves to guide the movement of a predator towards zones where
it has previously found a good density of preys. Pt

i denotes the
position with the highest prey density found by predator i up to
time t. The parameter k1 is known as the cognitive factor, while
q1 2 [0, 1] is a uniformly chosen random number. Both of these
parameters determine the magnitude of the contribution of the
term to the new velocity vector of the predator.
� The term k2q2ðPt

li
� Xt

i Þ is known as the social component, its
objective is to direct the movement of the predator towards the
position with the highest density of preys among the neighbor-
ing predators (social neighborhood). The parameter k2 is known
as the social factor, q2 2 [0, 1] is a uniformly chosen random
number; both parameters determine the contribution of the
term to the velocity vector of the predator. Pt

li
denotes the

position with the highest prey density found by the neighbors of
predator i at time t (prey density is measured using the
competition neighborhood).

The parameters q1 and q2 are randomly chosen in order to
produce an uneven movement around a point which is the
weighted average of Pt

i and Pt
li
, the goal is to force a predator to

‘‘explore’’ the neighborhood of a potentially good zone. Once the
contribution of each term has been obtained, the new velocity
vector is added to the current position Xt

i of a predator to obtain its
position at the time step t + 1. Fig. 1 shows the position updating
of a predator for a Ml neighborhood of radius l = 2, and a Mc

neighborhood of radius c = 1.
In a previous work (see Martı́nez Molina et al., 2013) we

showed that the spatial dynamics of the proposed model is
characterized by the aggregation of predators into well defined
clusters that propagate through the lattice as shown in Fig. 2. Here
and thereafter, we refer to such clusters as ‘‘swarms’’ in order to
avoid confusion with the usage of the term ‘‘cluster’’ in previous
works (cells u and v belong to the same cluster if both have the
same state and they are ‘‘adjacent’’ to each other, i.e., v is located at
one of the nearest neighbors of u, Sutherland and Jacobs, 1994; Fu
et al., 2010). Such phenomena is driven by the following processes:

� Formation. This process occurs when a predator located at a zone
with a high density of preys attracts predators within its social
neighborhood Ml to its location.
� Fragmentation. Due to the cognitive component of the local PSO

algorithm, it is possible for one or more predators to move
beyond the social neighborhoods of the other individuals that
comprise a swarm.
� Merging. When two or more swarms collide, the social

neighborhoods of their predators overlap, what follows is an
aggregation of individuals into an even bigger swarm. However,
such aggregations are short lived: due to an increase in the local
density of predators, resources are rapidly consumed which
produces local extinction events.



Table 1
Parameters used in computer simulations. The value specified for F0 is the density

that corresponds to a single predator. The values for v specify the range over which

the parameter is linearly decreased.

Preys Value Description

C0 1 Initial density

eY 1 Reproductive capacity

y 3 Radius of the reproduction neighborhood

a 0.05 Intraspecific competition coefficient

c 3 Radius of the competition neighborhood

Predators Value Description

F0 3.8147 � 10�6 Initial density

eZ 3 Reproductive capacity

z 1 Radius of the reproduction neighborhood

Migration Value Description

k1 1 Cognitive factor

k2 2 Social factor

l 7 Radius of the social neighborhood

v 0.9–0.2 Inertia weight
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3. Swarm dynamics

Computer simulations of the proposed model were performed
using the parameters presented in Table 1. 10,000 seasons
(100,000 time steps) were simulated using a lattice of
Fig. 3. Invasion of pre
512 � 512 sites with periodic boundaries. Our experiments start
with the system close to the prey-only absorbing state, i.e., the
lattice starts with an initial density of preys C0 = 1, and an initial
density of predators F0 corresponding to a single predator. Where
appropriate, the following color code is used to identify the state of
a site:

� Black: an empty site.
� Green: a site populated by a prey.
� Red: a site inhabited by a predator.
� Yellow: a site containing a prey and a predator at the same time.

Fig. 3 shows the invasion of the prey domain by predators. In
Fig. 3a several swarms of predators grouped at the source of the
invasion can be observed. Due to the high density of preys, the
formation of these patterns occurs quickly after the start of the
simulation: if the starting predator and its progeny survive the first
‘‘death of predators’’ stage, then the first swarm appears after the
reproduction of predators. Since the recently born predators
inherit their best know position from their parent, and since the
size of the reproduction neighborhood is smaller than the size of
the social neighborhood, both the starting predator and its progeny
remain ‘‘bounded’’. We may define then (somewhat arbitrarily) the
time of creation of the first swarm as the time when the starting
predator and at least one of its progeny survive the ‘‘death of
predators’’ stage. As predation takes place, swarms move outwards
ys by predators.



Fig. 4. Temporal dynamics of the proposed model under the parameters of Table 1.

The left inset shows a monotonic approach to a fixed point during the transient

phase of the simulations, which corresponds to traveling wavefronts that appear

during the invasion process. The right inset shows that oscillations have a very

regular period and are out of phase.
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following the direction of highest prey density. However, the
movement of swarms located near the source of the invasion is
limited by swarms located far from the source of the invasion: if an
‘‘inner’’ swarm tries to expand, it is possible for its destination to be
already occupied by an ‘‘outer’’ swarm, or it may also be the case
that its destination is a recently predated zone, since these zones
have a low density of preys, moving to any of these locations would
increase the death probability of every individual in the swarm.
Such process results in an expanding wavefront of ‘‘outer’’ swarms
moving at the same speed, while ‘‘inner’’ swarms remain behind
(see Fig. 3b). It must be noted that the wavefront is not
homogeneous; i.e., swarms do not cover the whole perimeter of
the wave (see Fig. 3c), which in turn allows some preys to survive
the invasion. Zones with a low density of preys behind the
wavefront are repopulated by the survivors, thus creating new
clusters of preys (see Fig. 3d), which become the target of the
‘‘inner’’ swarms of predators. There is then a division between a
prey-only state ahead of the invasion front, and a coexistence state
behind, where swarms continuously migrate from zones with a
low density of preys to zones highly populated by them. Similar
divisions have been analysed previously: for a two-dimensional
coupled map lattice and two-dimensional reaction diffusion
equations, Sherrat et al. (1997) observed periodic travelling waves
that persist or decay into irregular spatio-temporal oscillations due
to being intrinsically unstable. Arashiro and Tomé (2007) obtained
a similar division for a probabilistic cellular automaton; behind the
initial wave front they observed a coexistence characterized by
local time coupled oscillations where small clusters of predators
invade large clusters of preys. A second coexistence state where
both populations are grouped into small clusters isolated from
each other was observed for a low death probability of predators
which is compensated by higher birth probabilities.

The population dynamics for the proposed model under the
parameters specified by Table 1 is shown in Fig. 4. The expansion of
the initial wavefront produces a monotonic approach to a non-
trivial fixed point during the transient period of the system; once
such approach ends, it is possible to observe weak oscillations
around the fixed point, which corresponds to subsequent
travelling waves that are produced when surviving preys repopu-
late the space behind the wavefront, only to be consumed by the
‘‘inner’’ swarms. Such process is short lived, and waves will
eventually disappear; after the transient phase, both populations
oscillate with a very regular period and the typical ‘‘out of phase’’
behavior of prey–predator systems (see the right inset of Fig. 4).
4. Mean field analysis

It is possible to formulate the following set of mean field
equations (details about such process are given in Appendix A) by
considering the changes in density that occur through each season
of the model:

C I ¼ C t � aC2
t (5)

FR ¼ Ft þ ð1 � FtÞð1 � ð1 � PZÞeZ z̄t Þ (6)

Ftþ1 ¼ FR � ð1 � C IÞFR (7)

CD ¼ C I � C IFtþ1 (8)

C tþ1 ¼ CD þ ð1 � CDÞð1 � ð1 � PY ÞeY ȳt Þ (9)

where:

� t is measured in seasons.
� Ft is the density of predators at time t.
� Ct is the density of preys at time t.
� CI is the density of the prey species after the intraspecific

competition stage.
� FR is the density of predators after the corresponding

reproduction stage.
� CD is the density of preys after the predation stage.
� ȳt is the mean number of preys in a neighborhood of size jMyj of a

site.
� z̄t is the mean number of predators in a neighborhood of size jMzj

of a site.
� PY = 1/jMyj is the probability that a site that does not contain a

prey is selected for reproduction by one of its neighboring preys.
� PZ = 1/jMzj is the probability that a site devoid of a predator is

selected for reproduction by a neighboring predator.

A pair of mean field equations that describe the changes for
both populations can be obtained from Eqs. (5)–(9); however, since
we were not able to obtain an analytical solution to such system,
we keep the equations in their original form. Note that since no
change in density occurs during the migration stage, there is no
mean field term associated to this rule. These equations will be
used to provide a comparison of the behavior of the proposed
model against a model that considers a ‘‘well mixed’’ environment.
We will also show that by considering the effects of the migration
stage in the mean field equations, an accurate prediction of the
mean densities of both populations can be made.

In agreement with computer simulations of the proposed
model, the mean field equations have two fixed points that
correspond with the absorbent states of the proposed model: the
first corresponds to an ecosystem where both populations go
extinct; the second is obtained when all the individuals of the
predator species die, leaving behind an ecosystem only populated
by preys. Numerical simulations of the mean field model,
according to the parameters of Table 1, also show an evolution
toward a fixed point characterized by the coexistence of preys and
predators (see Fig. 5); it is worth noting however, that the long-
term density of the populations is not accurately predicted, and no
oscillatory behavior can be observed. Both of these outcomes are to
be expected, it is well known that mean field models, such as the
one given by Eqs. (5)–(9), provide only a rough description of the
dynamics of a lattice model, since they do not take space into
account and assume a ‘‘well mixed’’ environment where individu-
als are randomly distributed on the lattice.



Fig. 6. Effects of the migration stage on the death probabilities of preys and

predators. (a) Due to the movement of predators following the direction of highest

prey density, there is a decrease on the death probability of predators with respect

to a simulation where no migration occurs. In (b) it is possible to observe that, when

predators do not migrate, the predation probability is lower with respect to the case

in which predators move.

Fig. 5. Long-term mean densities predicted by the mean field model given by Eqs.

(5)–(9); dashed lines correspond to the mean field model that omits the effect of the

migration stage, solid lines correspond to the adjusted mean field model that

considers such effects.
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4.1. The role of the migration stage

Our mean field model has an additional shortcoming: it does
not take into account the effects of the migration stage on the
populations of preys and predators. An immediate effect of the
movement of predators from zones low on resources to zones with
a higher density of preys, is that the death probability of predators
must be different from that when no migration occurs. Ideally,
migration should provide better conditions for the survival of a
predator, or the survival of its progeny; however, the effects of such
change on a global scale are not easily predicted. To test our
hypothesis, we have selected the parameter sets shown in Table 2:
set A disables the movement of predators, so parameters like k1

and k2 are set to zero; parameters in set B are identical to those
shown in Table 1 and are repeated to provide an easy reading of the
article.

For both simulations, we have measured the following
quantities: (a) the density of preys at the start of the death of
predators stage CI; (b) the death probability of predators; (c) the
density of predators at the start of the predation stage Ft+1; and (d)
the predation probability. Fig. 6 shows these measurements: it is
easy to see that when set A is used, our data concentrates in an
small area, which corresponds to an orbit towards a fixed point
obtained when no migration occurs. Due to the oscillatory
behavior resulting from the movement of predators, the data
obtained for set B follow a pattern akin to a limit cycle, thus
spanning a wider area. It is worth noting that most of the
Table 2
Parameters used to analyse the migration stage.

Parameter Set A Set B

C0 1 1

eY 1 1

y 3 3

a 0.05 0.05

c 3 3

F0 0.00000384147 0.00000384147

eZ 3 3

z 1 1

Migration parameter Set A Set B

k1 0 1

k2 0 1

l 1 7

v 0 Linear decrease

from 0.9 to 0.2
measurements obtained for the simulations using set B lie below
the data obtained for set A (see Fig. 6a). When the migration stage
is enabled, there is a decrease in the long-term density of the preys
species; however, even under these ‘‘harsh’’ conditions, the death
probability of predators is lower with respect to the case in which
no migration occurs. A similar behavior can be observed in Fig. 6b.
Measurements obtained using set A lie below the results obtained
from set B, due to the movement of predators there is an increase in
the predation probability.

To include the changes in the death probability of predators and
predation probability in our mean field model, we follow a
procedure first developed by Pascual et al. (2001) to determine the
long-term dynamics at different spatial scales of a stochastic lattice
model; the method parts from the result that certain quantities,
e.g., the growth rates of preys and predators, preserve their
functional form at different spatial scales. By first measuring such
quantities directly from the computer simulations, and then
performing suitable statistical regression methods on the obtained
data, it is possible to adjust the parameters that control the mean
field terms of the quantities of interest.

To apply this methodology in our simulations it is necessary to
also measure the growth rate of both populations. The functional
form of these quantities is similar: ð1 � CDÞð1 � ð1 � PY ÞeY ȳt Þ for
the preys and ð1 � FtÞð1 � ð1 � PZÞeZ z̄t Þ for the predators, these
terms are controlled by the parameters eY and eZ respectively. To
obtain a fitted curve for the data a least-squares regression was
used. The results obtained show that the growth rate of preys
behaves as if in average the reproductive capacity of preys
eY = 0.8744; meanwhile the reproductive capacity of predators
behaves as if eZ = 1.4693. It is interesting to note that both
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parameters are lower than the values specified for the simulation,
such results is to be expected given the local nature of the
interactions between individuals.

The mean field term for the death probability of predators 1 � CI

assumes a linear relationship with respect to the number of sites not
populated by preys. In its present form, the term is only valid for a
‘‘well mixed’’ environment where individuals are randomly placed
on the lattice. However, as shown by Fig. 6a the data for the death
probability of predators, obtained using sets A and B, clearly show a
linear relationship with CI; the slope of the data shown in Fig. 6b
suggests a similar behavior that depends on Ft+1. However, the data
obtained from set B exhibit a greater deviation from the line
representing such a relationship; this outcome has to be expected
given the magnitude of the oscillations due to the movement of
predators. Since we are dealing with linear functions, a polynomial
regression is enough to adjust our mean field terms. Note that the
only parameters that define the behavior of the death probability of
predators and the predation probability are the coefficients of the
first order polynomial for each data set. Let us call such coefficients a,
b, d, and e, therefore the mean field term for the death probability of
predators can be written as follows:

b þ aC I (10)

with a = �1 and b = 1, meanwhile the term for the predation
probability can be expressed as:

e þ dFtþ1 (11)

with e = 0 and d = 1. It is possible to rewrite Eqs. (7) and (8) as
follows:

Ftþ1 ¼ FR � ð1 � C IÞFR ¼ FR � ðb þ aC IÞFR (12)

CD ¼ C I � C IFtþ1 ¼ C I � C Iðe þ dFtþ1Þ (13)

The results of the regression method for the data of set B give the
coefficients a = �0.9434, b = 0.8626, d = 1.5034, and e = 0.1726
(additional details about these results can be found in Table 3).
The effects of the adjusted parameters on the mean field model are
shown in Fig. 5, a non-trivial fixed point where both populations
coexist can be observed; it is easy to see, that the densities predicted
by the adjusted mean field model correspond to the points around
which the densities of preys and predators oscillate when the
migration stage is enabled (see Fig. 4). We may summarize the
effects of the movement of predators on the carrying capacity of the
populations as follows: when moving towards zones where the
density of preys is high, a predator increases their chance of survival;
also, it increases the probability that its progeny survives the ‘‘death
of predators’’ stage. With a greater number of predators surviving,
there is an increase in the predation probability, which increases the
death rate of preys. It is interesting to note that by increasing their
odds of survival, the population of predators create harsher
conditions for their species. Despite the fact that predators are able
to survive under such conditions, the carrying capacity of both preys
and predators is lower than the densities observed under a ‘‘well
mixed’’ environment.
Table 3
Additional details for the linear regressions.

Set B R2 p-Value

Regression for a and b 0.9595083345163955 0.0

Regression for d and e 0.48146049419825371 0.0
5. Oscillatory behavior and spatial scale

Besides changing the mean density of the populations, the
movement of predators also causes a transition to the oscillatory
behavior. The oscillations have a very regular period, however,
their amplitude, while bounded, is very difficult to predict (see
Fig. 4). Previous works have shown that such oscillations in a prey–
predator system should vanish in the thermodynamic limit (see
Antal and Michel, 2000; Lipowski, 1999; Boccara et al., 1994;
Durrett, 1994; Mobilia et al., 2007; Petrovskii et al., 2004), i.e., their
amplitude diminishes as the size of the lattice is increased. To
investigate such phenomenon, we performed additional computer
simulations for lattices of size 26+i for i = 0, 1, 2, 3, 4, 5, 6, 7, i.e., from
a lattice of size 64 � 64 sites to a lattice of size 8192 � 8192 sites;
10000 seasons were simulated using the parameters of Table 1. To
obtain a measure of the amplitude of the oscillations, we calculated
the standard deviation of the time series of the density of preys.
Since the predators species has a similar behavior, we do not report
those data. Fig. 7 shows the results of our simulations, as expected,
the amplitude of the oscillations decays as the size of the lattice
increases: for small lattices, an evolution towards a noisy limit
cycle can be observed; as the size increases, the limit cycle
destabilizes and the pattern of Fig. 4 appears. Additional
increments in the size of the lattice further diminish the
amplitude; however, in stark contrast to the results reported in
Boccara et al. (1994), where noisy oscillations of low amplitude are
observed for large lattices, we have found that the qualitative
behavior of the density of preys remains unchanged: the amplitude
of the oscillations is still bounded, but difficult to predict, and their
period is preserved. Such behavior raises the need to emphasize
the differences between our model and previous work where
scaling effects are studied. First it must be noted that our predators
have a mobility higher than that commonly found in other lattice
models, where dispersal (whether by movement, reproductive
processes, or both) is restricted to first neighbors. It is well known
that large dispersal ranges bring the distribution of individuals on
the lattice close to the ‘‘well mixed’’ case (Durret and Levin, 1994;
Brännström and Sumpter, 2005), so oscillations might arise as a
consequence of long range movement. Second, the spatial
dynamics of oscillating prey–predator systems are commonly
characterized by patterns akin to the initial invasion process, i.e.,
there are fronts of predators that invade prey rich areas leaving
behind a few site populated by preys. These survivors quickly
repopulate predated areas and the process starts again. Rozenfeld
Fig. 7. Scaling behavior of the amplitude of the oscillations observed in the

population of preys. Small lattices produce orbits to a noisy limit cycle; as the size of

the lattice increases, the amplitude of the oscillations diminishes and the limit cycle

destabilizes. For large lattices a new decrease of the amplitude is observed;

however, the oscillations still have a regular period and their amplitude remains

bounded, yet difficult to predict.



Fig. 8. The interpolation assumes proportionality between Ct and the number of

preys in the neighborhood Mc.
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and Albano refers to these phenomena as ‘‘alternating percolation
events’’ (Rozenfeld and Albano, 2001). As noted in section 3, in the
proposed model such events are only observable during the
transient phase; afterwards, we observe predators grouped
together as swarms moving through the whole lattice while
searching for zones with a ‘‘good’’ density of preys (a curious
enough reader might wish to compare the spatial patterns found in
Antal and Michel (2000), Boccara et al. (1994), Mobilia et al. (2007)
and Rozenfeld and Albano (2001) with Fig. 2). The oscillatory
behavior observed when migration is enabled, suggests that the
time lapse between the predation of a particular zone by a swarm
and the moment until such zone is qualified again as ‘‘good’’ by a
swarm is regular.

6. Future work

The mean-field equations developed in Section 4 are only able
to partially predict the behavior of the proposed model. We have
shown that by including additional information about the
populations of preys and predators in these equations, such
prediction becomes more accurate. Is it possible to make further
modifications to the mean-field equations, in such a way the they
predict the oscillatory behavior of the proposed model at small
and intermediate scales? Consider as an example the size of the
swarms, it is reasonable to expect that individuals belonging to
them are subjected to Allee effects. In particular there should be a
threshold for the number of predators in a swarm, below which a
swarm cannot survive for any extended period of time, i.e., a local
extinction occurs. Above such threshold the swarm coexists and
move. In (Pascual et al., 2011) it is shown that when local
densities can be described as functions of global densities, the
dynamics of the system, not only in the long-term, but also during
the transient phase, can be approximated by a mean field model
whose functional forms include power-laws of the local densi-
ties. It remains to be investigated if a similar process can be
applied in our model. The size of the clusters of predators
depends on the value taken by the parameters k1, k2 and l, so it is
reasonable to expect that that quantities such as birth rate of
predators and predation rate can be estimated using this
information.

7. Conclusions

In the present work we have analysed the behavior of a prey–
predator lattice model where predators hunt according to a local
PSO algorithm. We have shown that for initial conditions near the
absorbing state, where the lattice is fully covered by preys, there is
an initial wavefront of predators moving outwards at the same
speed. Such behavior is reflected as a monotonic approach to a
non-trivial fixed point where preys and predators coexist.
However, there are weak oscillations around the fixed point
due to subsequent travelling waves produced by preys that
survive the initial invasion of predators. Once the transient phase
ends the systems exhibits oscillations with a regular period, but
with an amplitude which is difficult to predict.

We have also shown that our local PSO algorithm increases the
proficiency of predators, which produces a decrease in their death
probability with respect to a simulation where no migration
occurs. A higher density of predators results in an increase in the
predation probability with a corresponding decrease in the density
of preys. By taking into account these changes in a mean field
model, we were able to accurately predict the mean densities
around which the densities of both populations oscillate when the
migration stage is enabled.

Finally we have explored the behavior of the proposed model
for different sizes of the lattice; we found that even though the
amplitude of the oscillations diminishes as the size of the lattice is
increased, the same qualitative behavior is still observed for large
lattices, and the period of oscillations is preserved.

PSO algorithms have the advantage of being the result of the
study of cooperative behavior found in animal communities (bird
flocks being a major influence). Moreover, we are only proposing a
very simple use case for the algorithm; it is certainly possible to
adapt our PSO algorithms to more complex scenarios, e.g., to model
social hierarchies in a community; here, an individual takes only
into account the information that members of ‘‘high rank’’ provide.
So far we have found that through cooperation it is possible to
observe an interesting spatial pattern that is quite different than
the patterns reported in previous works. Yet, such phenomenon
also leads to oscillatory behavior, which has been a matter of
extensive research in ecological theory.

Appendix A. Mean field equations

1. Intraspecific competition. In order to derive a mean field equation
that describes the intraspecific competition stage, let us ask
the following: what is the expected number of deaths in a
season due to the intraspecific competition? As it was shown
previously, the death of a prey depends on the number of
individuals of the prey species contained in the neighborhood
Mc, it is reasonable then to expect that the mean number of
deaths each season depends on the mean number of
individuals in the neighborhood of each cell, let ȳt represent
this number. To calculate ȳt we proceed as follows: it is clear
that if Ct = 0, then the mean number of preys in each
neighborhood Mc is also zero, similarly if Ct = 1, then the
mean number of preys within each neighborhood Mc

(excluding the prey at the center) is jMcj � 1, an interpolation
between the points (0, 0 and (1, jMcj � 1) (see Fig. 8) gives the
equation:

ȳt ¼ Mcj j � 1ð ÞðC tÞ (14)

Then, the probability that a prey dies as a consequence of the
intraspecific competition is:

ȳt

jMcj � 1
¼ ðjMcj � 1ÞðC tÞ

jMcj � 1
¼ C t (15)

The death of the all preys in the lattice is a sequence of events

that can be described through a random variable with

binomial distribution X. If Yt denotes the number of preys in



M.M. Molina et al. / Ecological Complexity 22 (2015) 192–202 201
the lattice at time t, then the expected number of prey deaths is

given by:

EX ¼ C tYt (16)

where E is the expected value operator, and Yt is given by:

Yt ¼ C tjLj (17)

thus:

EX ¼ C2
t jLj (18)

To incorporate this quantity in the mean field equation, it must

be converted into a density, this is done by dividing EX by jLj, and

scaling the result by the coefficient a, obtaining that the density

of preys that is eliminated each season is aC2
t . Finally the mean

field equation that describes the intraspecific competition is:

C tþ1 ¼ C t � aC2
t ¼ C tð1 � aC tÞ (19)

2. Reproduction of preys. Consider a cell with no prey, let us call
such cell u. During the reproduction stage, all neighbors of u

containing a prey might change its state, the number of
neighbors being equal to jMyj � 1. Since each neighbor chooses
the location for new preys at random, the probability that a cell
chooses cell u during reproduction is:

Pu ¼
1

jMyj � 1
(20)

The mean number of preys in the neighborhood of u is given by

ȳt , thus the total number of reproduction ‘‘attempts’’ is:

eY ȳt (21)

where:
� eY is the reproductive capacity of preys.
� ȳt ¼ ðjMyj � 1ÞðC tÞ is the mean number of preys in the

neighborhood of cell u.
Let X denote the random variable that counts the number of times
cell u is chosen for reproduction, it is clear that X is a binomial
random variable with parameters ðPu; eY ȳtÞ. Now ð1 � PuÞeyȳt is the
probability that none of the preys in the neighborhood of u chooses
it for reproduction, then 1 � ð1 � PuÞeyȳt is the probability that cell
u is chosen at least once during the reproduction stage. The mean
density of cells with no preys that are chosen for reproduction
during the corresponding stage is:

ð1 � C tÞð1 � ð1 � PuÞeY ȳt Þ (22)

3. Death of predators. Each season, if a predator is not located at a
cell containing a prey, it dies with probability 1. The number of
predators that die each season is proportional to the number of
cells not containing a prey, the probability of finding a cell with
such a property is given by:

jLj � Yt

jLj ¼ 1 � Yt

jLj ¼ 1 � C t (23)

Then the expected number of deaths that occur each season is

given by:

ð1 � C tÞZt

where Zt is the number of predators at time t. Finally the

expected decrease in density is:

ð1 � C tÞFt (24)

4. Reproduction of predators. This process behaves just as the
reproduction of preys.
5. Predation. Each season if a prey is located at a cell containing a
predator, it dies with probability 1. The probability of finding a
cell with a predator is:

Zt

jLj ¼ Ft (25)

The expected number of preys dying each season is:

FtYt (26)

And the expected decrease in density is given by:

FtC t (27)
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