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Glossary 

Cellular automaton 

is a discrete dynamical system composed by a finite array of cells connected locally, which update 

their states at the same time using the same local mapping that takes into account the closest 

neighbors. 
Complex automaton 

is a cellular automaton characterized by generating complex structures in its spatial-temporal 

evolution. For instance, the formation of self-localizations or gliders. 
Cycle graph 

is a directed graph in which vertices are finite configurations and edges represent the global mapping 

between configurations induced by the local evolution rule. 
De Bruijn graph 

is a directed graph in which vertices represent partial neighborhoods and edges represent complete 

neighborhoods obtained by valid overlaps between vertices. Edges are labeled according to the 

evolution of the neighborhood. 
Glider 

is a complex pattern with volume, mass, period, displacement, and direction. Sometimes these 

nontrivial patterns are referred as particles, waves, spaceships, or mobile self-localizations. 
Graph 

is a set of vertices in which some pairs of them are related by edges. In the case that edges have 

direction, we have a directed graph. 
Pair graph 

is a directed graph in which vertices are pairs of de Bruijn vertices and there is a directed edge from 

one pair to the other if both vertices in the initial pair are linked to both vertices in the final pair with 

the same label in the de Bruijn graph. 
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Reversible automaton 

is a cellular automaton in which the global mapping induced by the local evolution rule may be 

inverted by another evolution rule, possibly with different neighborhood size. 
Subset graph 

is a directed graph obtained from the power set of vertices in the de Bruijn graph including the empty 

set. There is a directed edge from one subset to other if at least one of the vertices in the initial subset 

are linked with the same label to all the vertices in the final subset, and this subset is maximal. If there 

is no subset holding this property, the edge goes to the empty set. 
Surjective automaton 

is a cellular automaton in which every finite sequence of cell-states has at least one possible preimage, 

that is, there are not Garden-of-Eden sequences. 

 

 

Definition of the Subject 

Concepts from graph theory have been used in the local and global analysis and characterization of a 

cellular automaton (CA). In particular, De Bruijn graph, pair graph, subset graph, and cycle graph 

have been employed to represent the local cell-state transition rules and their induced global 

transformations. These graphs are useful to analyze, classify, and construct interesting dynamics in 

one-dimensional CAs. Reversibility and complexity have been a common field of study where 

graphic tools have been successfully applied. 

 

 

Introduction 

The term graph used in this entry refers to a set of vertices in which some pairs of them are related by 

edges. In particular, most of the graphs reviewed are directed graphs (or digraphs), where edges have 

orientations Bang-Jensen and Gutin ( 2008). 

The graph structure is a natural way to represent the states in time of interacting entities (agents, 

biological cells, molecules, and so on), where direct interaction between components (or vertices) is 

represented by an edge Mortveit and Reidys ( 2007). 

A first application of graphs in automata theory was introduced by C. E. Shannon and W. Weaver 

using state diagrams to represent finite state machines Shannon ( 2001). 

Graphs and digraphs have been widely used to represent, analyze, and characterize different types of 

automata Hopcroft ( 1979), Sakarovitch ( 2009), Khoussainov and Nerode ( 2012). 

As H.V. McIntosh explains in McIntosh ( 2009), in CA theory, a diagrammatic technique for 

representing one-dimensional CAs lies at the heart of shift register theory Golomb et al. ( 1982). 

In particular, for the one-dimensional case, the overlap of neighborhoods in a CA can be adequate 

represented by de Bruijn graphs. A de Bruijn graph is a directed graph where vertices are sequences 

of symbols and edges represent the overlaps between them de Bruijn ( 1946). In CAs, vertices are 

partial neighborhoods and edges represent complete neighborhoods labeled by the corresponding 

mapping defined in the evolution rule. 

Well-known results of de Bruijn graphs in CA studies were presented by Nasu ( 1977) referring the 

properties of injective and surjective evolutionary functions to de Bruijn and related graphs; Wolfram 

( 1984) characterizing evolutionary properties; and Jen ( 1987) to calculate ancestors. 



The Cartesian product of a de Bruijn graph is useful to compare paths in the same graph looking for 

shared or special vertices. That is the idea behind the pair graph, used by McIntosh ( 1991) and Sutner 

( 1991) to prove reversibility in one-dimensional CAs. 

In automata theory, the power set construction (or subset graph) is a classical procedure to obtain a 

deterministic version of a nondeterministic finite automaton Moore ( 1956), Rabin and Scott ( 1959). 

In CAs, this method can be applied to de Bruijn graphs to analyze features of the set of sequences (or 

language) recognized by the graph. 

An excellent application of the subset graph is to search Garden-of-Eden sequences, which cannot be 

produced from any other sequence during the evolution of a given CA. Other uses are calculating, 

counting, and computing the frequency distribution of the multiplicity of counterimages, results that 

are relevant to characterize a reversible automaton McIntosh ( 2009). 

The evolution of a CA can be represented as well by a graph where each vertex represents a global 

state and transitions between them are depicted by directed edges. First we can enumerate all the 

sequences of the desired length and follow up the evolution of each induced by the evolution rule of 

the automaton. For small length sequences, periodicities can be detected very quickly through the 

cycles of this graph, whose lengths will give the periods of that length. This graphic representation of 

the automaton dynamics generates basins of attraction. The number, length, and shape of branches 

and cycles in this graph (the cycle graph) characterize the patterns formed by the automaton. 

Cycle graphs and their basins of attraction were firstly used to characterize and compare different 

classification schemes of CA dynamics in Wuensche and Lesser ( 1992). 

This entry is focused to present the most relevant graphs used to represent and analyze one-

dimensional CAs. In particular, the definition and most relevant works of de Bruijn, pairs, subset, and 

cycle graphs are described in the study of reversible and complex automaton. There are other types of 

graphs such as Cayley, Voronoi, and jump graphs which are also important but have not been taken in 

consideration in this entry. 

The document is organized as follows. Section “ Basics on Cellular Automata and Related Graphs” 

gives the basic concepts of one-dimensional CAs and examples of the most important graphs for 

reversible and complex automata. Section “ De Bruijn Graph” presents the most relevant results using 

de Bruijn graphs for reversible and complex automata. Section “ Pair and Subset Graphs” describes 

interesting applications of pair and subset graphs for CAs. Section “ Cycles and Basins of Attraction” 

depicts the important use of cycle diagrams for characterizing and classifying reversible and complex 

automata. The final section provides some further directions in the utilization of graphs in CA theory. 

The illustrations of this entry have been generated using the NXL-CAU software developed by Harold 

V. McIntosh. This software is a set of specialized packages, one for each type of one-dimensional CA, 

depending on the number of states and neighborhood radius. The software is available in 

http://delta.cs.cinvestav.mx/~mcintosh/oldweb/software.html 

 

 

Basics on Cellular Automata and Related Graphs 

A CA is composed by a finite set S of states, a neighborhood radius r, and an evolution rule φ: S 2r+1 

→ S. The dynamics of the automaton is initialized by an initial condition or configuration \( 

{c}^0={c}_1^0{c}_2^0\dots {c}_n^0 \) of n states, where \( {c}_i^0\in S \). 

Every cell in \( {c}_i^t \) has associated a neighborhood \( \eta \left({c}_i^t\right)={c}_{i- r}^t\dots 

{c}_{i+ r}^t \) in which periodic boundary conditions are commonly used. Thus, \( 

{c}_i^{t+1}=\varphi \left(\eta \left({c}_i^t\right)\right) \) and the evolution rule generates a global 

mapping Φ: S  n  → S  n  between configurations. 

http://delta.cs.cinvestav.mx/~mcintosh/oldweb/software.html


A CA is reversible if given its evolution rule φ, there exists another rule φ −1 (possibly with a different 

neighborhood radius) such that the induced global mapping Φ −1 holds that Φ −1 ( Φ( c)) = c. In other 

words, the dynamics of the automaton can be reversed by another evolution rule. 

Elementary CA (ECA) rule 15 is a typical example of a reversible automaton, where rule 85 gives the 

inverse behavior (Fig. 1). 
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Fig. 1 
Example of spatial-temporal patterns of reversible ECA rule 15 ( a) and rule 85 ( b) 

ECA rule 54 and rule 110 are classical examples of complex CAs characterized by spatial-temporal 

patterns conformed by self-localizations interacting in a periodic background (Fig. 2). 
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Fig. 2 
Example of spatial-temporal patterns of complex ECA rule 54 ( a) and rule 110 ( b) 

The evolution rule of a CA can be represented by a de Bruijn graph, in which vertices are the set of 

sequences in V = S 2r . For w = w 1… w 2r  in S 2r , let us define α( w) = w 1… w 2r−1 and β( w) = w 2… w 

2r . For v and w in V, there is a directed edge from v to w if β( v) = α( w). In this way, every edge in 

the de Bruijn graph represents a complete neighborhood defined by the overlapping of 2 r − 1 cells 

from v to w. This edge is labeled by the evolution of the corresponding neighborhood given by φ ( v 

1… v 2r  w 2r ). Figure 3 depicts the de Bruijn graphs for ECA rule 15 and rule 110. 
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Fig. 3 
De Bruijn graphs for ECA rule 15 ( a) and rule 110 ( b) 

Given a de Bruin diagram, a new graph can be defined taking as vertices all the pairs of de Bruijn 

vertices. For de Bruijn nodes v, w, x, y, there is a directed edge in the pair graph from ( v, w) to ( x, y) 

if and only if φ( v 1 x 1… x 2r ) = φ( w 1 y 1… y 2r ). Figure 4 presents the pair graphs for ECA rule 15 

and rule 110. 
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Fig. 4 
Pair graphs for ECA rule 15 ( a) and rule 110 ( b) 

Another graphical construction derived from the de Bruijn graph is the power set of the vertices 

starting with the empty set. We shall define this set as    P   such that every P ∈    P   holds that P ⊆ S 

and |    P  | = 2 |S|. 

This subset construction (or subset graph) is defined taking    P   as the set of vertices. For P, Q in    P  

, there is a directed edge from P to Q if for a given state s ∈ S and for every p ∈ P there is a q ∈ Q such 



that φ ( p 1 q 1… q 2r ) = s, and Q is maximal. If for a given s we cannot find such a subset Q, then the 

directed edge goes from P to the empty set. Figure 5 presents the subset graphs for ECA rule 15 and 

rule 110. 
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Fig. 5 
Subset graphs for ECA rule 15 ( a) and rule 110 ( b) 

For configuration of n cells, periodic boundary conditions allow the specification of another graph, 

where vertices are the sequences in S  n . For configurations v, w in S  n , there is a directed edge from 

v into w if Φ( v) = w. 

This graph describes completely the global dynamics of a CA depicting the periodic behaviors 

starting from any initial configuration. These periodic behaviors are represented by cycles in the graph 

or basins of attraction, reason why this construction is called a cycle graph. Figure 6 shows part of the 

cycle graphs for ECA rule 15 and rule 110 taking configurations of 10 cells. 
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Fig. 6 
Cycle graphs for ECA rule 15 ( a) and rule 110 ( b) 

 

 

De Bruijn Graph 

 

 

Features of de Bruijn Graphs in Reversible Automata 

Any reversible CA can be represented by another with both invertible rules with neighborhood size 2 

Moore and Boykett ( 1997), Seck-Tuoh-Mora et al. ( 2005), Boykett et al. ( 2008). In this case, the 

corresponding de Bruijn graph holds three main properties established in Hedlund ( 1969): 

1. 

There are | S| paths representing each sequence of states. 

 

2. 

These paths start from a set L of initial nodes and end into a set R of final nodes such that | L| | R| = | 

S|. 

 

3. 



There is a unique node v in L ⋂ R. 

 

Figure 7 illustrates a spatial-temporal pattern and the de Bruijn graph for a reversible CA of four 

states and neighborhood size 2 (or neighborhood radius 1/2) for both invertible rules. The evolution 

rule is represented by a matrix where rows and columns indices represented the left and right 

neighbors respectively, and every entry is the evolution of the neighborhood. 
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Fig. 7 
De Bruijn graph ( a) and spatial-temporal pattern ( b) for reversible CA 4 h rule F5A0F5A0 

Figure 8 describes the paths for each state in the de Bruijn graph, which are consistent with the 

properties described above for reversible CA. 
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Fig. 8 
Paths for state 1 ( a), 2 ( b), 3 ( c), and 4 ( d) for the de Bruijn graph of reversible CA 4 h rule 

F5A0F5A0 

 

 

Features of de Bruijn Graphs in Complex Automata 

The de Bruijn graphs are very useful to determine all possible strings that represent nontrivial or 

complex patterns known as gliders, particles, waves, or mobile self-localizations in complex rules. 

After the de Bruijn graphs are completed, we can calculate an extended de Bruijn graph. An extended 

de Bruijn graph takes into account more significant overlapping of neighborhoods of length 2 r. We 

represent M (2) by indexes i = j = 2 r ∗ n, where n ∈ Z +. The de Bruijn graph grows exponentially, 

order \( {k}^{2{r}^n} \), for each M (n). Specifically, extended de Bruijn graphs calculate strings that 

are periodic; these strings are regular expressions that can be coded by concatenations into an initial 

condition to collide gliders in different phases. 

For ECA the module k 2r  = 2 2 = 4 represents the number of vertexes in the de Bruijn graph and j 

takes values from k ∗ i = 2 i to (k ∗ i) + k ∗ 1 = (2 ∗ i) + 2 − 1 = 2 i + 1. The vertexes (indexes of a 

matrix M) are labeled by fractions of neighborhoods beginning with 00, 01, 10, and 11; the overlap 

determines each connection completing every neighborhood. Paths in the de Bruijn graph represent 



strings, configurations, or fragment of configurations in the evolution space. Also fragments of the 

diagram itself are useful in discovering periodic blocks of more small strings, ancestors, and cycles. In 

these graphs we can find systematically any periodic structure, including some gliders. 

For extended de Bruijn graphs we have shift registers to the right (+) or to the left (−). A glider can be 

identified as a cycle and the glider interaction will be a connection with other cycles. Diagram (2, 2) ( 

x-displacements, y-generations) displays periodic strings moving two cells to the right in two time 

steps, i.e., period of a glider. This way, we can enumerate each string for every structure in this 

domain. 

The de Bruijn graph that can calculate stationary pattern is of order \( {M}_{R54}^{(4)} \) because 

these gliders have period four without displacements. These patterns can be considered also as still 

life configurations. Figure 9 shows the full de Bruijn graph (0,4) used to calculate these stationary 

patterns. There are four main cycles: two largest cycles represent phases of each stationary pattern 

plus its periodic background, and two smaller cycles characterizing two different periodic patterns in 

rule 54 including the stable state represented with a loop by vertex zero. Space-time configurations of 

ECA derived from these diagrams are illustrated on the left plate of Fig. 9. Position of each glider and 

periodic background follows arbitrarily routes into these cycles. Details on these regular expressions 

for rule 54 are presented in Martínez et al. ( 2014). 
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Fig. 9 
Extended de Bruijn graphs calculating periodic patterns with zero displacement in four generations for 

ECA rule 54. Every cycle is showed below every diagram. This way, patterns are defined as a code 

since its initial condition obtained from diagram 

De Bruijn diagrams contain all relevant information about complex patterns emerging in CAs. The de 

Bruijn diagrams can proof exhaustively the number of periodic patterns that a rule can yield. As a 

generality, reversible or class II CAs refer de Bruijn graphs with disjoint cycles, while complex rules 

contain cycles that can be interconnected jumping between them. Regularly these interconnections 

imply a change of phase from a glider to other glider or a stable periodic background. 

 

 

Relevant References in Reversibility and Complexity Using de 

Bruijn Diagrams 

The chaotic discrete characteristics of ECA Rule 126 are analyzed using de Bruijn diagrams in 

Martínez et al. ( 2010). It is shown in Nobe and Yura ( 2004) that there exist exactly 16 reversible 

ECA rules for infinitely many cell sizes by means of a correspondence between ECAs and de Bruijn 

graphs. Glider coding in initial conditions by means of a finite subset of regular expressions extracted 

from de Bruijn graphs is explained in Martínez et al. ( 2008). De Bruijn graphs and their fragment 

matrices are applied for testing linearity and computation of the Z parameter, and the construction of 

adjacency matrices for transition diagrams is presented in Voorhees ( 2008). De Bruijn graphs are 

used in Martinez et al. ( 2013) to examine CAs belonging to Class III (in Wolfram’s classification) 

that are capable of universal computation. De Bruijn graphs are discussed in Betel et al. ( 2013) to 

treat the parity problem in one-dimensional, binary CAs for different radius sizes. A method proposed 

to calculate preimages in one-dimensional CAs using de Bruijn graphs for any k-states and r-radius 

using the classic path-finding problem in graph theory is described in Soto ( 2008), and other methods 

of finding the total number of preimages for a given homogeneous configuration is described in 

Powley and Stepney ( 2010). Reachability tree developed from de Bruijn graphs which represents all 

possible reachable configurations of a CA is explained in Bhattacharjee and Das ( 2016) to test 

reversibility. De Bruijn graphs are used in reversible one-dimensional CAs to prove that they are 

equivalent to the full shift in Seck-Tuoh-Mora et al. ( 2003a) and Seck-Tuoh-Mora et al. ( 2003b). De 

Bruijn graphs for analysis of two evolution rules in two dimensions (Conway’s Game of Life and the 

quasi-chaotic Diffusion Rule) are explained in McIntosh ( 2010) and Leon and Martinez ( 2016). An 

analysis of traffic models based on one-dimensional CAs with de Bruijn graphs is developed in 

Zamora and Vergara ( 2004). 

 

 

Pair and Subset Graphs 

 

 

Features of Subset Graphs in Surjective Automata 

Reversible CA is a special kind of surjective automaton where every sequence has a possible 

preimage, that is, there is no Garden-of-Eden configurations McIntosh ( 2009). Surjective automata 



can be detected using the subset graph, a CA is surjective if there are no paths starting from the 

complete subset and finishing in the empty set. 

In reversible CA, the paths in the subset graph starting from the complete subset will end into subsets 

W ⊆ S such that | W| = | R|. That is because the ending nodes of the paths represent the right neighbors 

of a given sequence, and the properties of reversible automata indicate that the number of possible 

rightmost cells in the preimages of every sequence is | R|. If we take the opposite direction of the 

edges in the de Bruijn graph and construct the corresponding subset graph, a similar effect is obtained 

but now the ending nodes W′ ⊆ S denote the leftmost cells in the preimages of every sequence, and | 

W| = | L|. 

Figure 10 presents the subset graphs taking the forward and backward direction of the edges in the de 

Bruijn graph. Nodes are enumerated in base 4 according to the elements belonging to each subset. 

Note that in both cases, the ending nodes have a cardinality | L| = | R| = 2, fulfilling that | L| | R| = | S| = 

4. 
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Fig. 10 
Subset graphs for reversible CA 4 h rule F5A0F5A0 taking the forward ( a) and backward ( b) 

direction of the edges in the de Bruijn graph 

 

 

Features of Pair Graphs in Reversible Automata 

The pair graph offers a direct way to check reversibility in one-dimensional CAs with quadratic 

complexity. If there are only cycles defined by the nodes composed by pairs of identical elements, it 



means that there is no sequence with different preimages taking periodic boundary conditions. Figure 

11 presents the pair graph (complete and only cycles) generated taking pairs of nodes in the de Bruijn 

graph. Notice that the only cycles are defined by pairs composed by identical elements. 
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Fig. 11 
Pair graphs (complete ( a) and only cycles ( b)) for reversible CA 4 h rule F5A0F5A0 

 

 

Features of Subset Graphs in Complex Automata 

The subset graph also is useful as a deterministic finite state machine for the language of a specific 

CA. If a string belongs to a language determined for a CA given, there is a way in the subset graph 

avoiding the empty set. In this case, every vertex can represent an accepting state excluding the empty 

set, and the initial state the maximum subset. 

When in reversible CA some vertexes work as attractors (called index Welch’s Seck-Tuoh-Mora et al. 

( 2003b)), in complex rules you should find ways from the maximum subset to the empty set. These 

ways represent strings without ancestors for this CA, these strings are known as Garden-of-Eden 

configurations. Frequently, from von Neumann CA and several computable conventional CA, they 

have Garden-of-Eden configurations including the Game of Life and ECA rule 110. 

For example, the expression 11111000111000100110 represents a glider with positive slope moving 

in ECA rule 110. Concatenations of these strings will yield a periodic evolution space covered just 

with this glider. Following a way in its subset graph, we can proof that this regular expression is 

recognized for the language of periodic structures derived for the rule 110. Particularly, this string has 

the next route in the subset diagram Fig. 5, as follows: 15 → 14 → 14 → 14 → 14 → 14 → 9 → 9 → 9 

→ 6 → 14 → 14 → 9 → 9 → 9 → 6 → 1 → 1 → 2 → 12 → 9. 

 

 

Relevant References in Reversibility and Complexity Using Pair and 

Subset Graphs 



A procedure to calculate preimages for a given sequence of states based on the subset graph is 

presented in Seck-Tuoh-Mora et al. ( 2004). An analysis of procedures to calculate preimages based 

on de Bruijn and subset graphs is developed in Jeras and Dobnikar ( 2007). Concepts of the subset 

graph are used to tackle the reversibility problem of all 1D linear CA rules over Z(2) under null 

boundary conditions in Yang et al. ( 2015). The pair graph is used in Seck-Tuoh-Mora et al. ( 2008) 

for knowing the size of the inverse neighborhood and obtaining the inverse local rule in reversible 

automata. A graph-theoretical approach related to de Bruijn and pair graphs to characterize reversible 

CAs is described in Moraal ( 2000). 

 

 

Cycles and Basins of Attraction 

 

 

Features of Cycle Graphs in Reversible Automata 

The cycle graph that is asociated with a reversible automaton is characterized to be composed by only 

cycles and no branches, due to every finite configuration has only one and only one preimage taking 

periodic boundary conditions. 

The length of every cycle gives the periodicity of the configurations composing it. Figure 12 describes 

some cycle graphs for different configuration lengths. These configurations can be periodically 

repeated in a larger configuration to obtain regular spatial-temporal patterns with larger number of 

cells. 
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Fig. 12 
Cycle graphs with different configuration lengths for reversible CA 4 h rule F5A0F5A0 



 

 

Features of Cycle Diagrams in Complex Automata 

Another way to get periodic structures in CA is calculating the cycle diagrams (or attractors). Indeed, 

Wuensche in Wuensche and Lesser ( 1992) did a detailed analysis offering an ECA classification 

based in basins of attraction properties. 

Wuensche establishes that possible complex CA must have moderate number of transients, moderate 

length in its period, moderate depth, and moderate density. However, we can see which cycle 

diagrams follow other structures that typically uniform, periodic, or chaotic CA not. Attractors in 

complex CA display nonsymmetric histories (branches), and a second feature is that these threes have 

long transients. 

As an example, Fig. 13 displays a basin of attraction for configurations with 16 cells. This cycle 

diagram contains a mass of 1,246 configurations and a period in its attractor of 40 configurations. 

Maximum high in this tree has 32 transients before to reach the attractor. Particularly, if we 

concatenate the leaf 41,819 on the initial condition its evolution will converge to a meta-glider in 

ECA rule 54 preserved by multiple collisions between three gliders Martínez et al. ( 2014). Extended 

analysis with cycle diagrams implies meta diagrams interconnecting not configuration but basins of 

attractions, where complex rules display diagrams strongly connected Martínez et al. ( 2017). 
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Fig. 13 
Cycle graph calculating gliders in the complex ECA rule 54. The cycle graph has a mass of 1,246 

vertexes and a period of 40 configurations. In the top right side a fragment of evolution displays its 

dynamics starting from a leaf, the configuration number 41,819 

 

 

Relevant References in Reversibility and Complexity Using Cycle 

Graphs 

DDLab is an interactive graphics software for creating and visualizing discrete dynamical networks, 

and studying their behavior in terms of both space-time patterns and basins of attraction Wuensche ( 

2005). It is shown in Pei et al. ( 2014) that there exist two Bernoulli-measure attractors in ECA rule 

58. The dynamical properties of topological entropy and topological mixing of rule 58 are described 

using cycle graphs for small configurations. Cycle periods of the Baker transformation and 



equivalence classes in CAs are discussed in Voorhees ( 2006). The contribution of cycles of any 

length for sustaining network activity and a refined mean-field approach is developed in Garcia et al. ( 

2014). The limit set of 104 asynchronous ECAs over the cycle graphs on n vertices is considered in 

Macauley and Mortveit ( 2013). Cycle graph equivalence of asynchronous CAs is studied in 

Macauley and Mortveit ( 2009). The dynamics of cycle graphs is reinterpreted by interpolation 

surfaces in Seck-Tuoh-Mora et al. ( 2014). The basin tree diagrams and the portraits of the omega-

limit orbits of CAs with permutative rules are classified in Chua and Pazienza ( 2009) and revised in 

Chua et al. ( 2006) for reversible automata. A classification of CAs according to the complexities 

which rise from the basins of attraction of subshift attractors is investigated in Di Lena and Margara ( 

2008). An analysis of nonuniform CAs with associative memory using basins of attraction is 

developed in Maji and Chaudhuri ( 2008). Basins of attraction and the density classification problem 

for CAs are investigated in Bossomaier et al. ( 2000). Cycle graphs of linear CAs and the 

characterization of their connected components as direct sums are treated in Chin et al. ( 2001). 

 

 

Future Directions 

This contribution has presented the basics of de Bruijn, pair, subset and cycle graphs, and a brief 

review of relevant works applying them in the study of one-dimensional CAs. 

The matrix analysis is an important tool to characterize and understand deeper properties of graphs. 

Further directions in the study of de Bruijn graphs may be the application of spectral analysis to 

explore the results in this area in the investigation of CAs. 

Symbolic dynamics is another important tool in the dynamical analysis of CAs. Links between 

symbolic dynamics and the graphs presented in this work could enrich the application of graphical 

tools for the analysis of CAs. 

The extension of graphs in more dimensions is another opportunity of future research in this field. 

Some results using de Bruijn graphs have been presented in this work; however, there is an unopened 

field of research using graphs for reversible and complex automata in two and more dimensions. Of 

course, there is an exponential growth in the size of the involved graphs, nevertheless, the 

computational resources nowadays make possible this kind of study. 
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