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Abstract. In this paper an association between Petri nets (PN) and
cellular automata (CA) is proposed to analyze the global dynamics of
flexible manufacturing systems (FMS). This relation is carried out taking
into account the discreteness in the dynamics of both PN and CA. In
particular, generalized PN as well as one-dimensional CA are used. The
work consists in modeling with PN both a single process with a shared
resource and two parallel processes with several shared resources. The
PN models are simplified by reduction rules and then the corresponding
one-dimensional CA is obtained. Finally, the global dynamics of the FMS
modeled is described by using the analysis methods of CA.

Keywords: Petri nets, cellular automata, flexible manufacturing sys-
tems.

1 Introduction

CA are abstract dynamical systems whose evolution is discrete in space and time.
As a modeling tool, CA have been applied in the study of ecological systems,
chemical systems, among others [7]. In this regard, one-dimensional CA are the
most studied kind of CA and there exists methods contrived to study their
dynamics which are mainly based on diagrams. On the other hand, PN are
bipartite and directed graphs whose dynamics is discrete and deterministic in
the generalized case, [18]. Due to the graphical and mathematical features, PN
are a powerful modeling and analytical tool for systems which are concurrent and
asynchronous such as FMS, [2], [22], [24] where PN are useful both to describe
the dynamics of such systems, [13], and to prevent undesirable situations such
as deadlocks, [3]. Nevertheless, some problems arise in the analysis of FMS when
using the classical PN analysis methods. On the one hand, such methods can
be only applied to specific PN and, on the other hand, some of the analysis
methods, like the coverability tree, are not able to manage large PN models due
to the state-space explosion.

The association between PN and CA has been explored in [4], [5] for modeling
an ecological system. In [11] a self-timed CA is modeled with high-level PN and
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in [14] self-similar PN and CA are used to simulate Turing machines. In addition,
in [16], [17] is proposed the use of CA to model FMS whose dynamics is firstly
described by a net which has a similar dynamics to PN. In all these works, PN
derivations are used to model the corresponding systems and in some cases the
classical dynamics of CA is modified. The relationship between CA and PN we
propose in this paper is carried out by using generalized PN and one-dimensional
CA in such a way that their usual dynamics is maintained. Then, we describe the
global dynamics of FMS by means of the CA analysis methods which will allow
a quick and simplified way to determine some dynamical features of the FMS
such as reversibility and liveness without dealing with the state-space explosion.

Additionally, we consider two kinds of FMS models to exemplify the process
by which the one-dimensional CA are obtained. These FMS models are based
on one of the main characteristics of such systems: shared resources. The first
example is about a single process which consists of a manufacturing cell with one
shared resource. The second example deals with a pair of parallel processes with
several shared resources. A PN model is firstly designed for the single process as
well as for the pair of parallel processes by using the most common structures
to model manufacturing systems. Then, the PN models are simplified by means
of PN reduction rules in order to obtain homogeneous subnets in such a way
that each subnet can have the same number of markings. Such subnets will
represent the cells of the CA. Furthermore, the places of the reduced PN models
are considered to have a fixed capacity in the number of tokens they can hold in
order to facilitate the definition of the number of states of the CA. Finally, the
CA evolution rule is determined according to the dynamics of the PN.

The paper is organized as follows: In Sect. 2 and Sect. 2.2 we give the basic
concepts of CA and PN. In Sect. 3 it is explained the process by which the
one-dimensional CA are obtained from the PN models of the FMS examples. In
Sect. 4 the CA analysis methods are applied to describe the global dynamics of
the FMS modeled. Finally, in Sect. 5 conclusions of the work are given.

2 Basic Concepts of Cellular Automata and Petri Nets

2.1 Cellular Automata

CA consist of a configuration of cells C, also known as the global state, where
each cell can take a state from a finite set of states S, such that |S| = k. Partic-
ularly, in a one-dimensional CA any configuration is a linear array of cells, that
is to say C = c1c2 . . . ci . . ., where each cell forms a neighborhood η(ci) of size
2r+1 such that r is the neighborhood radius. Usually, a one-dimensional CA can
be described by the well-known Wolfram’s notation (k, r), [20]. The dynamics of
a one-dimensional CA is determined by the evolution rule ϕ : S2r+1 → S which
assigns a new state to each cell cti of Ct which is the global state at time t. In
this way, ct+1

i = ϕ(η(cti)). In spite of C can have an infinite number of cells, from
a practical point of view the array is taken as finite, that is C = c1c2 . . . cl where
l is the length of the configuration. Consequently, periodic boundary conditions
are taken for the cells located at the ends of the array such that C is closed
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forming a ring in such a way that each cell form a neighborhood of the same
size. Furthermore, since ϕ transforms a configuration C into C′, then Φ : C → C
defines a global evolution rule induced by ϕ where C is the set of all possible
configurations. In this regard, let A = {C | Φ−1(C ′) = C} be the set of ances-
tors of C ′ such that C′, C ∈ C, then the CA is reversible if |A| = 1, [6], [15].
Nevertheless, if |A| > 1, then G ⊂ C is a set of configurations which have no
ancestors and is called the Garden of Eden.

There exists some classical methods that can be used to analyze the dynamics
of one-dimensional CA like the subset and pair diagrams which are used in
this paper. The subset diagram is derived from the de Bruijn diagram which
can be defined by B(B, E) where B = {u | u ∈ S2r} is a set of nodes and
E = {(u, v) | u, v ∈ B} is a set of links, [19]. In this way, let u = ax and v = xb
be two nodes in the de Bruijn diagram such that x ∈ S2r−1 and a, b ∈ S, then u
and v can be linked if there exists u$ v = axb, where $ defines an overlapping
operation between two nodes and axb ∈ S2r+1. Thus, each link is labeled with
c ∈ S such that ϕ(axb) = c. Besides, an evolution matrix can be obtained from
the de Bruijn diagram in such a way that the nodes constitutes the rows and
the columns of the matrix and each entry is either determined by ϕ(u$v) if the
link exists or by a dot if the link does not exist, [9].

Therefore, the subset diagram is composed of the subsets of B. In this way, let
W,Z ⊆ B be two nodes of the subset diagram, thenW and Z are linked if for each
node w ∈ W there exists another node z ∈ Z such that ϕ(w$z) = c and c labels
the link. Finally, the cycle diagram consists in graphing the evolution trajectory
of all the kl possible configurations C ∈ C. Hence, a given configuration C can
appear again in the trajectory of its evolution forming a cycle, [21]. Nevertheless,
if there are configurations that do not appear in the cycle then they belong to
a sequence of configurations that leads to the cycle. Such a sequence forms a
branch of the cycle and, therefore it has an end which is a configuration which
has no ancestors.

2.2 Petri Nets

A PN consists of the sets of nodes P = {p1, p2, . . . , pm} and T = {t1, t2, . . . , tn},
called places and transitions, respectively [1], [12], such that m,n ∈ Z+ where
Z+ = {1, 2, . . .}. Moreover, P ∪ T '= ∅ and P ∩ T = ∅. The nodes are connected
by a set of directed arcs defined by F ⊆ (P × T ) ∪ (T ×P). In addition to this,
W : F → N is a weight function and M0 : P→N defines the initial marking,
where N = {0, 1, 2, . . .}. In this regard, N = (P , T ,F ,W ) is the structure of a
PN whereas (N,M0) is the PN with a given initial marking, [10]. Furthermore,
any marking M is represented by an m × 1 vector such that M(pi) = s is the
number of tokens of place pi where i = 1, . . . ,m and s ∈ N. In this way, it
is possible to associate a maximum number of tokens to each place of a PN
such that, for each place p ∈ P , K : P → Z+ is the function that assigns the
maximum number of tokens that a place can hold at any marking.

As for the PN dynamics, let •t = {p | W (p, t) > 0} and t• = {p | W (t, p) > 0}
be the sets of input and output places of t, respectively. Then for a given net
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(N,M0) its dynamics or marking change is carried out by applying the enabling
and firing rule. A transition t is enabled at the marking Md (d ∈ N) if ∀p ∈ •t,
Md(p) ≥ W (p, t) and, in the case of PN of finite capacity, ∀p ∈ t•, Md(p) ≤
K(p)−W (t, p). As a result, if t is enabled at the marking Md then t can be fired
transforming Md into Md+1 such that Md+1(p) = Md(p)−W (p, t) +W (t, p).

PN properties are classified into dynamical and structural ones. Dynamical
properties are those which depends on the initial marking whereas structural
properties are independent of the initial marking. In this paper we are interested
in some dynamical properties which are reachability, reversibility and liveness.
In this regard, let M(M0) be the set of reachable markings of a PN from M0 and
L(M0) be the set of firing sequences executable from M0. Then, a marking Mq

is reachable from M0 if there exists a firing sequence σ = t1t2 · · · tq that leads

to Mq. This is denoted by M0
σ→ Mq, such that σ ∈ L(M0). In this way, a PN

is reversible if for each marking M ∈ M(M0), M0 is reachable from M . A PN
is live if ∀t ∈ T and for any marking M ∈ M(M0), t appears in some sequence
σ ∈ L(M0) such that M0

σ→ M , [18].
Among the basic methods that can be used to analyze a PN, reduction

(or augmentation) rules are procedures to simplify PN with a complex struc-
ture but keeping some dynamical properties like liveness. The following reduc-
tion/augmentation rules are the basic ones, [23]:

Rule 1. Reduction/augmentation of series places.
Rule 2. Reduction/augmentation of series transitions.
Rule 3. Reduction/augmentation of parallel places.
Rule 4. Reduction/augmentation of parallel transitions.
Rule 5. Elimination/addition of self-loop places.
Rule 6. Elimination/addition of self-loop transitions.

Dynamical properties such as reachability, liveness as well as reversibility are of
special interest for modeling and analyzing the FMS performance. For instance,
liveness is a sign of absence of deadlocks which arise from the competition for the
access to shared resources. Reachability can be used during the design stage to
identify whether the modeled system can reach a particular state and reversibility
is connected with error recovery.

3 Construction of One-Dimensional CA from PN Models

In this section we explain how to obtain a one-dimensional CA from PNmodels of
FMS. In order to carry out this task, two examples of FMS are considered. These
examples comprise the most common structures and features of FMS. The first
example is a manufacturing cell, shown in Fig. 1 which is composed of a robot
which is shared by three machines named M1, M2 and M3. The second example
consists of two parallel processes where two types of parts can be machined,
Parts A and Parts B. In order to perform the processing of both kinds of parts,
machines M1, M2, M3, M4 and M5 must be shared as is illustrated in Fig. 2.
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Fig. 1. A manufacturing cell with one shared resource

Fig. 2. Parallel processes with five shared resources

The PN models of the corresponding examples of FMS and their initial mark-
ings are depicted in Fig. 3 and Fig. 4, correspondingly. We consider that only
one part can be available at the beginning of each process in such a way that
any other can arrive until the first one leaves the system.

In order to obtain a one-dimensional CA from each PN model, the reduction
rules 2 and 5 shown in Figs. 5a and 5b, respectively, are applied to such PN
models. The reason to simplify the PN models is that it is desired to obtain
homogeneous subnets to form the cells of the automaton and, according to the
number of possible markings of each subnet, the states of the CA can be specified.
In this regard, to facilitate the definition of the number of states of the CA, the
places of the reduced PN models are limited to hold one token such that for any
place p, K(p) = 1. Furthermore, the neighborhood radius for each CA obtained
from the reduced PN is taken as r = 1.

3.1 Example 1: Obtaining a One-Dimensional CA for a Single
Process in Series

A first reduction for the PN shown in Fig. 3 is carried out by applying the Rule
2, and the result is shown in Fig. 6a. Then, the place p16 is eliminated by Rule
5, obtaining the net shown in Fig. 6b. From this net it can be obtained two
kinds of subnets. One subnet has one place and the other one has two places. In
this way, these subnets constitutes the cells of the CA as it is shown in Fig. 7,
whereas the possible markings in each subnet determine the number of states of
the CA.
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Fig. 3. PN model of the manufacturing cell with a shared resource

Fig. 4. PN model of the parallel processes with five shared resources

(a) (b)

Fig. 5. (a) Rule 2: Reduction/augmentation of series transitions; (b) Rule 5: Elimina-
tion/addition of self-loop places

(a) (b)

Fig. 6. Reductions of the PN of Fig. 3 by applying (a) Rule 2 and (b) Rule 5
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The CA states are taken as 0 and 1, such that S = {0, 1}. Hence, for subnets
with one place the state is 0 whenever the place is not marked, which means
that there is no available parts, and 1 if the place is marked. For subnets with
two places take as example the one which has the places p13 and p3. Thus, when
p3 is marked it means that the corresponding operation is being performed and
thus the state is taken as 1. In contrast to this, when place p13 is marked the
state is 0 which means that the operation is not being executed. The evolution
rule ϕ is determined according to the dynamics of the PN of Fig. 7. In other
words, consider η(c2) = c1c2c3, since p3 and p13 are related to p1 and p5 by
transitions t1,2 and t3,4 respectively, then if either t1,2 or t3,4 are fired they will
cause a marking change of p3 and p13 and, as a result, c2 change its state. In
this way, ϕ is described by the evolution matrix defined in Equation (1). Thus,
the PN of Fig. 7 is simulated by a CA (2, 1) where the initial configuration is
C0 = 100000 and the corresponding marking is M = (1 0 1 0 0 1 0 0 1)T.





00 01 10 11

00 0 0 · ·
01 · · 1 1
10 1 1 · ·
11 · · 0 1



 (1)

Fig. 7. Cells for the one-dimensional CA which simulates the PN of Fig. 6b

3.2 Example 2: Obtaining a One-Dimensional CA for Processes in
Parallel.

In a similar way to Example 1, the PN model of Fig. 4 is reduced by firstly
applying the Rule 2 and then the Rule 5 such that the result is shown in Fig. 8.
The subnets that form the cells of the CA are depicted in Fig. 9 from which it
is observed that there can be four possible markings for each subnet.

Thus, the set of states of the CA is defined by S = {0, 1, 2, 3} and the corre-
spondence between the markings and the states is described in Table 1, taking as
example the subnet with the places p1, p11, p31 which represent the cell c1. With
respect to the PN dynamics, it is established that whenever occurs a conflict for
the access to a shared resource, Parts A must be processed first. Moreover, the
enabled transitions are fired at the same time if the places do not exceed the
capacity of one token and if such transitions are not in conflict. Considering this,
the evolution rule is defined according to the marking change of the PN and is
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(a) (b)

Fig. 8. Reductions for the PN model of Fig. 4 by applying (a) Rule 2 and (b) Rule 5

Fig. 9. Cells for the CA (4, 1) that represents the dynamics of the processes in parallel

defined by the evolution matrix shown in Equation (2). Hence, a CA (4, 1) is
used to simulate the PN of Fig. 9 where the initial configuration is C0 = 30000.





00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33

00 0 0 0 0 · · · · · · · · · · · ·
01 · · · · 0 1 0 1 · · · · · · · ·
02 · · · · · · · · 0 0 2 2 · · · ·
03 · · · · · · · · · · · · 2 1 2 3
10 1 1 1 1 · · · · · · · · · · · ·
11 · · · · 0 1 0 1 · · · · · · · ·
12 · · · · · · · · 1 1 3 3 · · · ·
13 · · · · · · · · · · · · 2 1 2 3
20 2 2 2 2 · · · · · · · · · · · ·
21 · · · · 2 3 2 3 · · · · · · · ·
22 · · · · · · · · 0 0 2 2 · · · ·
23 · · · · · · · · · · · · 2 1 2 3
30 2 2 2 2 · · · · · · · · · · · ·
31 · · · · 2 3 2 3 · · · · · · · ·
32 · · · · · · · · 1 1 3 3 · · · ·
33 · · · · · · · · · · · · 2 1 2 3





(2)
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Table 1. States that can take each cell according to the markings of each subnet of
Fig. 9, taking the possible markings of p1, p31 and p11 as examples.

M(p1) M(p31) M(p11) State

0 1 0 0
0 1 1 1
1 1 0 2
1 1 1 3

4 Applying the CA Analysis Methods to Describe
the FMS Dynamics

The analysis of the global dynamics of the PN models of Figs. 7 and 9 is carried
out by means of the CA analysis methods explained in Sect. 2.2. These dia-
grams were obtained with the help of the NXLCAU software developed by H.
V. McIntosh, [8].

4.1 Analysis of the FMS of Example 1

In Fig. 10a is shown the subset diagram of the CA (2, 1) that simulates the PN of
Fig. 7. From this diagram it is possible to identify those configurations that can be
formed or not in the CA. For instance, if there is a path from node 15 to node 0,
that is to say, from the full set to the empty set, then the formed configuration does
not have any ancestors and it only can appear as an initial configuration.

(a) (b)

Fig. 10. (a) Subset diagram for the CA (2,1) of Example 1. (b) State color settings of
NXLCAU for the subset diagram.

In this sense, the path 15
1→ 11

1→ 11
0→ 8

0→ 4
0→ 0

1→ 0 forms a configura-
tion that represent the marking M = (1 1 0 0 0 1 0 1 0)T. Therefore, the formed
configuration belongs to the Garden of Eden and in the PN the corresponding
marking cannot be formed because of the places of the PN can have at most one
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token and all the enabled transitions are fired simultaneously, if they are not
in conflict. Even though there are configurations that can be formed in the CA
according to the subset diagram, these configurations represent markings that
are undesirable in the PN. For example, the marking M = (1 1 1 1 1 1 1 1 1)T is
a deadlock since any transition can be fired, considering that the PN is of finite
capacity. In the CA evolution the corresponding configuration leads to a cycle
of only one node as it is shown in Fig. 11a.

(a) (b)

Fig. 11. Cycle diagrams of the CA (2,1) with l = 6

Cycle diagrams are useful for determining which configurations are part of
a cycle or even which configurations lead to a cycle and in how many steps.
For example, Fig. 11b shows a cycle diagram where nodes 10, 5, 34, 17, 40, 20,
10 form the cycle and nodes 12, 6, 3, 33, 48 and 24 lead to the cycle in one
step. That is to say, the configuration C = 000110 (node 6), which represents
the marking M = (0 0 1 0 1 0 1 0 1)T, evolves into the configuration C = 000101
(node 5) in only one step so that the marking M = (0 0 1 0 1 0 0 1 0)T is reachable
immediately after t9,10 is fired at M = (0 0 1 0 1 0 1 0 1)T in the PN of Fig. 7.

4.2 Analysis of the FMS of Example 2

Cycle diagrams are used here in order to perform the analysis of the PN since
it is not possible to show the subset diagram because of its size. In this way,
Fig. 12 shows all the cycle diagrams that are obtained for the CA (4,1). It can
be observed from Fig. 12 that the first four cycle diagrams (from the left upper
corner of the figure to the right) are composed of only one node, which means
that the corresponding markings in the PN are deadlocks since the evolution of
the CA as well as the marking change in the PN remain unalterable. Similarly,

Fig. 12. Cycle diagrams for the CA (4,1) of Example 2 with l = 5



348 I. Barragán, J.C. Seck-Tuoh, and J. Medina

for the next eleven cycle diagrams, which are formed by a cycle of five nodes,
each of the configurations of the cycles can be initial markings in the PN such
that for these markings the PN is reversible.

5 Conclusions

In this paper a relationship between PN and CA was presented in order to carry
out the analysis of the global dynamics of FMS. This association was carried out
by using generalized PN and one-dimensional CA. Two examples of FMS were
considered to illustrate the process by which CA analysis methods are applied
to the study of the dynamics of such FMS. This examples consisted in a single
process as well as in a pair of parallel processes both with shared resources which
is a common feature of FMS. PN models were designed for such FMS examples
and then such PNmodels were simplified by means of PN reduction rules in order
to obtain the corresponding one-dimensional CA. Then, by using CA analysis
methods, mainly subset and cycle diagrams, the PN models were analyzed to
determine which configurations can be formed in the CA and therefore which
markings can be reached in the PN under the dynamical conditions imposed
to them. In this way, it could be determined, according to the characteristics
of the CA dynamics, some features of the FMS like the absence of deadlocks
and reversibility. On the whole, CA provided a simplified analysis of the global
dynamics of FMS by obtaining one-dimensional CA from the PN models. In spite
of that, not all configurations in the evolution of CA are significant markings
in the PN dynamics, in the sense that they could not have a practical meaning
in the system modeled. Nevertheless, an advantage of the use of CA analysis
methods is that, no matter what initial configuration is taken in the PN, it can
be determined which will be the dynamics in a global way. Future studies about
the analysis of PN dynamics by means of the relationship between PN and CA
proposed here will be carried out in depth in a next paper.
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(2002)

19. Sutner, K.: De Bruijn Graphs and Cellular Automata. Complex Systems 5, 19–30
(1991)

20. Wolfram, S.: Statistical Mechanics of Cellular Automata. Reviews of Modern
Physics 55, 601–644 (1983)

21. Wuensche, A., Lesser, M.: The Global Dynamics of Cellular Automata. Santa Fe
Institute Studies in the Sciences of Complexity. Addison-Wesley Publishing Com-
pany, USA (1992)

22. Zhang, W., Li, Q., Zha, X.F.: A Generic Petri Net Model for Flexible Manufactur-
ing Systems and Its Use for FMS Control Software Testing. Int. J. Prod. Res. 38,
1109–1131 (2000)

23. Zhou, M.-C., Venkatesh, K.: Modeling, Simulation and Control of Flexible Manu-
facturing Systems: A Petri Net Approach. World Scientific, Singapur (1999)

24. Zurawski, R., Zhou, M.C.: Petri Nets and Industrial Applications: A Tutorial. IEEE
Transactions on Industrial Electronics 41, 567–583 (1994)

http://delta.cs.cinvestav.mx/~mcintosh/comun/cf/debruijn.pdf

	Relationship between Petri Nets and Cellular Automata for the Analysis of Flexible Manufacturing Systems
	Introduction
	Basic Concepts of Cellular Automata and Petri Nets
	Cellular Automata
	Petri Nets

	Construction of One-Dimensional CA from PN Models
	Example 1: Obtaining a One-Dimensional CA for a Single Process in Series
	Example 2: Obtaining a One-Dimensional CA for Processes in Parallel.

	Applying the CA Analysis Methods to Describe the FMS Dynamics
	Analysis of the FMS of Example 1
	Analysis of the FMS of Example 2

	Conclusions


