

Universidad Autónoma del Estado de Hidalgo Escuela Superior de Ciudad Sahagún

Hidrógeno y los hidruros metálicos

Área Académica: Licenciatura en Ingeniería Industrial

Profesor(a): Pérez Sánchez Blasa

Periodo: Enero – Junio 2019

Hidrógeno y los hidruros metálicos

Resumen

Son compuestos binarios o diatómicos formados por hidrógeno y un metal. En estos compuestos, el hidrógeno siempre tiene valencia -1

Abstract

They are binary or diatomic compounds formed by hydrogen and a metal, In these compounds hydrogen always has valence -1

Keywords: valence, ionic hydrides

Hidrógeno

El hidrógeno elemental es un gas diatómico incoloro, inodoro e insípido con el peso atómico y densidad mas bajos en cualquier sustancia conocida.

Ahora consideremos algunas reacciones del hidrógeno con metales y otros no metales para formar compuestos binarios denominados **Hidruros**.

El hidrógeno atómico tiene la configuración electrónica 1S¹. Puede formar:

- 1) Hidruros iónicos
- 2) Hidruros moleculares
- 1) Hidruros iónicos

Conteniendo iones hidruro, H-, ganando electrón por átomo de un metal activo

2) Hidruros moleculares

Al compartir electrones con un átomo de otro no metal.

El carácter iónico o molecular de los compuestos binarios de hidrógeno depende de la posición del otro elemento de la tabla periódica.

Las reacciones de H₂ con los *metales alcalinos* (IA) y los alcalinotérreos (IIA) más pesados (mas activos) resulta en hidruros iónicos sólidos a menudo conocidos como *hidruros salinos*

IA	IIA	IIIA	IVA	VA	VIA	VIIA
LiH	BeH ₂	B ₂ H ₆	CH ₄	NH_3	H ₂ O	HF
NaH	MgH ₂	$(AIH_3)_X$	SiH ₄	PH_3	H ₂ S	HCI
KH	CaH ₂	Ga ₂ H ₆	GeH ₄	AsH ₃	H ₂ Se	HBr
RbH	SrH ₂	InH ₃	SnH ₄	SbH ₃	H ₂ Te	HI
CsH	BaH ₂	TIH	PbH ₄	BiH ₃	H ₂ Po	HAt

La relación con los metales IA fundidos (líquidos) puede representarse en términos generales como:

2M
$$_{(\ell)}$$
 + H $_{2(g)}$ Altas presiones de H $_2$ 2 (M + , H $^-$) $_{(s)}$

M = Li, Na. K. Rb, Cs

Así el hidrogeno se combina con el litio para formar hidruro de litio y así con los elementos del grupo IA.

$$2 \operatorname{Li}_{(\ell)} + \operatorname{H}_{2(g)} \longrightarrow 2 \operatorname{LiH}_{(s)}$$

En términos generales, las reacciones de los metales IIA más pesados (más activos) pueden representarse como:

$$M_{(\ell)} + H_{2(g)} \longrightarrow (M^{2+}, 2H^{-})_{(s)}$$

M= Be, Ca, Sr, Ba

$$Ca_{(\ell)} + H_{2(g)} \longrightarrow Ca H_{2(s)}$$

Normas básicas de formulación y nomenclatura

Nomenclatura Tradicional

Es el sistema más ligero y consiste en designar el estado de mayor numero de oxidación por la terminación ico y el de menor número de oxidación mediante la terminación oso. Cuando el numero de oxidación es invariable puede emplearse la terminación ico.

Ejemplos

• Una valencia: Hidruro ... Ico

Li⁺¹ + H⁻¹ ➤ LiH: hidruro lítico

Na⁺¹ + H⁻¹ ➤ NaH: hidruro sódico

Dos valencias:

Menor valencia: Hidruro ... Oso

 $Co^{+2} + H^{-1}$ \rightarrow CoH_2 : hidruro cobaltoso

Mayor valencia: Hidruro ... Ico

Co⁺³ + H⁻¹ ➤ CoH₃: hidruro cobáltico

Prefijo sufijo

(valencia) 1 - 2 Hipo -----oso

(valencia) 3 - 4 -----oso

(valencia) 5 - 6 ----ico

Tres valencias:

Menor valencia: Hidruro hipo ... oso

 $Cr^{+2} + H^{-1} \rightarrow CrH_2$: hidruro hipocromoso

Valencia intermedia: Hidruro ... oso

 $Cr^{+3} + H^{-1} \rightarrow CrH_3$: hidruro cromoso

Mayor valencia: Hidruro ... ico

 $Cr^{+6} + H^{-1} \rightarrow CrH_6$: hidruro crómico


```
(valencia) 1 - 2 Hipo -- oso
(valencia) 3 - 4 -- oso
(valencia) 5 - 6 -- ico
(valencia) 7 - 8 -- ico
```

Cuatro valencias:

- ❖ Primera valencia (baja): Hidruro hipo ... oso Mn⁺² + H⁻¹ » MnH₂: hidruro hipomanganoso
- ❖ Segunda valencia: Hidruro ... oso Mn⁺³ + H⁻¹ » MnH₃: hidruro manganoso
- ❖ Tercera valencia: Hidruro ... ico Mn⁺⁵ + H⁻¹ » MnH₅: hidruro mangánico
- Cuarta valencia (alta): Hidruro per ... ico Mn⁺⁷ + H⁻¹ » MnH₇: hidruro permangánico

Nomenclatura de Stock

Se coloca la valencia o numero de oxidación en números romanos, entre paréntesis, a continuación del nombre del elemento.

```
Ejemplos
```

ScH₃ Hidruro de escandio (III)

Fe H₂ Hidruro de hierro (II)

Zn H₄ Hidruro de circonio (IV)

Mn H₇ Hidruro de circonio (VII)

Normas básicas de formulación y nomenclatura

Nomenclatura sistemática

Se utiliza prefijos numerales griegos hasta diez, y en adelante la I.U.P.A.C permite el uso de números: mono, di, tri, tetra, penta, hexa, hepta, octa, enea o nona, deca, endeca o undeca, etc. Están permitidos también hemi, para la relación 2/1, y sesqui para la relación 2/3

Al final del prefijo no se suprime aunque vaya seguido de otra vocal. Puede omitirse el prefijo mono o incluso los demás si ello no supone ambigüedad alguna.

Atomicidad	Prefijos griegos	Atomicidad	Prefijos griegos
1	Mono	7	hepta
2	di	8	octa
3	tri	9	nona
4	tetra	10	deca
5	penta	11	undeca
6	hexa	12	dodeca

Ejemplos

FeH₃ Trihidruro de hierro

MoH₆ hexahidruro de molibdeno

TIH Monohidruro de talio

HgH₂ dihidruro de mercurio

Referencias

- Chang, R. (2009). Fundamentos de química. México: McGraw Hill/ Interamericana Editores S.A. de C.V.
- Daub G. W & Seese W.S.(2009), Química, séptima edición, Pearson Educación.