2009 International Conference on Computer Technology and Development

ECA rule analysis in a Distributed Active Database

Joselito Medina-Marin*, Gilberto Pérez-Lechuga™,
Juan Carlos Seck-Tuoh-Mora*
*Universidad Auténoma del Estado de Hidalgo

Centro de Investigacion Avanzada en Ingenieria Industrial

Pachuca, Hidalgo, México
Jjmedina@uaeh.edu.mx

Abstract—Active database systems integrate event-based rule
processing with traditional database functionality. The model
most widely used to represent event-based rules is the Event-
Condition-Action rule (ECA rule) model. However, the rela-
tionships among rules in the development of a base of ECA
rules can fall in an infinite rule triggering: the No termination
problem. In this article, an approach based in Petri Net theory
is proposed. This approach detects cyclic paths in the base
of ECA rules. Furthermore, it can analyze the relationships
among ECA rule components.

Keywords-active database; ECA rule; rule analysis;

I. INTRODUCTION

Traditional databases (DB) were developed to store a huge
amount of information. In this DB type the information
only was accessed by insert, delete, update and query
algorithms, which were previously programmed in a Data
Manipulation Language (DML) by the DB administrator.
The set of all this data manipulation programs is the
Database Management System (DBMS). However, the
execution of those programs is performed only by the
request of either a DB user or the DB administrator.
Nevertheless, there are systems that cannot be implemented
by using a traditional DB approach. Such systems are those
where is well known that if certain events occur in the
DB and if the DB state satisfies certain conditions, then
an action or procedure is performed in the DB. Therefore,
it is necessary to use an approach where a DB could
have the ability to react automatically when an event
occurs either inside or outside DB environment, after this,
it can verify the DB state to evaluate conditions, and if
condition is evaluated to true it can execute procedures
that modify the DB state. In order to provide of active
behavior to traditional DB, Active Databases (ADBs) were
introduced. If a human being takes charge to detect the
event occurrences, verify conditions, and execute procedures
instead an ADB system, then the system may not work
well. Thus, it is very important to add enough information
to DB about the active behavior and convert a traditional
DB into an Active one.

Active behavior of a DB can be defined through a base of

978-0-7695-3892-1/09 $26.00 © 2009 IEEE
DOI 10.1109/ICCTD.2009.282

113

Xiaoou Lif
tInstituto Politéctnico Nacional
Centro de Investigacion y de Estudios Avanzados
México, D.F, México
lixo@cs.cinvestav.mx

active rules, which has the specification of events that will
be detected, conditions that will be evaluated, and actions
or procedures that will be performed in the DB. The model
most widely used is the event-condition-action rule (ECA
rule) model, whose general form is as follows:

On event

If condition

Then action

ECA rule model works in the following way: when an event
e1 that modifies the current DB state occurs, if condition
c1 is evaluated to true against DB information, then either
an action a; is executed inside DB or a message is sent
outside DB.

An event ej, which can trigger to an ECA rule, can be of
two types: primitive event or composite event. A primitive
event is generated by the execution of an operation over
the DB information (insert, delete, update, or select), a
transaction, a clock event (which can be absolute, relative,
or periodic), or the occurrence of a DB external event. On
the other hand, composite events (disjunction, conjunction,
sequence, closure, times, negation, last, simultaneous, and
any) are formed by the occurrence of a combination of
primitive and/or composite events.

Composite events increase the complexity of a base of
active rules because composite events are represented by
complex structures, which need to be evaluated when a
composite event is raised. In the same way that a composite
event increases the complexity of a base of active rules,
relationships between ECA rules increase the complexity of
a base of active rules. In other words, there is a relationship
between two ECA rules when the action of one rule r;
triggers to a rule ro, at this moment the relationship does
not represent a problem, however, when there is a rule r3
which is triggered by the event generated by the action of
rule 7o and the action of rule r3 generates the event that
triggers to rule 71, then a rule triggering cyclic is achieved
and likely it could be an infinite rule triggering among
rules ri, r9, and rs. Infinite rule triggering is known as
the problem of No Termination, and it can produce an
inconsistent state of DB because consume a lot of compute

IEEE
computer
® psouety

time when it executes infinitely the same instructions.

No Termination problem has been tackled using two types
of analysis, by one side, static analysis of rules is used
(at compile time), which perform the analysis of a base of
active rules before its implementation in a DBMS. Static
analysis verifies the existence of cyclic paths inside the rule
base. On the other side, dynamic analysis of rules is used
(at runtime), which monitors the cyclic paths that can fall
in an infinite rule triggering.

In this work, a termination analysis approach based in
Petri Net (PN) theory is proposed. This approach is an
extended model of PN, named Conditional Colored Petri
Net (CCPN). A CCPN is generated from a base of active
rules, and information about rule events, conditions, and
actions is stored in the CCPN. An analysis method of
PN theory, Incidence matrix, is used to find cyclic paths
existing in the CCPN. Those cyclic paths are used to create
a set of potential infinite rule triggering. Cyclic path set
found in CCPN is analyzed and if can be inferred if any
cyclic path never will produce an infinite rule triggering,
then those cyclic paths are deleted from the set. Finally,
in dynamic analysis a monitoring of cyclic paths set is
performed.

II. CONDITIONAL COLORED PETRI NET

Conditional Colored Petri Net (CCPN) is an extended
PN model, which was adequate to support the features of
an ECA rule model.

Petri Nets are a graphical and mathematical tool for
modeling concurrent, asynchronous, distributed, parallel,
nondeterministic, and/or stochastic systems. Petri net may
be extended widely and applied in every area with logic
relations. Their mathematical representation of the modeled
system can be used to reveal important information about
the system structure and dynamic behavior. Active database
is a novel and promising application area of Petri nets. Up
to now, few researches have adopted Petri nets as ECA
rule specification language [1], [2], [3],[4]. SAMOS is a
successful ADB system, which partially uses Petri nets for
composite event detection and termination analysis. But,
the framework is not Petri-net-based[5].

In our previous work, the CCPN was introduced for
modeling and simulation of active database behavior and
its corresponding implementation was realized too. In
this article an enhanced CCPN model is presented, which
currently support both composite and primitive events.

A. CCPN description

In a CCPN, ECA rule event e is stored as a place pi,
conditional part c is stored inside a transition ¢, and the
action rule a, because of its similarity to an event, is stored
in a place po. Therefore, if ¢ is the transition where the

114

Rule r,
A
r c, R
£a a,
€1 - a,
\. 1 J
e
Rule r,
Figure 1. Relationship between the action of rule 71 and the event of rule
9.

condition of rule r is stored, then *¢ = {p1}, and t* = {pa},
where °t is the set of the input places of ¢, and ¢® is the set
of the output places of .

In a CCPN it is very easy to detect the existence of
both relationships and dependencies between two or more
rules according to its graphics representation. Some of the
ECA rule models presented in the related work does not
consider directly these relationships, they use both the trig-
gering graph and activation graph to view them. Moreover,
relationships viewed by using triggering and activation graph
are only viewed in a rule level. On the other hand, in
the approach presented by this paper, relationships can be
viewed in the same model where ECA rules are represented.
Furthermore, existing relationships among rules can be
viewed as relationships among ECA rule elements (event,
condition, action). Figure 1.

Moreover, both primitive and composite events can be
modeled with the CCPN model.

During CCPN execution, the events that occur in the DB
can be detected by the CCPN, and if there is a CCPN place
p1 which represents to the detected event e then a token is
generated with information about the event (e.g. the record
of an employee) and with a timestamp according to the time
when the event was raised. By CCPN execution, the new
token is sent to transition ¢1, *¢; = {p1}, and the condition
c stored in ¢; is evaluated against token information. If token
information is not enough to evaluate c then a query to BD is
executed to know the DB state and perform the evaluation
to c. If ¢ is evaluated to true then one other token with
information about the rule action a is generated and it is
sent to place po, t; = {p2}, which represents the ECA rule
action a.

Composite events that deal with time interval evaluate
the timestamp of tokens, and if the timestamp belongs to
the composite event interval, then the token is sent to its

Figure 2. CCPN obtained from the base of four ECA rules.

corresponding transition.

B. Modeling ECA rules with CCPN

In order to show the modeling of a base of active rules as
a CCPN, four ECA rules are converted into a CCPN, whose
description is as follows:

Rule 01: When an employee is inserted in the office DB
and the production of employee’s department is modified, if
the production is greater than $900.00, then the employee’s
bonus is updated to $100.00.

Rule 02: When either salary or bonus of an employee is
modified, if the salary is increased by more than $200.00
or the bonus is increased by more than $50.00, then the
employee’s rank is increased too.

Rule 03: When the employee’s rank is updated, if rank
value is greater than 15, then the employee’s department
budget is added with $1000.00

Rule 04: When a department budget is modified, if the
budget is greater than $20,000.00, then the department
production is increased 3%.

Definition of tables needed to this rules are as follows:

DEP (TheDep, Production, Budget) .

EMP (ItsDep, TheEmp, Salary, Bonus, Rank) .

CCPN obtained from the rules listed above is showed in
figure 2.

III. TERMINATION ANALYSIS

An important topic in active database design is the No
termination analysis, which appears from the relationship be-
tween a set of active rules and each element of the set fires to
another, i.e., from an active rule set S = {ry,72,73,...,7n},

115

when action of rule r; enables the fire of rule r5, action of
rule 75 enables the fire of rule r3, an so on, finally, action of
rule 7,,, enables the fire of rule r;. This process performs an
infinite rule triggering that uses a huge amount of compute
time, and the database system becomes instable.

Therefore, it is necessary to determine if the infinite rule
triggering in a ADB finishes or not, in order to avoid
inconsistent states in the DB. Thus, a new approach to
detect termination problem is presented in this paper. This
approach uses the incidence matrix of PN theory, which
offers enough information about the system that is being
modeled via PNs. Even though, in this case, an active rule
base is being modeled by a CCPN, the incidence Matrix
obtained is similar to those which are obtained from a pure
PN.

In incidence matrix, places are represented by its columns
and transitions are represented by its rows, so it is possible
identify both the initial and the final nodes of CCPN.

IV. ALGORITHM

The algorithm that perform the termination analysis by
using the CCPN model is as follows:

Step 1.- Convert a base of ECA rules into a CCPN graph.

Step 2.- Create the incidence matrix from the CCPN.

Step 3.- Search all the paths of CCPN

Step 4.- Create a set C Ps.; of cyclic paths CP.

Step 5.- Delete from C'Ps,; those cyclic paths that satisfy
the theorems conditions.

Step 6.- Cyclic paths that even stay in C'Pg,; are analyzed
in a deeper level, i.e., each place p € {p | p €° ta, p € 11,
(t1,2,p) € CP,CP € CPse} is checked to verify if it
always will trigger to t». If there is, at least, one place p
that, according to information sent from transition t;, t»
does not trigger then rule firing finishes and C'P is deleted
from C Psey.

At runtime, C Ps.; is monitored to avoid an infinite rule
triggering, and in consequence an instable database system.

V. EXAMPLE

To show the feasibility of CCPN model in the detection
of No termination problem in rule triggering, the example
listed above is used to perform the analysis.

The incidence matrix generated from CCPN of figure 2
is presented in figure 3.

It can be observed that there is a cyclic path constituted by
the elements (3,2), (3,4), (2,4), (2,5), (4,5), (4,6), (5,6), (5,7),
(6,7), (6,1), (0,1), (0,2), (3,2). Nevertheless by theorems
definitions presented in this work the presence of a cyclic
path does not mean an infinite rule triggering, so it can be
eliminated according to theorem 3, because of the presence
of composite event “conjunction”. Therefore, in this case
there is not an infinite rule triggering for this base of ECA
rules.

FLALCES

1] 1 2 2 4 4 & 7

n|-1 -1 1 0 0 a 0 a

T 1 0] af -1] 1] a
F
A

B 2 I 0 0 o -1 1 0 a
s

|3 0 0 1 0 1] 0]
T
|

0 4 0 0 0 0 o1 1 1]
M

S &0 (of oo o o0 R 1

B8]0 |1 o o o o0 o H

Figure 3. Incidence matrix obtained from CCPN of figure 2.

VI. CONCLUSION

An approach to detect the No termination problem was
developed in this article, which is based on an PN extension
named Conditional Colored Petri Net (CCPN). CCPN stores
enough information about a base of ECA rules, such as
its events, conditions, and actions. Furthermore, CCPN can
model both primitive and composite events, which are useful
in the detection of false infinite rule triggering inside a cyclic
path. Cyclic paths are found by using the incidence matrix
of PN theory, which are analyzed taking into account the set
of theorems presented.

Unlike approaches presented in related work section, this
approach is better than those in the following aspects:

« Both ECA rule representation and ECA rule analysis

are performed in the same CCPN model.

« CCPN supports composite events.

« This approach goes beyond a simple analysis of cyclic
paths in a graph because it analyzes each element of
the CCPN graph to determine if the rule triggering in
a cyclic path will finish.

e CCPN model can be used for dynamic analysis at
runtime.

As future work, ECA rule analysis based in CCPN model
will be implemented in the ECAPNSim interface, which was
developed by the authors of this article to give an active
behavior to a passive DB.

REFERENCES

[1] Zimmer, D.: ”Rule Termination Analysis based on a Rule Meta
Model”. In: Cadlab Report 2, Cadlab, Bahnhofstr. 32, 33102
Paderborn, Germany, April 1995

[2] Kokkinaki, A.L: ”On using Multiple Abstraction Models to
Analyze Active Databases Behavior”. In: Biennial World Con-
ference on Integrated Design and Process Technology, Berlin,
Germany, June, 1998.

116

(3]

(4]

(5]

(6]

Schlesinger, M. and Lorincze, G. : "Rule modeling and simula-
tion in ALFRED”. In: The 3rd International workshop on Rules
in Database (RIDS’97) (or LNCS 1312), Skovde, Sweden,
June, pp. 83-99, 1997

Guisheng, Y., Qun, L., Jianpei, Z., Jie, L., Daxin, L.: "Petri
Based Analysis Method For Active Database Rules”. In: IEEE
International Conference on Systems, Man and Cybernetics,
vol. 2, 1996, pp. 858-863

Gatziu S., Dittrich K.R., "Detecting Composite Events in
Active Database Systems Using Petri Nets”, Proceedings of the
4th International Workshop on Research Issues in Data Engi-
neering: Active Database Systems, Houston, Texas, February
1994

Li X., Medina Marn J., "Composite Event Specification in
Active Database Systems: A Petri Net Approach”, IEEE In-
ternational Conference on System, Man, and Cybernetics, The
Hague, The Netherlands, Oct, 2004.

