

Ejemplos de Calor Específico

Elaborado por:

Ing. Enriqueta Del Ángel Hernández.

Noviembre, 2014

CALOR ESPECÍFICO.

Cantidad de calor que necesita un gramo de una sustancia para elevar su temperatura un grado centígrado.

$$C = \frac{\Delta Q}{m \, \Delta T}$$

Donde:

C = Calor especifico de una sustancia en cal/g°C o J/Kg°C

 ΔQ = Cambio de calor en calorías o J.

m = Cantidad de masa de la sustancia en g o Kg.

 ΔT = Cambio de temperatura igual a $T_f - T_i$

Despejando ΔQ se tiene:

$$\Delta Q = c m \Delta T$$

CALORES ESPECÍFICOS (A presión constante)				
Sustancia	Cal/g°C	J/Kg°C		
Agua	1.00	4200		
Hielo	0.50	2100		
Vapor de agua	0.48	2016		
Hierro	0.113	475		
Cobre	0.093	391		
Aluminio	0.217	911		
Plata	0.056	235		
Vidrio	0.199	836		
Mercurio	0.033	139		
Plomo	0.031	130		

EJEMPLOS:

 $\Delta Q = 45 696 \text{ cal.}$

1.- ¿Qué cantidad de calor se debe aplicar a una barra de plata de 12 kg para que eleve su temperatura de 22°C a 90°C?

DATOS:	INCÓGNITA:	FÓRMULA:		
$C_{Ag} = 0.056 \text{ cal/g}^{\circ}\text{C}$ $T_{i} = 22^{\circ}\text{C}$ $T_{F} = 90^{\circ}\text{C}$ m = 12 kg = 12 000 g.	Cantidad de calor = ΔQ	ΔQ = m C ΔT		
DESARROLLO:				
$\Delta Q = (12\ 000\ g)\ (\ 0.056\ cal/g^{\circ}C)(90^{\circ}C - 22^{\circ}C)$ $\Delta Q = (12\ 000\ g)\ (\ 0.056\ cal/g^{\circ}C)(68^{\circ}C)$				

2.- 600 g de hierro se encuentran a una temperatura de 20°C. ¿Cuál será su temperatura final si le suministran 8 000 calorías?

DATOS:	INCÓGNITA:	FÓRMULA Y DESPEJE:		
$C_{Fe} = 0.113 cal/g^{\circ}C$ $T_{i} = 20^{\circ}C$ $m = 600 \text{ g.}$ $\Delta Q = 8 000 \text{ calorías.}$	Temperatura final = T _F	$\begin{split} \Delta Q &= m \ C \ \Delta T \\ \text{de donde:} \\ \Delta Q &= m \ C \ (T_F - T_i) \\ T_F &= \frac{\Delta Q}{m \ c} + T_i \end{split}$		
DESARROLLO:				
$T_{\rm F} = \frac{\Delta Q}{m c} + T_{\rm i}$				
$ ext{T}_{ ext{F}} = rac{8000 \ calor (as}{600 \ g \ (0.113 rac{cal}{a} ^{\circ}C)} + 20 ^{\circ} ext{C}$				

 $T_F = 137.99^{\circ}C$

FUENTE DE INFORMACIÓN:

➤ Pérez, M. H. (2006). *"Física General"* Tercera Edición. Publicaciones Cultural. México, D.F.

Lectura

Colaborador: Ing. Enriqueta del Angel Hernández Nombre de la asignatura: Temas Selectos de Física Programa educativo: Bachillerato virtual