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Abstract: Mycotoxins are produced mainly by the mycelial structure of filamentous fungi, 

or more specifically, molds. These secondary metabolites are synthesized during the end of 

the exponential growth phase and appear to have no biochemical significance in fungal 

growth and development. The contamination of foods and feeds with mycotoxins is a 

significant problem for the adverse effects on humans, animals, and crops that result in 

illnesses and economic losses. The toxic effect of the ingestion of mycotoxins in humans 

and animals depends on a number of factors including intake levels, duration of exposure, 

toxin species, mechanisms of action, metabolism, and defense mechanisms. In general, the 

consumption of contaminated food and feed with mycotoxin induces to neurotoxic, 

immunosuppressive, teratogenic, mutagenic, and carcinogenic effect in humans and/or 

animals. The most significant mycotoxins in terms of public health and agronomic 

perspective include the aflatoxins, ochratoxin A (OTA), trichothecenes, fumonisins, 

OPEN ACCESS



Toxins 2010, 2 

 

739

patulin, and the ergot alkaloids. Due to the detrimental effects of these mycotoxins, several 

strategies have been developed in order to reduce the risk of exposure. These include the 

degradation, destruction, inactivation or removal of mycotoxins through chemical, physical 

and biological methods. However, the results obtained with these methods have not been 

optimal, because they may change the organoleptic characteristics and nutritional values of 

food. Another alternative strategy to prevent or reduce the toxic effects of mycotoxins is by 

applying antimutagenic agents. These substances act according to several extra- or 

intracellular mechanisms, their main goal being to avoid the interaction of mycotoxins with 

DNA; as a consequence of their action, these agents would inhibit mutagenesis and 

carcinogenesis. This article reviews the main strategies used to control AFB1 and 

ochratoxin A and contains an analysis of some antigenotoxic substances that reduce the 

DNA damage caused by these mycotoxins. 

Keywords: aflatoxin B1; ochratoxin A; antigenotoxic; DNA damage 

 

1. Introduction 

Mycotoxins are structurally diverse groups composed mainly of small molecular weight 

compounds. These compounds are produced mainly by the mycelial structure of filamentous fungi, or 

more specifically, the molds. Mycotoxins are secondary metabolites synthesized during the end of the 

exponential phase of growth and appear to have no biological significance with respect to mould 

growth/development or competitiveness, but when ingested by higher vertebrates and other animals 

cause diseases called mycotoxicoses [1,2]. The metabolites are found in a wide range of countries, 

feeds and foods [3]. They are toxic to mammals, poultry, and fish [2,4,5]. The toxic effect of 

mycotoxin ingestion in both humans and animals depends on a number of factors including intake 

levels, the toxicity of the compound, duration of exposure (acute or chronic), the body weight of the 

individual, the presence of other mycotoxins (synergistic effects), mechanisms of action, metabolism, 

and defense mechanisms [1,6,7]. Metabolism and defense mechanisms are important factors in 

understanding mycotoxin toxicity in specific species or individual animals. Specificity of such 

mechanisms is well demonstrated in the significant difference between ruminants and non ruminants in 

handling mycotoxins. Ruminants have generally been more resistant to the adverse effects of 

mycotoxins. This is because the rumen microbiota is capable of degrading mycotoxins [8]. Starting 

with the discovery of the aflatoxins in the early 1960s, the isolation of mycotoxins from food has led to 

the identification of over 100 toxigenic fungi and more than 400 mycotoxins [1,9]. These toxins 

account for millions of dollars annually in losses worldwide in human and animals health, and 

condemned agricultural products. Different factors contributing to the presence or production of 

mycotoxins in foods or feeds include storage, environmental, and ecological conditions. Often times 

most factors are beyond human control [8]. 

Nowadays, mycotoxins with carcinogenic potential in experimental animal models include 

aflatoxins, ochratoxin, sterigmatocystin, fumonisin, zearalenone, citrinin, patulin, and luteoskyrin [9]. 
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These carcinogenic mycotoxins are DNA damaging agents, with the only exception of fumonisins 

[10]. They may produce cancer by interference with signal transduction pathways [11]. 

Many cereals, oil seeds, tree nuts, and dehydrated fruits are susceptible to fungus contamination and 

mycotoxin production. Under laboratory conditions at least 300 mycotoxins produced by fungal 

culture broth have been chemically characterized. Fortunately, only about 20 mycotoxins are known to 

be present in food at significant levels. These toxins are mainly produced by five genera of fungi: 

Aspergillus, Penicillium, Fusarium, Alternaria, and Claviceps [12]. 

This review attempts to briefly summarize the current available data of the main biological 

properties and mechanisms of DNA damage caused by aflatoxin B1 and ochratoxin A. It also reviews 

the main strategies used to control of these mycotoxins. 

2. Generalities of Aflatoxins 

Aflatoxins were first isolated some 40 years ago after outbreaks of disease and death in turkeys and 

of cancer in rainbow trout fed on rations formulated from peanut and cottonseed meals. These 

secondary metabolites are a group of closely related difuranocoumarin compounds produced by 

several strains of filamentous fungi, mainly by Aspergillus flavus and Aspergillus parasiticus [12,13]. 

Aflatoxins may produce considerable economic losses by attacking different stages of sowing and 

industrialization of different agricultural and dairy products. They can contaminate a great number of 

crops used for human and animal consumption, for example, corn, peanut, sorghum, rice, wheat, and 

nut as well as various milk-made products [14]. However, the range of contaminated products differs 

depending on the country: for example, in Japan, aflatoxins were detected in about 50% of peanut 

butter and bitter chocolate samples, while their presence was not found in corn products; in contrast, a 

study in China reported contamination of 70% of corn products [15,16]. In Mexico and other 

countries, corn is a cereal used as the main component of several meals. Studies have shown that in the 

cultivation or storage processes of this grain there exist different levels of aflatoxin contamination, 

particularly with aflatoxin B1 (AFB1) (Figure 1) [14,17]. This chemical is the most potent natural 

mutagen and carcinogen known and is usually the major aflatoxin produced by toxigenic strains. It is 

also the best studied: in a large percentage of the papers published, the term aflatoxin can be construed 

to mean aflatoxin B1 [2]. 

3. DNA Damage by Aflatoxin B1 (AFB1) 

In regards to its genotoxic effects, AFB1 has been evaluated through in vitro and in vivo systems 

which have shown an increase in the rate of DNA adducts, histidine revertants, chromosomal 

aberrations, micronucleus and sister chromatid exchanges [18–22]. AFB1 is a powerful carcinogen for 

humans and many animal species, including rodents, non-human primates, and fish [5,23]. The main 

target of this carcinogen is the liver, although tumors may also develop in other organs, such as the 

lungs, kidney and colon [9]. 

There are substantial differences in species susceptibility. Moreover, within a given species, the 

magnitude of the response is influenced by age, sex, weight, diet, exposure to infectious agents, and 

the presence of other mycotoxins and pharmacologically active substances. Diverse studies on 

aflatoxin toxicity have been conducted, mostly concerning laboratory models or agriculturally 
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important species [2,24]. Cytochrome P450 enzymes convert aflatoxin B1 to the reactive 8,9-epoxide 

form (AFBO), which is capable of binding to both DNA and proteins [24]. Mechanistically, the AFBO 

metabolite binds covalently to guanine to form the N7-guanine-AFBO adduct, an event which could 

cause the diverse expressions that characterize the AFB1 genotoxicity [24,25]. Moreover, aflatoxin B1-

DNA adducts can result in GC to TA transversions. A reactive glutathione S-transferase system found 

in the cytosol and microsomes catalyzes the conjugation of activated aflatoxins with reduced 

glutathione, leading to the excretion of aflatoxin [26]. Variation in the level of the glutathione 

transferase system as well as variations in the cytochrome P450 system are thought to contribute to the 

differences observed in interspecies aflatoxin susceptibility [24,27]. 

3.1. Antimutagenic Strategies Used to Control the AFB1 Damage 

There is some evidence suggesting that there may be a potential risk that AFB1 can cause cancer. 

Therefore since 1993, The International Agency for Research on Cancer (IARC) has classified it as a 

high potential carcinogenic agent (Class I) [28]. The potential risk has promoted the evaluation of 

norms that regulate the quantity of AFB1 in foods.  

One of the first authors that evaluated these norms was Labuza, who in 1983, examined three 

aspects of mycotoxins in food in the USA: (a) relevant laws, (b) the Food and Drug Administration 

(FDA) guidelines with respect to the law and (c) the courts interpretation of these laws. Also presented 

several cases of regulations applied to interstate shipments of corn. FDA analyzes raw agricultural 

products for aflatoxin through the compliance program which objectives are: the collection and 

analysis of food and feeds to determine regulatory levels; to remove from interstate commerce food 

that contains violative aflatoxin levels and to determine potential problems and control measures. 

Nevertheless, no information on the regulatory issues dealing with mycotoxins in international trade of 

corn was presented. Furthermore, the USA was one the first countries to introduce legislation 

regulating on aflatoxin levels in food and feed [29]. Labuza’s publication leads to the adoption, 

expansion, and changes in regulations concerning mycotoxins in many countries. An international 

inquiry on mycotoxins was initiated by the National Institute for Public Health and the Environment. 

Dutch embassies around the world were requested to gather up-to-date information about mycotoxin 

regulations from local authorities. At least 99 countries had regulations concerning mycotoxins in food 

and feed in 2003. All of them have at least regulatory limits for aflatoxin B1 contents and specific 

regulations exist for other mycotoxins as well. The maximum tolerated levels for aflatoxin B1 in food 

are from 1 to 20 µg/kg. The most frequently occurring limit is 4 µg/kg, and this limit is applied in the 

29 countries which follow the harmonized regulations of the European Free Trade Association (EFTA) 

and the European Union (EU). The 20 µg/kg limit is applied in 17 countries: half of them are in Latin 

America, United States and Africa [30]. Although security standards have been implemented, the 

damage caused by AFB1 is still important and serious. In our country, the contamination caused by this 

toxin can affect food and sweets made of corn, cereals and oilseeds. As well as meat of chicken, pork 

and other animal-derived products (milk, eggs or cheese) [31–33]. 
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Figure 1. Chemical structure of aflatoxin B1 (AFB1). 

 

Several strategies have been developed in order to reduce the risk of aflatoxin exposure. These 

include the degradation, destruction, inactivation or removal of mycotoxins through chemical and 

physical methods (Table 1). However, the results obtained with these methods have not been optimal, 

because they change the organoleptic characteristics and nutritional values of food [34–36]. Another 

alternative strategy to prevent or reduce the genotoxic effects of AFB1 is by applying antimutagenic 

agents. These substances act according to different mechanisms being their main goal to avoid the 

interaction of AFB1 with DNA. In general, the antigenotoxic agents may act blocking the mutation and 

cancer initiation in the extracellular environment or in nontarget cells (inhibition of uptake of 

mutagens/carcinogens, inhibition of the endogenous formation of carcinogens, or favoring the 

adsorption of protective agents) as well as by intracellular mechanisms such as the inhibition of 

mutation and cancer initiation in target cells or the tumor promotion. As a consequence of their action, 

these agents would inhibit mutagenesis and carcinogenesis [37]. 

Table 1. Possible strategies to avoid mycotoxin contamination of agricultural products. 

Methods Technique Example Reference 
Physical Inactivation by heat Vapor pressure  [38] 
  Microwave treatment [39] 
  Nixtamalization [40] 
 Inactivation by radiation Ultraviolet light  [39] 
  Radiation gamma [1,41] 
 Elimination by adsorbent 

substances 
Zeolites [1] 

  Bentonites [39] 
  Aluminosilicates [42] 
Chemical Extraction by solvents organics Ethanol 95% [43] 
  Acetone 90% [39] 
 Chemical destruction Hexane-ethanol [43] 
  Hydrogen peroxide [44] 
  Ammonium hydroxyde [45,46] 
  Methylamine [39] 
  Sodium hypochlorite [44] 
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3.2. In Vitro Studies 

In 1994 Singh et al. studied the effect of piperine on the cytotoxicity of aflatoxin B1 (AFB1) in rat 

hepatoma cells H4IIEC3/G-(H4IIE) and demonstrated that AFB1 inhibited the growth of H4IIE cells. 

Likewise, piperine reduced the AFB1-induced formation of micronuclei in a concentration-dependent 

manner [47]. In another study about the protective effect of food additives by Soni et al. (1997) it was 

demonstrated that all the additives studied had an important inhibition against mutation, the most 

effective was turmeric and curcumin that inhibited mutation frequency by more than 80% at 

concentrations of 2 µg/plate in Salmonella tester strains TA 98 and TA 100 [48]. In 1996 Loarca-Piña 

used the Salmonella microsuspension assay to examine the antimutagenicity of ellagic acid (EA) 

against this potent mycotoxin using tester strains TA98 and TA100, the results of the sequential 

incubation studies support the hypothesis that one mechanism of inhibition could involve the 

formation of a chemical complex between EA and AFB1 [49]. On the other hand, in 1992 Decoudu et 

al. studied the effect of vitamin A dietary intake on in vitro and showed the relationship between 

vitamin A and AFB1 [42]. It demonstrated the activities of metabolizing enzymes which specifically 

activate or deactivate AFB1 and has decreased significantly in vitamin A-deficient animals [47–51]. 

3.3. In Vivo Studies 

Considering the above results, the next stage has been to confirm the effectiveness of antimutagenic 

agents in eukaryotic organisms, particularly in mammals. Nowadays, these studies have been used as 

experimental models on mice and rats (Table 2). Those studies began in the nineties, and they 

evaluated the antimutagenic activity of some vitamins (thiamine, riboflavin, niacin and folic acid), 

extract of coffee and some carotenoids. Cytogenetic tests have been used (micronucleus assay) and 

evaluation of adducts and DNA breaks [50,52–54]. In general, the results have been favorable, 

showing different inhibitions of genotoxicity, which depend on the dose, route of administration and 

the exposure time. 

Since 1993, our laboratory has evaluated the potential of ammonium hydroxide used to reduce the 

frequency of micronuclei (MN) and sister chromatid exchange (SCEs) in mice fed with AFB1 

contaminated corn. The micronucleus intracytoplasmic of chromatin corpuscles formed from the 

breakup of acentric chromosome fragments or chromosomes with an anaphase lag. SCEs are 

chromosomal damage referred to the production of homologous segments exchanges between sister 

chromatids in any chromosome and both are useful parameters to detect DNA damage. 

The experiment lasted eight weeks. During four weeks the animals were fed with a balanced diet 

and corn. One animal of this group was intoxicated by AFB1 contaminated diet (15 ppb). AFB1 and 

ammonia was added to other group and only ammonia was added to the last. In the last four weeks of 

the experiment, the animals were only fed with a balanced diet and uncontaminated maize [55]. The 

MN were quantified every week with a erythrocyte normochromic of peripheral blood and the results 

showed a significant reduction in MN since the first week of treatment, reaching a maximum treatment 

effect of the 60% in the fourth week. The SCEs were obtained from bone marrow and quantified in the 

fourth and eighth weeks. An inhibition of 55% was observed in the fourth week. At the end of the 

following four weeks the groups treated with AFB1 and AFB1 plus ammonia showed incomplete 
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recovery of genotoxic damage. In this experiment the antigenotoxic effect of ammonium was 

attributed to the production of the corresponding hydroxy acid. 

Table 2. Summary of various antigenotoxic agents used in mice or rats treated with AFB1. 

Year 
Biological 
model 

Antimutagen 
Type of 
study  

Observation 
Inhibition 
(%) 

Reference 

1991 Mice Coffe Acute Micronucleus 60 [53] 
1992 Rat Vitamin A Subchronic Single cell 

electrophoresis 
50 [50] 

1992 Mice Vitamins: 
thiamine, 
riboflavin, 
niacin, and 
folic acid 

Subchronic Micronucleus 60 [54] 

1993 Mice Ammonium 
hydroxyde 

Subchronic Micronucleus and 
Sister chromatid 
exchanges (SCEs) 

60 [55] 

1998 Rat Carotenoids  Quantification of 
adducts 

65 [52] 

1998 Mice S. cerevisiae Subchronic Micronucleus 70 [22] 
2007 Mice Mannan Subchronic Micronucleus 50 [56] 
2009 Mice Mannan Acute single cell 

electrophoresis 
60 [25] 

3.4. Antimutagenic Effect of Yeast 

Probiotics are organisms and substances that contribute to intestinal microbial balance. They have 

the capacity to capture microorganisms pathogens. Among them are the lactobacilli and yeasts [57]. 

Based on the usefulness of the model used with ammonium and considering that probiotics have 

shown adsorbent, immunostimulants and antigenotóxic effects, our laboratory continued studies using 

Saccharomyces cerevisiae (Sc) as antimutagen. 

The experiment was similar to the ammonium one, except that its total duration was of nine weeks 

(six of treatment with the mutagen and antimutagen and three weeks of recovery with a diet free of 

these compounds). In this case, the antimutagen agent consisted of a 0.3% suspension of viable 

organisms of Saccharomyces cerevisiae. The frequency of MN was only observed at weeks 3, 6, and 9. 

The results showed a significant reduction since the third week on (50% approximately) and in the 

sixth week the inhibition reached 70%. A spontaneous recovery was observed in animals treated with 

AFB1 This recovery was of 60% in the last period. Furthermore, the use of probiotics reflected a 

recovery of 50% in the weight of the mice damaged by AFB1 (Figure 2). The antigenotoxic effect 

observed in our experiment is attributed to the Sc adsorbent capacity, particularly due to a chemical 

interaction between the mycotoxin and the components of the cell wall of yeast [22]. 
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Figure 2. Saccharomyces cerevisiae (Sc) inhibitory effect on micronucleus frequency 
induced by aflatoxin B1 (AFB1) [58]. 

 
: uncontaminated corn; : corn + AFB1 (0.4 mg/kg corn); ▲: corn + AFB1 (0.4 mg/kg corn) + Sc (0.3%). 

3.5. Protective Effect Caused by Constituents of Yeast Cell Wall against the DNA Damage Induced by 

AFB1 

The yeast cell wall consists mainly of homopolysaccharides (mannans and glucans) and a minor 

proportion of heteropolysaccharides (glucomannans, galactomannans and xilomannans), proteins, 

chitin and lipids. There is evidence of the antimutagenic capacity of these oligosaccharides, 

specifically mannan (mannose with links α-1,6 and ramifications  α-1,2 and α-1,3) and glucans 

(glucoses with links α-1,6 and ramifications β-1,2 and β-1,3) against antineoplastic compounds such as 

cyclophosphamide and mitomycin C [59–61]. 

Taking into account these antecedents and the properties mentioned above, our current researches 

are directed to determine the antigenotoxic capacity of mannan, glucan and glucomann and to decide if 

the mechanism is related to the formation of a molecular complex that diminishes the adsorption of the 

mutagenic agent.  

Recently, we completed a study of eight weeks with mannan following the model mentioned above: 

in the first period (four weeks), the animals consumed a balanced diet. They were fed with maize:  

(a) without AFB1; (b) with mannan (500 mg/kg); (c) with AFB1 (0.25 mg/kg), and (d) mannan (50, 

250 and 500 mg/kg) plus AFB1 (0.25 mg/kg). In the last four weeks the mice consumed a diet free of 

antimutagen and mycotoxin. The evaluation of MN was made every week and showed a significant 

inhibition after the third week in mice treated with the highest dose of mannan, reaching the maximum 

antigenotoxic effect (50%) in the fourth week (Figure 3). 

During the last four weeks, the animals showed a spontaneous recovery of approximately 70% [56]. 

To demonstrate directly the protection of mannan to DNA, we made a study using the single cell 

electrophoresis technique (comet assay) in hepatocytes of mice. Comet assay is a technique that can be 

applied practically to any cell suspension to determine breaks in the strings of DNA in individuals 

cells [62]. In our case, the procedure detected single-strand breaks. This experiment, unlike previous 

ones, was an acute one. The compounds were administered orally and the quantification of DNA 
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damage was performed at 4, 10 and 16 hours. We included a control group treated with 700 mg/kg of 

mannan, a control group treated with 1.0 mg/kg of AFB1, and three groups in which we combined the 

mycotoxin (1.0 mg/kg) and mannan (100, 400 and 700 mg/kg). The results showed that the highest 

dose of mannan inhibited the genotoxicity caused by the mycotoxin since the first time, and the highest 

antigenotoxic effect was between 10 and 16 hours (approximately 60%) (Figure 4) [25]. These results 

corroborate the data previously obtained by SCEs and MN, and support the hypothesis of a possible 

chemical interaction between the compounds, which would cause a molecular complex that could be 

eliminated through the intestinal via without damaging the DNA. A partial damage was observed and 

it may be related to an amount of AFB1 absorbed and few adducts formed. Our hypothesis, suggests 

that this interaction would occur between the oligosaccharide hydroxide and the carbonyl group of 

AFB1, so, we actually analyzed this possibility by using the technique of attenuated total reflectance 

(ATR) in the intestine of animals treated with the same compounds. The incidence of a light beam of 

infrared frequency would show the functional groups of the probable chemical complex, which will be 

identified in the corresponding spectrum. 

Figure 3. Mannan (Man) inhibitory effect on DNA damage on micronucleus frequency 
induced by aflatoxin B1 (AFB1) [58]. 

 

: uncontaminated corn; : corn + AFB1 (0.25 mg/kg); ▲: AFB1 (0.25 mg/kg) + Man (500 mg/kg). 

Figure 4. Mannan inhibitory effect on DNA damages induced by AFB1 in mice hepatocytes [58]. 

 
Index C/N = comet length/nuclear diameter. : Man (700 mg/kg);� : AFB1 (1.0 mg/kg);  

▲: AFB1 (1.0 mg/kg) + Man (700 mg/kg). 
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4. Generalities about the Ochratoxins 

Ochratoxins are a group of structurally related metabolites that are produced by Aspergillus 

ochraceus and related species, as well as Penicillium viridicatum and other Penicillium species  

[63–65]. The main mycotoxin in this group is ochratoxin A (OTA) which also appears to be the only 

one of major carcinogenic significance. Ochratoxin B (OB), the decholoro derivate of OTA, is 

essentially non-toxic. Ochratoxin A was discovered as a metabolite of Aspergillus ochraceus in 1965 

during a large screen of fungal metabolites that was designed specifically to identify new mycotoxins. 

Shortly thereafter, it was isolated from a commercial corn sample in the United States and recognized 

as a potent nephrotoxin [2]. Chemically, OTA comprises a polyketide-derived dihydroisocoumarin 

moiety linked via its 12-carboxyl group by an amide bond to L--phenylalanine (Figure 5). As with 

other mycotoxins, the substrate on which the molds grow as well as the moisture level, temperature 

(cold weather with low temperatures of 5 C), and presence of competitive microflora interact to 

influence the level of toxin produced. The presence of OTA in several plants and animal products has 

been extensively reported [66–70]. OTA contamination is typically associated with grains stored in the 

mild weather of Europe and North America. This mycotoxin has been found in barley, oats, rye, 

wheat, coffee beans, and other plant products, with barley having a particularly high likelihood of 

contamination. There is also concern that ochratoxin may be present in certain wines, especially those 

from grapes contaminated with Aspergillus carbonarius [2]. The kidneys are the most susceptible 

organs to be contaminated by OTA. It can cause both acute and chronic kidney lesions. It principally 

operates in the first part of the proximal tubules in the kidney and induces a defect in the anion 

transport mechanism on the brush border of the proximal convoluted tubular cells and basolateral 

membranes [12,33]. 

5. DNA Damage Caused by OTA 

Pfohl-Leszkowicz and Manderville [33] reviewed the toxicology of OTA and observed that 

following oxidative metabolism, forms a DNA-reactive quinone that can form guanine-specific DNA 

adducts. These adducts provide an important source of mutation. Very potent mutagenic effects can be 

shown in S. typhimurium TA 1535, 1538, and 98, providing certain preincubation protocols and types 

of metabolic activation are used. Ochratoxin A is genotoxic in Escherichia coli by means of induction 

of the SOS DNA repair activity. It is also mutagenic in NIH 3T3 cells expressing selected P450 

cytochrome and carrying a shuttle vector containing the bacterial lacZ gene as a reporter gene [28]. An 

increase in sister chromatid exchange rates has been observed in CHO cells in presence of S9 mixture 

and in peripheral human lymphocytes cultured in a conditioned medium. Therefore, it induced DNA 

single-strand breaks in cultured mouse and CHO cells. Mammalian cells has been treated with a dose 

range of this toxin that would accumulate in single-strand DNA breaks, as revealed by the alkaline 

single-cell gel electrophoresis. This effect is greatly enhanced by the addition of an external 

metabolizing system in the form of a S9 mix from rat liver [33]. OTA induced a weak positive 

response for induction of unscheduled DNA synthesis in primary hepatocytes from ACI C3H strain 

mice and ACI strain rats. Dietary OTA induced renal adenomas and human hepatocellular carcinomas 

on mice and rats. Carcinogenic effects on humans are suspected because of the high incidence of 
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kidney, pelvis, ureter, and urinary bladder carcinomas among patients suffering from Balkan endemic 

nephropathy. In regions with Balkan endemic nephropathy, high levels of OTA were found in human 

blood [2]. 

Figure 5. Chemical structure of ochratoxin A (OTA). 

 

6. Ochratoxin A Decontamination Methods  

Different studies in animal models have demonstrated that ochratoxin A is nephrotoxic, 

hepatotoxic, neurotoxic, immunotoxic, teratogenic, mutagenic and genotoxic [64,65,68,71,72]. Since 

2002, the OTA has been classified by the International Agency for Research on Cancer as a 

carcinogenic agent for humans included in the group 2B [28,65,68]. Different strategies have been 

implemented to control and decontaminate food. In general, these methods have been classified as 

physical, chemical and biological (Table 3). In the case of the physical methods, milling is one of the 

most used because it reduces approximately 66% of the levels of OTA during the production of white 

wheat fluor [1]. Also, washing and brushing have shown good results in reducing the concentration of 

OTA below the permissible limits (Table 4) in sausage for human consumption [73]. It is important to 

remember that the permissible levels of OTA are different from country to country. 

Table 3. Decontamination methods for ochratoxin A. 

Methods Technique Example Reference 
Physical Mechanical 

removal 
Milling [1] 
Washing and brushing [73] 

Chemical Pesticides Dinocap, Penconazole [1] 
Fungicides Iproidine, Azoxystrobin [1] 
Essential oils Oregano, Mint, Basil, Sage [1] 
Gas treatment Ozone [74] 
Antifungals Fusapyrone [1] 

Biological Spores Conidia [75] 
Biodegradation Acinetobacter, Lactobacillus, 

Streptococcus thermophilus, and 
Bifidobacterium 

[1,76,77] 

On the other hand, the chemical methods have been directed to the use of pesticides (like iproidine 

and azoxystrobin), because these substances can reduce by up to 80% the development of ochratoxin A 

produced by A. ochraceus. Essential oils of spices such as oregano, mint, basil, and sage have been 

effective used against damage produced by OTA. For example, oregano and mint can inhibit the 

development of this mycotoxin after 21 days of treatment, at concentrations of 100 ppm. There is 
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evidence that treatment with ozone (O3) slightly decreases levels of OTA [1,74]. Several reports of 

OTA biodegradation have been published. Streptococcus, thermophilus Bifidobacterium and yogurt 

bacteria have completely reduced ochratoxin A levels in milk samples containing 0.05 and 0.1mg/L. 

Some strains of A. fumigates, A. japonicus, and A. niger have also been reported to be able to degrade 

OTA in products such as ochratoxin  [1,75–78]. 

Table 4. Permissible limits of ochratoxin A in several foods recommended in the European Union. 

Food Permissible limit (g/kg) 
Coffee beans 1.0–5.0 
Instant coffee 0.8–10 
Cereals 4.0–5.0 
Table wine 2.0 
Grape juice 2.0 
Food for infants and childrens 0.5 
Sausages 3.0 
Dried fruits 0.2 
Beer 3.0 

6.1. Antimutagenic Strategies for the Control of Ochratoxin A Damage 

Like decontamination methods for aflatoxins, the strategies to control the toxic effects of ochratoxin 

A have not been optimal, because they modify the nutritional values of food. Once again, the use of 

antimutagenic agents is another alternative to decrease this toxicity. The study is focused on analyzing 

the capacity of some substances to reduce the oxidative stress induced by the ochratoxin A. 

Many reports have suggested the potential role for oxidative stress in OTA toxicity and 

carcinogenesis. In cell culture, OTA increases the DNA oxidation (generation of 8-OH-guanine) was 

correlated with a production of reactive oxygen species (ROS). Considering the role of ROS in 

chemically induced carcinogenesis, the ability of OTA to induce oxidative damage in cells may play 

an important role in OTA-induced carcinogenicity. Chemopreventive strategies designed to limit the 

several toxic effects caused by this mycotoxin are important public health goals in reducing the 

incidence of OTA induced neoplastic diseases [79]. 

6.2. In Vitro Studies 

In vitro studies related to antimutagenesis began in the nineties. Initially, the experiments evaluated 

the possibility of success in microbial cultures and mammalian cell lines (Table 5). One of the first 

studies was conducted by Baudrimont et al. who analized the prevention of lipid peroxidation induced 

by OTA in Vero cells in culture by aspartame (L-aspartyl-L-phenylalanine methyl ester) a structural 

analogue of OTA and phenylalanine, piroxicam, a non steroidal anti-inflammatory drug and 

superoxide dismutase (SOD) + catalase (endogenous oxygen radical scavengers). The study found that 

in the presence of SOD + catalase, the malonaldehyde (MDA) production induced by OTA was 

significantly decreased. SOD and catalase, when applied prior to the mycotoxin, seemed to prevent 

lipid peroxidation more efficiently than piroxicam and aspartame. These molecules also partially 

prevented the OTA-induced leakage of MDA in the culture medium [80]. Another study was 
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conducted by Turbic et al. These authors suggested that specific strains of lactic acid bacteria 

possessing antimutagenic properties can be used to remove the mutagenic contaminants of food, such 

as OTA [81]. More recently, studies with polyphenolic compounds (such as chrysin, quercetin, 

genistein, biochanin A), catechins, and rosmarinic acid have shown the same capacity [79,82–84]. 

6.3. In Vivo Studies 

There is a variety of studies about the antimutagenic capacity of several substances. However, there 

are few experiments made with animals which demonstrate the potential protection of substances used 

against the damage produced by OTA. One of the earliest studies was made by Obrecht-Pflumio et al. 

(1996). These authors evaluated the protection capability of indomethacin and aspirin tested against 

the genotoxicity of ochratoxin A, particularly in the urinary bladder and kidney. The study showed that 

after a single oral administration of OTA to mice (2 mg/kg body weight) there existed a high level of 

DNA adducts detected in the urinary bladder. The study also demonstrated that two inhibitors of the 

prostaglandin H synthase, indomethacin and aspirin, administered before OTA treatment, dramatically 

reduced the amounts of DNA adducts, particularly in the urinary bladder and kidney. This suggests 

that protaglandin H synthase in the metabolism of OTA activates metabolites which react with DNA 

[85]. Recent studies (Table 6) are focused on analyzing substances in dietary honey, aspartame, Inula 

crithmoides extract, indomethacin, aspirin, and melatonin, and they generally measure glutathione 

(GSH), glutathione reductase (GR), glutathione peroxidase (GSPx), superoxide dismutase (SOD), 

catalase (CAT), glutathione-S-transferase (GST), lipid peroxidation (LPO), DNA adducts, and 

frequency of micronucleus [85,86–90]. 

Table 5. Principal antimutagenic studies in vitro. 

Antimutagen 
Cell line or strains of 
study 

Inhibition
% 

Reference 

Aspartame, phenylalanine, and piroxicam Vero cells 50 [79] 
Lactobacillus rhamnosus  76 [81] 
Rosmarinic acid Human hepatoma cells 

(Hep G2) 
40 [84] 

Chrysin, quercetin genistein, and biochanin A Caco-2-cells 70 [83] 
Epigallocathechin gallate, and epicatechin 
gallate 

Pig kidney cells (LLC-PK1) 80 [79] 

Gallic acid, vanillic acid, protocatechuic acid, 
caffeic acid, chlorogenic acid, and 4-
hydroxybenzoic acid 

Ochratoxigenic Aspergilli 
strains 

50–60 [82] 
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Table 6. Summary of recent in vivo studies. 

Year 
Biological 
model 

Evaluation 
parameters 

Chemopreventive 
substance 

Conclusion Reference

1996 Mice Quantification of 
aducts 

Indomethacin and 
aspirin 

These substances reduce the 
amounts of DNA adducts, 
particularly in the urinary 
bladder and kidney. This 
suggests a role of protaglandin 
H synthase in the metabolism of 
OTA leading to active 
metabolites which react with 
DNA 

[85] 

1998 Rats Quantification of 
aducts 

Aspartame The molecular mechanism 
mediating the preventive effect 
of Aspartame is the delivery of 
phenylalanine by cleavage of 
the peptide and also the direct 
effect of the peptide on the 
bending capacity and transport 
of the toxin 

[90] 

2001 Rats LPO, GSH, GR, 
GSPx, SOD, CAT, 
and GST 

Melatonin (Mel) Mel has a protective effect 
against OTA toxicity through 
an inhibition of the oxidative 
damage and stimulation of GST 
activities 

[88] 

2004 Rats LPO, GSPx, CAT, 
and SOD 

Melatonin (Mel) Mel decreased the OTA-
induced damage to support the 
antioxidant defense system 
and/or with free radical 
scavenger action  

[87] 

2006 Mice Colonic probiotic 
bacteria, colon 
enzyme 
glucuronidases, and 
chromosomal 
aberrations 

Dietary honey Substituting sugars with honey 
in processed food can inhibit 
the harmful and genotoxic 
effects of mycotoxins, and 
improve the gut microflora 

[86] 

2008 Rats Micronucleus Inula crithmoides 
extract 

The extract alone was 
successful in counteracting the 
oxidative stress and protect 
against the cytotoxicity 
produced by OTA 

[89] 

7. Conclusions 

Finally, the information contained in this review suggests the probable application of different 

substances as an alternative method to avoid the toxicity produced by the AFB1 and the OTA in 
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animals that have been fed with food contaminated with these mycotoxins. If the mycotoxicoses are 

reduced in animals dedicated to human consumption, the possibility of developing any neoplasy would 

diminish. This possibility is sustained by the information obtained from the substances that were 

analyzed as chemo-preventive and/or antigenotoxic and has contributed to develop the idea that cancer 

is susceptible of being detained in the predisplasic and displasic stages, that is to say, when the genetic 

changes are still reversible. Therefore, it is important and convenient to expand the surveys in order to 

confirm the antigenotoxic power of the substances analyzed in this review. The evaluation of other 

genotoxic parameters such as the sister chromatid exchanges, gene mutations, and single cell 

electrophoresis would be among them. Besides, it is necessary to establish clearly the anti-genotoxic 

action mechanisms of these and other substances. 
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