

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE HIDALGO

Instituto de Ciencias Económico Administrativas

- Área Académica de Contaduría

– Tema: Modelo no lineal.

Profesor(a): Cristian Nava Guzmán.

- Periodo: Enero - Junio 2021

Tema: Modelo no lineal

Resumen

El presente material didáctico tiene el objetivo de brindarle al estudiante de una estrategia que le permita aproximar el comportamiento no lineal del ingreso a un modelo matemático.

Palabras clave: ingreso, modelo matemático y no lineal.

Topic: Nonlinear model

Abstract:
The following material has the didactic objective to help students build a strategy the allow them approximate nonlinear economic behavior of income into a mathematical model.

Keywords: economic income, mathematical model and nonlinear.

Objetivo General

Construir mediante un análisis cuantitativo, una estrategia para proponer modelos matemáticos que aproximen el ingreso de una empresa.

Objetivos Específicos

Determinar por medio del método de eliminación gaussiana y reducción los parámetros a, b y c de la forma general de la función cuadrática.

La situación de aprendizaje es la siguiente: un empresario le pide a un grupo de estudiantes universitarios el analizar el ingreso de su producto más vendido. El siguiente gráfico ilustra el comportamiento del ingreso.

Figura 1. Comportamiento del ingreso

EMPRESA Σ INGRESO

El empresario le comparte al estudiantado el ingreso de la primera semana de 1002, quinta semana 1230 y decima semana de 3400. No olvides que las cantidades están dadas en miles de pesos.

El modelo no lineal que te permitirá aproximar el comportamiento del ingreso es:

$$f(x) = ax^2 + bx + c$$

Establece la relación de los datos entregados por el empresario y el modelo matemático presentado.

Representación matricial del sistema de ecuaciones. a + b + c = 1002

$$25a + 5b + c = 1230$$

$$100a + 10b + c = 3400$$

$$\begin{bmatrix} 1 & 1 & 1 & 1002 \\ 25 & 5 & 1 & 1230 \\ 100 & 10 & 1 & 3400 \end{bmatrix}$$

Para resolver el sistema ecuaciones usaremos el método de eliminación gaussiana y empezamos con representando el sistema en una matriz aumentada. No olvides el objetivo del método.

$$\begin{bmatrix} 1 & 0 & 0 & v_1 \\ 0 & 1 & 0 & v_2 \\ 0 & 0 & 1 & v_3 \end{bmatrix}$$

Pero para alcanzar el objetivo del método se deben realizar operaciones renglón para transforma a "1" o "0".

$$R_1^* = \frac{1}{n}R_1$$
, n es la cantidad que se desea transformar 1.

 $R_2^* = R_2 - nR_1$, n es la cantidad que se desar transformar a 0.

Cierre del tema

Comprueba tus valores a, b y c, en tu sistema de ecuaciones y sustitúyelos en:

$$f(x) = ax^2 + bx + c$$

Traza tu modelo no lineal en Excel y comparte que similitudes y diferencias encuentras del gráfico original y tu modelo.

Peccati, L., D´Amico, L., & Cigola, M. (2018). *Maths for Social Sciences*. Springer. http://doi.org/10.1007/978-3-030-02336-2

Quarteroni, A., & Gersavio, P. (2020). A Primer on Mathematical Modelling. Springer. http://doi.org/10.1007/978-3-030-44541-6

Tan, S. (2017). *Matemáticas Aplicadas a los Negocios, las Ciencias Sociales y de la vida* (6ª ed.). CENAGE Learning.

UAEH (2005). Modelo Educativo de la Universidad Autónoma del Estado de Hidalgo. México: UAEH.