

Mexican Journal of Medical Research ICSa

Biannual Publication, Vol. 9, No. 18 (2021) 25-33

Benefits of Physical Activity in the elderly Beneficios de la Actividad Física en adultos mayores

Esther Lizbeth Islas-Cruz^a

Abstract:

Introduction: The increase of the Elderly population as the main characteristic of the demographic transition brings with it multiple challenges for public health. As part of the public politics of the World Health Organization (WHO) on healthy aging, Physical Activity (PA) is relevant, being the subject of multiple studies about its benefits on the quality of life of older people. **Method:** This article is a systematic review of the PubMed, Google Scholar, Elsevier, Scielo and Redalyc index. Using the keywords "physical activity", "exercise", "elderly" and "quality of life", 138 related articles were found, however, according to the inclusion and exclusion criteria, 120 articles were discarded, leaving 18 studies for review. **Results:** 72% of the studies showed benefits at a physical level: PA in old age improves strength, balance, flexibility and muscle tone. It is also related to a significant reduction in arterial stiffness. 11% of the investigations refer to improvements in the psychoemotional sphere: PA favours the perception of better quality of life. **Conclusion:** Physical activity improves health in the physical, mental and social spheres of older adults, improving their quality of life and promoting healthy aging.

Keywords:

Physical activity, exercise, elderly, quality of life

Resúmen:

Introducción: El incremento de la población Adulta Mayor como principal característica de la transición demográfica, trae consigo múltiples retos para la salud pública. Como parte de la política pública de la Organización Mundial de la Salud (OMS) sobre envejecimeinto saludable, la Actividad Física (AF) toma relevancia, siendo objeto de mútiples estudios acerca de sus beneficios en la calidad de vida de las personas mayores. **Método:** El presente artículo es una revisión sistemática en los índices PubMed, Google Schoolar, Elsevier, Scielo y Redalyc. Utilizando las palabras clave "actividad física", "ejercicio", "adulto mayor" y "calidad de vida", se encontraron 138 artículos relacionados, sin embargo, de acuerdo con los criterios de inclusión y exclusión, se descartaron 120 artículos, quedando para su revision 18 estudios. **Resultados:** El 72% de los estudios mostraron beneficios a nivel físico: La AF en la vejez mejora la fuerza, equilibrio, flexibilidad y tono muscular. También está relacionada con una importante reducción en la rigidez arterial. El 11% de las investigaciones refieren mejorías en la esfera psicoemocional: La AF genera sentimientos positivos como felicidad o buena autopersepción. Y el 17% de los artículos se centraron en la calidad de vida: La AF favorece la percepción de mayor calidad de vida. **Conclusión:** La actividad física mejora la salud en las esferas física, mental y social de los adultos mayores, mejorando su calidad de vida y favoreciendo el envejecimiento saludable.

Palabras Clave:

Actividad física, ejercicio, adulto mayor, calidad de vida

INTRODUCTION

Globally, population dynamics is essentially centred on a phenomenon: population aging, for which the two most important variables are low fertility rate and increased life

^a Corresponding author, System for the Integral Development of the Hidalgo Family, Address of the Casa de la Mujer Hidalguense, https://orcid.org/0000-0002-1409-1279, Email: esliz.geronto@gmail.com

Received: 10/04/2020, Accepted: 21/05/2020, Published: 05/07/2021

expectancy; where the aging population increases to the detriment of the other age groups.^{1,2} By 2019, one in 11 people in the world (9%) were older adults, and projections indicate that by 2050, one in six people in the world will be older (16%).³ These demographic changes also bring their own problems, which have been addressed since 1982, when the first world assembly on aging was held, where The Vienna International Action Plan of Action on Aging. In said assembly, member countries suggested carrying out specific actions on topics such as health, nutrition, housing and the environment, family, social welfare, income and employment security, education, and the compilation and analysis of research data.⁴

In accordance with the Sustainable Development Goals (SDG), the 2020-2030 decade is established as the decade of healthy aging. Healthy aging "is the process of development and maintenance of functional capacity that allows well-being in old age." ⁵ The World Health Organization (WHO) argues that current demographic changes must be considered and older adults should be given the importance they have in the development of populations, in order to achieve equitable, passive and safe communities.⁶

However, achieving healthy aging is not easy, since in the normal aging process, morphological and functional changes become imminent, often decreasing the ability to function.⁷ One of the most notable and important changes with the physical activity carried out by the elderly is the loss of muscle mass.^{8,9} Functional performance is having the physiological capacity to carry out normal daily activities safely and independently without excessive fatigue.¹⁰ But it does not only refer to the capacities characteristic of the person (intrinsic capacity), but also of the environment in which it develops (extrinsic capacity).¹¹

According to the WHO, physical activity in old age consists of recreational activities, displacements, occupational activities, domestic tasks, sports or programmed exercises in order to improve cardiorespiratory functions, functionality and reduce the risk of NCDs, depression, risk cognitive and falls.¹⁰

The promotion of Physical Activity (PA) is a key element to achieve healthier old people. Various studies have been conducted with the aim of recognizing the benefits of PA in older adults. This review aims to update the information that is available.

MATERIAL AND METHODS

A systematic review was performed on the PubMed, Google Scholar, Elsevier, Scielo and Redalyc indexes; about the benefits of physical activity observed in older adults, using as keywords "physical activity", "exercise", "older adults" and "quality of life". As selection criteria, original articles published in English or Spanish, of applied research with older adults (60+ year), regardless of sex and unlimited publication dates. And as exclusion criteria, those investigations applied to children, young people, young adults (<60), review articles, descriptive

studies, or don't provide significant information about the theme of study.

Once the articles were selected, they were classified into three groups according to the area of health in which the benefits of PA were evaluated in: physical / physiological effects, psychoemotional effects and effects on quality of life.

RESULTS

According to the search criteria, 138 related articles were identified, however, following the criteria determined at the beginning of this review, 120 manuscripts were discarded for not meeting the selection criteria or being within the exclusion criteria. The remaining 18 articles were considered for review and were grouped according to the main variable evaluated. To analyse the results of the studies and compare them, two tables were made. Table 1 includes reference, design, sample, method and instruments (including the time during which the training program or exercise was applied) and main findings. Table 2 describes only 12 of the 18 studies since they are the ones that specifically applied training or exercise programs in older adults and measured their effects at the physical / physiological level. Through this table it is possible to compare the results and identify the types of training that obtained the best results. Table 2 includes reference, method and instruments, results of pre and post evaluations and the value of P. 11% of the investigations report improvements in the psycho-emotional sphere: PA generates positive feelings such as happiness or good selfperception.^{12,13} 72% of studies showed benefits on a physical level: PA in old age improves strength, balance, flexibility and muscle tone.¹⁴⁻²⁶ It is also related to a significant reduction in arterial stiffness. And 17% of the articles focused on quality of life: PA favours the perception of a higher quality of life.²⁷⁻²⁹ Finally, 66.7% of the studies were carried out applying an exercise or training program, which show important differences in their design and results. Varying in the application time from four weeks to 48 weeks. As shown in Table 2, which describes the results of pre and post evaluations.

DISCUSSION

Aging is very often related to a decline in different human functions, such as cognitive state, strength, balance, the musculoskeletal and cardiovascular systems, among others.³⁰ This deterioration is closely linked to the decrease in PA.³¹ However, according to different investigations, it has been identified that the AF contributes significantly to the health of the elderly, since it promotes strength, flexibility, agility, speed and endurance on a physical level. As Miller KL et al. In a quasi-experimental study of an exercise program with a duration of four weeks applied in older adults, where it was shown that through this type of PA, there are significant improvements in balance confidence, balance performance and walking in weakened .¹⁹ It is important to highlight that not all forms of PA have the same functions or reach the expected results, such is the case of research applied by Wolf SL et al., in which after 48 weeks of Tai Chi training, there was no evidence of statistically significant reduction in the risk of falls in the elderly.²¹

The investigations made by Jorgensen MG et al. and Pluchino A. et al is interesting and innovative, who applied PA programs for older adults using the Nintendo Wii. Both programs were effective as there were substantial improvements in muscle function, muscle performance, and functional performance. ^{22,23} Video games can be a new window of opportunity to improve the physical condition of the elderly, as it can be applied at home, providing economic savings, time, transfers and risks.

On an emotional level, PA generates a feeling of happiness, a positive effect on mood and on different mental illnesses such as depression. As evidenced by Bohórquez MR et al. with a descriptive study applied to 104 elderly adults where PA is related to happiness. The results show that the practice of PA in the past, in the present or throughout life, influences in a significant way the mood and feeling of happiness of the elderly.¹³ If we consider that depression as well as the feelings of sadness are very frequent in older adults, PA turns out to be an economic tool and significant tool in mental health care in old age.^{32,33}

Finally, it is useful to rescue that PA has been studied in its impact on the quality of life of the elderly, as demonstrated by Guallar-Castillón P et al. in a cross-sectional research carried out with 3066 older adults, where it concludes that the higher the PA practiced during free time, the higher the Health-Related Quality of Life (HRQL) reported by the elderly.²⁷

Although strategies aimed at promoting a healthy lifestyle have been created worldwide and policies have been implemented, these have not been sufficient, since although they are aimed at preventing chronic non-communicable diseases (NCDs), this has not been achieved. NCDs lead the prevalence of diseases and are also the main causes of death in the world. The worst thing is that they are diseases that are mostly preventable with the adoption of good lifestyles, such as a healthy and balanced diet and PA. As a result, we have a young and adult population with sufficient risk factors to reach an old age with multiple diseases or premature death, and for those who are already old, it means functional deterioration, disability and premature death.

CONCLUSIONS

According to the revised references, PA improves health in the physical, mental and social spheres of older adults, improving their quality of life and promoting healthy aging. Including PA as part of the activities of daily life of the elderly promotes balance, prevents falls, improves physical strength and flexibility. In addition, it improves the cognitive condition, favours positive attitudes and encourages a feeling of happiness. PA has positive consequences at the vascular level, decreasing arterial stiffness. It also favours social relationships necessary for the well-being of the elderly.

REFERENCES

- Rutherford OM. Is there a role for exercise in the prevention of osteoporotic fractures?. Br. J. Sports Med. 1999;33(6):378–86.
- [2] González KD. Demographic aging in Mexico: comparative analysis between the federal entities. CONAPO. Available at:http://www.omi.conapo.gob.mx/work/models/CONAPO/Resource/2 701/1/images/06_envejecimiento.pdf [Accessed Feb 29, 2020].
- [3] United Nations. Growing at a slower rate, the world population is expected to reach 9.7 billion in 2050 and a peak of almost 11 billion around 2100. Available at:https://population.un.org/wpp/Publications/Files/WPP2019_PressRe lease_ES.pdf [Accessed Feb 22 2020].
- [4] United Nations. Vienna International Plan of Action on Aging. Available at:<u>https://undocs.org/es/A/RES/46/91 [Accessed 22 Feb 2020].</u>
- [5] World Health Organization. Decade of healthy aging 2020-2030. First progress report, March 2019. Available at:<u>https://www.who.int/docs/defaultsource/documents/decadeof-health-ageing/decade-healthy-ageingupdate1en.pdf?sfvrsn=d9c40733_0 [Consulted Feb 22, 2020].</u>
- [6] World Health Organization. Summary World report on aging and health. World Health Organization, 2015. Available at:https://apps.who.int/iris/bitstream/handle/10665/186466/978924069 4873_spa.pdf?sequence=1 [Consulted Feb 25, 2020].
- [7] Salech MF, Jaral LR, Michea AL. Physiological changes associated with aging. Rev. Méd. Clin. Counts. 2012;23(1):19-29.
- [8] Campbell MJ, McComas AJ, Petito F. Physiological changes in aging muscles. J. Neurol. Neurosurg. Psychiatry. 1973;36:174-182.
- [9] Cruz-Jimenez M. Normal Changes in Gait and Mobility Problems in the Elderly. Phys. Med. Rehabil. Clin. 2017;28:713-725.
- [10] World Health Organization. Physical activity in older adults. Global Strategy on Diet, Physical Activity and Health. Available at:<u>https://www.who.int/dietphysicalactivity/factsheet_olderadults/en/</u> [Consulted Feb 22, 2020].
- [11] Patiño Villada FA, Márquez Arabia JJ. Physical Activity and Physical Exercise in Health: Challenges in a globalized context. 1 ed. Medellín, Colombia: University of Antioquia; 2009.
- [12] Medina Briones MR, López Hernández M, Zuñiga Vargas ML, Ibarra Mata L. Perceived pros and cons of physical activity carried out by older adults. Enf. Univ. 2009;6(3):8-13.
- [13] Bohórquez MR, Lorenzo M, García AJ. Happiness and physical activity in older people. Psychology writings. 2013;6(2):6-12.
- [14] Liu IT, Lee WJ, Lin SY, Chang ST, Kao CL, Cheng YY, The Therapeutic Effects of Exercise Training on Elderly Patients with Dementia: A Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2020; pii: S0003-9993(20)30092-7.
- [15] Orr R, de Vos NJ, Singh NA, Ross DA, Stavrinos TM, Fiatarone-Singh MA. Power training improves balance in healthy older adults. J. Gerontol. A. Biol. Sci. Med. Sci. 2006;61(1):78-85.
- [16] Kobayashi R, Kasahara Y, Ikeo T, Asaki K, Sato K, Matsui T, Iwanuma S, Ohashi N, Hashiguchi T. Effects of different intensities and durations of aerobic exercise training on arterial stiffness. J. Phys. Ther. Sci. 2020;32(2):104-109.

- [17] Campbell AJ, Robertson MC, Gardner MM, Norton RN, Tilyard MW, Buchner DM. Randomized controlled trial of a general practice program of home based exercise to prevent falls in elderly women. BMJ. 1997;315(7115):1065-9.
- [18] Castillo de Lima, V., Castaño, LAA, Boas, VV, Uchida, MC A Training Program Using an Agility Ladder for Community-Dwelling Older Adults. J. Vis. Exp. 2020;(157),e60468.
- [19] Miller KL, Magel JR, Hayes JG. The Effects of a Home-Based Exercise Program on Balance Confidence, Balance Performance, and Gait in Debilitated, Ambulatory Community-Dwelling Older Adults: A Pilot Study. J. Geriatr. Phys. Ther. 2010;33(2):85-91.
- [20] Faber MJ, Bosscher RJ, Chin A Paw MJ, van Wieringen PC. Effects of exercise programs on falls and mobility in frail and pre-frail older adults: A multicenter randomized controlled trial. Arch. Phys. Med. Rehabil. 2006;87(7):885-96.
- [21] Wolf SL, Sattin RW, Kutner M, O'Grady M, Greenspan AI, Gregor RJ. Intense tai chi exercise training and fall occurrences in older, transitionally frail adults: a randomized, controlled trial. J. Am. Geriatr. Soc. 2003;51(12):1693-701.
- [22] Jorgensen MG, Laessoe U, Hendriksen C, Nielsen OB, Aagaard P. Efficacy of Nintendo Wii training on mechanical leg muscle function and postural balance in community-dwelling older adults: a randomized controlled trial. J. Gerontol. A Biol. Sci. Med. Sci. 2013;68(7):845-52.
- [23] Pluchino A, Lee SY, Asfour S, Roos BA, Signorile JF. Pilot study comparing changes in postural control after training using a video game balance board program and 2 standard activity-based balance intervention programs. Arch. Phys. Med. Rehabil. 2012;93(7):1138-46.
- [24] Chimbo-Yunga JM, Chuchuca-Cajamarca AJ, Wong S, Encalada-Torres LE. Metabolic syndrome and physical activity in older adults in the Ecuadorian highlands. Rev. Public Health. 2017;19(6):754-59.
- [25] Gómez-Cabello A, Vila-Maldonado S, Pedrero-Chamizo R, Villa-Vicente JG, Gusi N, Espino L, González-Gross M, Casajús JA, Ara I. Organized physical activity in the elderly, a tool to improve physical condition in old age. Rev. Esp. Public Health. 2018;92:1-10.
- [26] Chalapud-Narváez LM, Escobar Almario A. Physical activity to improve strength and balance in the elderly. Rev. Univ. Health. 2017;19(1):94-101.
- [27] Guallar-Castillón P, Santa-Olalla Peralta P, Banegas JR, López E, Rodríguez-Artalejo F. Physical activity and quality of life of the elderly population in Spain. Med Clin. 2004;123(16):606-10.
- [28] Herrera Mor. Emilia Maria. Effects of a Comprehensive Physical Activity Program on the Quality of Life of the Elderly [Doctorate]. Catholic University of Valencia San Vicente Mártir; 2015.
- [29] Gallegos Carrillo K, Honorato Cabañas Y, Macías N, García Peña C, N Flores Y, Salmerón J. Preventive health services and physical activity improve health-related quality of life in Mexican older adults. Public Health of Mexico. 2019;61(2):106-15.
- [30] Taylor, D. Physical activity is medicine for older adults. Postgrad. Med. J. 2014; 90: 26-32. In: Gallè F, Sabella EA, Da Molin G, Parisi EA, Liguori G, Montagna MT, De Giglio O, Tondini L, Orsi GB, and Napoli C. Physical Activity in Older Adults: An Investigation in a Metropolitan Area of Southern Italy . Int. J. Environ. Res. Public Health. 2020;17(3).pii:E1034.
- [31] Jaeger C. Physiology of Aging. EMC- Kinesiotherapy- Physical Medicine. 2011;23(3):1-8.
- [32] Zavala-González MA, Posada-Arévalo SE, Cantú-Pérez RG. Functional dependency and depression in an elderly group from Villahermosa, México. Arch. Med. Fam. 2010;12(4):116-26.

[33] Sarró-Maluquer M, Ferrer-Feliub A, Rando-Matos Y, Formigac F, Rojas-Farreras S. Depression in the elderly: prevalence and associated factors. SEMERGEN. Med. Fam. Depression in the elderly: prevalence and associated factors. 2013;39(7):354-60.

Table 1. Classification and description of analysed studies.

Assessment area	Reference	Design	Sample	Method and instruments	Main findings
Psycho-	Medina Briones MR et al. 2009. ¹²	Qualitative	15 older adults	Semi-structured questionnaire.	Physical Activity (AF) improves physical and emotional health and increases interpersonal relationships.
emotional effects	Bohórquez MR et al. 2013. ¹³	Descriptive	104 older adults.	General Physical Activity Questionnaire in Spanish version and the Happiness Scale.	1 Those who do FA today are happier than those who have done it only in the past, never or always. 2 Those who have always done FA or those who have started doing it from the age of 65 are happier than those who abandoned it in old age. 3 Never having done AF is related to lower levels of current happiness than having done it at some point in life or maintaining it.
	Liu IT et al. 2020. ¹⁴	Randomized controlled trial	61 older adults	4 weeks of training. Barthel index, MMSE, MOCA and GDS. BDNF serum, MCP-1 plasma, and IGF-1 plasma.	Those who received strength training had improvements in the Barthel index, MMSE, MoCA, and plasma MCP-1; while those who received the aerobic exercise program obtained improvements in the same indicators and in the BDNF serum test.
	Orr R et al. 2006. ¹⁵	Randomized controlled trial	112 older adults	10-week exercise program. Chattecx Dynamic Balance System, digital Keizer pneumatic resistance machines fitted with A400 electronics, Physical Activity Scale for the Elderly (PASE), Mini-Mental State Examination (MMSE).	Low-load power training improves balance, in turn improving subjects quality of life (QOL) and promoting active aging and preventing falls.
	Kobayashi R et al. 2020. ¹⁶	Quasi- experimental study.	41 older adults	Plan for 8 weeks of exercise. Pulse Wave Velocity (VOP), Cardio-Ankle Vascular Index (CAVI), Arterial Pulse Wave Index (AVI) as an index of systemic arterial stiffness and the Index of Blood Pressure Volume (API) as an index of peripheral arterial stiffness.	Regardless of intensity or duration, regular aerobic exercise can be important in reducing arterial stiffness.
Physical/ Physiological effects	Campbell AJ et al. 1997. ¹⁷	Randomized control trial.	233 older adults	6-month exercise program. A functional reach test, Standing with feet side by side, standing with one foot next to and halfway in front of the other, standing with one foot directly behind the other, and standing on one foot with the other raised for up to 10 seconds, scored as the 4test balance scale, electronic dynamometer, "Chair stand" test, Time taken to walk eight feet and 20 meters, Time taken to climb up and down a set of four steps in the assessment room and Distance walked in six minutes using the walking aid normally used outside the home.	The percentage of falls of subjects who carry out a training program and those who do not show significant differences.
	Castillo de Lima V et al. 2020. ¹⁸	Quasi- experimental study.	16 older adults	14-week agility ladder exercise program. Functional tests Illinois agility, five times sit-tostand, timed up-and- go, walking usual speed, and one-leg stand.	Agility ladder training programs are practical and improve the performance of physical function in older adults.
	Miller KL et al. 2010. ¹⁹	Quasi- experimental pilot study.	14 older adults	4 week training program. Falls Efficacy Scale (FES), Performance Oriented Mobility Assessment (POMA), and the One-Leg Stance Test (OLST) administered prior to and following 4 weeks of exercise and balance training.	Significant improvement in balance confidence, balance performance, and gait in weakened, outpatient community-dwelling older adults after participation in a home balance and training program.

Assessment area	Reference	Design	Sample	Method and instruments	Main findings
	Faber MJ et al. 2006. ²⁰	Multicenter Randomized Controlled Trial	150 older adults	Functional walking program (FW) and Balance program (IB) for 20 weeks. Performance Oriented Mobility Assessment (POMA), physical performance score, and the Groningen Activity Restriction Scale (GARS) (measuring self-reported disability).	Moderate intensity exercise programs increase the risk of falls in frail elderly people, so it is only suggested in pre-frail and non-frail elderly.
	Wolf SL et al. 2003. ²¹	Randomized, randomized controlled study	291 institutionalized older women and 20 older men.	Two weekly sessions for 48 weeks. Falls Efficacy Scale and the Activities-specific Balance Confidence Scale. Sickness Impact Profile (SIP). The Depression Scale. Minimental Scale Examination MMSE.	The 48-week Tai Chi intervention did not show a statistically significant reduction in the risk of falls.
N · · 1/	Jorgensen MG. Et al. 2013. ²²	Randomized controlled trial	57 older adults	10 weeks of training with Nintendo Wii. Static adjustable leg press apparatus, Fourth-order Butterworth filter, force plate, Good balance,	 Older adults who took the 10 weeks of training with the Nintendo Wii had a significant improvement in mechanical muscle function, where there was an increase of approximately 20% not only in maximum muscle strength (MVC), but also in the rapid force generation capacity (RFD). In addition to substantial improvements in functional performance. Static postural balance (CoP-VM) was not affected after Wii training.
Physical/ Physiological effects	Pluchino A et al. 2012. ²³	Randomized controlled trial	40 older adults.	8 weeks of training. Timed Up & Go, One-Leg Stance, functional reach, Tinetti Performance Oriented Mobility Assessment, force plate center of pressure (COP) and time to boundary, dynamic posturography (DP), Falls Risk for Older People – Community Setting, and Falls Efficacy Scale.	The Wii balance program and formalized training programs are equally effective. But the Wii program reduces costs, transfers and time, since it can be done at home.
	Chimbo-Yunga JM et al. 2017. ²⁴	Transversal study	387 older adults	National Cholesterol Education Program and the Adult Treatment Panel III. Short version of the International Physical Activity Questionnaire.	The prevalence of metabolic syndrome was high (59.9%), as well as the high level of physical activity (45%), however, there was no significant association between metabolic syndrome and level of physical activity.
	Gómez-Cabello A et al. 2018. ²⁵	Transversal study	3104 older adults	Assessment of physical condition through 8 tests; 6 of them from the "Senior Fitness Test" battery. Balance test and a gait speed test.	1 Greater strength, flexibility, agility, speed and endurance. 2 The activities carried out in organized PA classes (mainly maintenance gymnastics) are useful to improve the physical condition of older people and reduce the risk of having too low levels of it.
	Chalapud- Narváez LM et al. 2017. ²⁶	Quasi- experimental study	57 older adults	1) Functional extension or functional scope. 2) Tandem Test 3) Unipodal or monopodal test. 4) Sit-up or Sit-up test	Positive changes in balance and muscle strength of the lower limbs after applying the physical activity program.
	Guallar- Castillón P et al. 2004. ²⁷	Transversal study	3066 older adults	Structured interview and SF-36 health questionnaire.	The higher the intensity of AF during free time, the better CV related to health.
Effects on quality of life	Herrera Mor EM. 2015. ²⁸	Quasi- experimental study	26 older adults	Two days a week for 8 months. SF12-v2 questionnaire, SFT, MEC, Rosenberg's self-esteem test and the question of Fun with Sports Practice?	The higher volume of AF is positively related to mental health in older adults and due to the positive effect of exercise on mood and on different mental illnesses such as depression. Significant increase in leg and arm strength and flexibility, agility and aerobic endurance.
	Gallegos- Carrillo K et al. 2019. ²⁹	Transversal study	1085 older adults	Short-Form Health Survey evaluated the HRQoL	Participants who were physically active and used PHS reported better perceived HRQoL scores.

Source: Own elaboration.

Table 2. Description of results

Reference	Method and instruments	Pre-Post variables											P value			
		Evaluation Pre Post														
		Barthel index	Barthel index 89.33 ± 10.65								94.5 ± 7.92					
	4 weeks of training.	MMSE 22.7 ± 4.28							24.2 ± 4.87						0.014	
	Barthel index, MMSE.	GDS	0.4 ± 0.68						0.63 ± 0.77						0.166	
Liu IT et al. 2020. ¹⁴	MoCA and GDS. BDNF	Mocha	19.12 ± 3.79						20.76 ± 5.39						0.026	
2020.11	serum, MCP-1 plasma,	BDNF (pg / ml)	23458.35 ± 5418.26						25413.81 ± 7504.38						0.243	
	and IGF-1 plasma.	IGF-1 (ng / ml)	48.02 ± 17.13						48.79 ± 17.25						0.717	
		MCP-1 (pg / ml)	291.12 ± 42.07					262.54 ± 93	5.57					0.044		
Orr R et al. 2006. ¹⁵	10-week exercise program.		HIGH	MED	LOW WITH	V	WITH		HIGH	MED]	LOW	WII	ГН		
	Chattecx Dynamic Balance System, digital	BI	93.6 ± 18.3	84.9 ± 13.7	90.4 ± 6	.6 8	38.7 ±	9.9	92.6 ± 15.7	82.9 ±	14.3	79.6 ± 12.6	84.5	5 ± 13.9	.0001	
	Keizer pneumatic resistance machines fitted	Loss of balance score	4.3 ± 1.8	3.6 ± 1.3	4.3 ± 1.8	8 4	4.0 ± 1	.2	4.2 ± 2.1	3.5 ± 1	.3 3	3.5 ± 1.5	3.6 :	± 1.2	.003	
	with	Peak power							14 ± 8	15 ± 9		14 ± 7	3 ± 0	6	<.0001	
	A400 electronics.	Strength							20 ± 7	16 ± 7		13 ± 7	4 ± 4	4	<.0001	
		Endurance							185 ± 126	103 ± 7	5 8	82 ± 57	26 ±		<.0001	
Kobayashi R.	Plan for 8 weeks of		LOW-15	LOW-30	MED-15	MED-3		WITH	LOW-15	LOW-30	MED-15			WITH		
et al. 2020. ¹⁶	exercise.	CAVI (unit)	8.3 ± 1.0	8.6 ± 0.9	8.6 ± 1.1	8.2 ± 1.		3.2 ± 1.5	7.5 ± 0.8	7.6 ± 0.6	7.7 ± 1.1	7.3 ± 1.0		8.2 ± 1.5	0.0001	
	CAVI, AVI, API and PWV	AVI (unit)	27.4 ± 3.3	28.4 ± 1.6	27.4 ± 3.4	4.3	4	25.1 ± 4.3	19.2 ± 2.5	20.4 ± 1.4	18.5 ± 1.9	9 21.7 ± 3.6		25.0 ± 3.6	0.0001	
		API (unit)	31.9 ± 2.8	$\begin{array}{rrr} 34.0 & \pm \\ 4.8 \end{array}$	31.7 ± 2.5	4.0	2	32.1 ± 2.6	25.0 ± 1.4	26.7 ± 3.1	26.1 ± 1.6	5 24.1 ± 1.9		31.6 ± 1.6	0.0001	
		baPWV (cm / sec)	1,565.3 ± 111.1	102.2	$1,548.0 \pm 98.5$	1,513.4 ± 175.0	0 1	1,511.4 ± 150.1	1,349.3 ± 91.6	1,329.0 ± 82.3	78.5	\pm 1,275.0 \pm 8		1,530.6 ± 181.8	0.0001	
		hbPWV (cm / sec)	588.1 ± 26.1	35.6	623.9 ± 16.4	18.4		581.3 ± 44.7	514.2 ± 15.7	498.7 ± 43.9	31.2	\pm 470.0 \pm 15		$\begin{array}{rrr} 582.1 & \pm \\ 53.0 & \end{array}$	0.0001	
Campbell AJ	6-month exercise		Exercise Group Control Group					Exercise Group Control Group				broup				
et al. 1997. ¹⁷	program. Test balance scale Chair stand test.	Test balance score	0.42 (0.86) -0.01 (0.80)													
		hair stand test	1.07 1.87													
		Falls							88 152							
Castillo de Lima V et al.	14-week agility ladder exercise program. FTSS, TUG, WS, OLS R, OLS S.	Illinois (s)	35.9 ± 5.4						31.5 ± 4.5						0.02	
2020. ¹⁸		FTSS (s)	10.7 ± 2.0						7.7 ± 1.1						< 0.01	
		TUG (s)	7.7 ± 1.2					5.8 ± 0.7						< 0.01		
		WS (m / s)	1.3 ± 0.1					1.5 ± 0.1						< 0.01		
		OLS R (s)	16.4 ± 10.4						23.7 ± 9.0						0.03	
		OLS L (s)	15.7 ± 8.5						24.6 ± 8.1						0.01	

Reference	Method instruments		Pre-Post variables											
		Evaluation			Pre				Post					
Miller KL	4 week training	Fes	38.9 (17.5)				16.5 (6.9)	0.00						
et al.	program.	POMA	16.2 (2.3)				23.2 (2.6)	0.00						
2010. ¹⁹	FES, POMA, OLST.	POMA Balance Sub-Section	9.6 (1.3)				13.6 (1.6)	0.00						
		POMA Gait Sub-Section	6.5 (1.7)				9.6 (1.3)	0.00						
		OLST (time / sec)	2.9 (2.2)				5.1 (4.9)			0.02				
Faber MJ	Functional walking		FW	IB	FORME	R CONTROL	FW	IB	FORMER	CONTROL				
et al.	program (FW) and	POMA	20.2 ± 4.5	19.2 ± 4.9	19.7 ± 4.1		22.1±4.9	21.2 ± 5.0	21.6 ± 4.9	20.3 ± 5.8	> 0.5			
2006. ²⁰	Balance program (IB)	PPS	9.4 ± 4.2	8.2 ± 3.8	8.7 ± 4.0		9.8±4.5	8.3 ± 4.1	9.0 ± 4.3	8.7 ± 4.7	> 0.5			
	for 20 weeks.	GARS	40.6 ± 13.4	44.3 ± 12.0	42.7 ± 12	40.3 ± 13.7	40.0±12.9	44.1 ± 12.2	42.3 ± 12.6	41.4 ± 14.8	> 0.5			
Wolf S. et	Two weekly sessions for	Intervention	0	1	two	3	4	5	6	7				
al. 2003. ²¹	48 weeks. Falls Efficacy Scale.	Tai Chi	76m (52.4) *	36 (24.8) *	20 (13.8)	* 7 (4.8) *	3 (2.1) *	1 (0.7) *	1 (0.7) *	1 (0.7) *				
		Wellness	56 (39.7) *	43 (30.5) *	20 (14.2)	* 10(7.1)*	5 (3.5) *	5 (3.5) *	2 (1.4) *	0 (0.0) *				
Jorgensen	10 weeks of training		Wii		Control		Wii		Control					
MG et al.	with Nintendo Wii.	RFD (N / s)	3266 ± 2271		4143 ± 2831		$3704 \pm 262^{\circ}$	7	3622 ± 2423		.03			
$2013.^{22}$	RFD, TUG test, FES-1,	TUG test (s)	10.3 ± 3.8		9.0 ± 3.2		11.0 ± 5.0			10.9 ± 5.1				
	Chair Stand test.	FES-I (short) -score	11.3 ± 3.5		10.5 ± 3.0		11.3 ± 4.3		11.6 ± 3.8		.03			
		30-s Chair Stand test (n)	11.5 ± 3.8		13.3 ± 3.2		11.2 ± 3.0		12.1 ± 3.0		.01			
Pluchino	8 weeks of training.		SBEP Tai Chi		Wii Fit			SBEP Tai Chi		Wii Fit				
A et al.	TUG, OLS, FR, POMA.										044			
$2012.^{23}$		TUG (s) OLS (s)	9,381.868,251.87,619.6728.2219.1		7,712.34 1 31.1827.94		9,441.49 8,861.76 16.1118.83 31.8523.24			8,182.44 28.7626.41	.044			
		FR (cm)	36,178.08 40,397.00						39.7115.80	.084				
		POMAbal	15.001.60	15,900.30	· · · · · · · · · · · · · · · · · · ·		15,630.74	16,000.00			.000			
		POMAgait	11,380.92	12,000.00		1,751.16	12,000.00	12,000.00		11,950.35	.027			
Chalapud-	1) Functional extension	Functional Extension	Higher risk of falling		47.4%		28.1%							
Narváez	or functional scope. 2)		U	U	29.8%		33.3%	0.000						
LM et al.	· · ·		U											
$2017.^{26}$	Unipodal or monopodal test. 4) Sit-up or Sit-up test	T	2		22.8%		38.6%				0.020			
		· · ·	· · ·	Tandem eyes open	Higher risk of falling Lower risk of falling		3.5% 12.3%		21.1%	7%				
			0		84.2%		71.9%							
		Tandem eyes closed	Higher risk of falling		73.7%		52.6%		0.002					
		random og os orosou	0 0		15.8%		29.8%							
			Normal risk o		10.5%		17.5%							
		Unipodal eyes open	increased risk		98.2%		94.7%				0.102			
			5		1.8%		1.8%							
			5		0%		3.5%							
		Unipodal eyes closed			82.5%		66.7%	66.7%						
			Lower risk of	0	12.3%		19.3%							
					5.3%		14%							
		Sitting / standing	Lower muscl	0	82.5%		31.6%				0.000			
			Increased muscle strength		5.3%		52.6%							
			Normal muscle strength 12.3%				15.8%							

Reference	Method and instruments	Pre-Post variables							
Herrera Mor EM. 2015. ²⁸		Evaluation		Pre		Post			
	Two days a week for 8 months. SF12-v2	Physical function	Experimental Group 84.6 (26.5)	Control group 68.75 (34.3)	Experimental Group 86.5 (23.7)	Control group 62.5 (28.7)			
	questionnaire,SFT, MEC, Rosenberg's self-esteem test and questionnaire on Fun with Sports Practice?	Physical role Body ache General health	77.4 (26.5) 77.9 (32.7) 50.2 (17.8)	76.2 (33.0) 72.5 (31.3) 49.8 (24.14)	86 (23.2) 85.6 (28.4) 53.5 (17.7)	70 (33.0) 63.7 (27.5) 48.7 (27.5)			
		Vitality Social function	64.4 (33.3) 88.5 (23.7)	67.5 (36.4) 90 (27.4) 76 0 (24.2)	58.7 (43.0) 94.2 (17.7)	43.7 (41.3) 78.7 (31.7)			
		Emotional role Leg strength Strength arms	78.8 (34.4) 14.1 (5.2) 11.0 (4.1)	76.9 (34.2) 11.6 (4.0) 9.4 (3.2)	82.7 (26.0) 18.4 (4.7) 15.4 (3.0)	73.1 (35.4) 11.7 (2.8) 8.5 (3.1)			
		Leg flexibility Arms flexibility	-6.4 (13.2) -12.2 (13.7)	-9.7 (11.9) -14.8 (11.3)	-10.3 (11.6)	-7.9 (12.4) -18.7 (10.1)			
		Agility Aerobic resistance	6.3 (1.5) 496.4 (110.1)	7.1 (2.3) 441.3 (81.6)	4.8 (.8) 511.6 (76.6)	7.3 (3.0) 409.7 (73.1)			
		Cognitive state	26.65 (2.9)	25.25 (3.4)	27.12 (2.3)	26.00 (4.2)			
		Self esteem Fat mass (kg) Lean mass (kg)	30.0 (3.1) 28.0 (7.1) 41.3 (5.3)	30.7 (3.8) 29.8 (8.4) 43.3 (7.3)	34 (3.5) 27.9 (8.1) 40.5 (5.5)	34.8 (2.7) 29.4 (8.7) 42.6 (7.1)			
		BMI	30 (3.7)	31.5 (4.8)	29.3 (3.7)	30.5 (5.3)			

Abbreviations: CAVI: Cardio-ankle Vascular Index, AVI: Blood Pulse Wave Index, API: Blood Pressure Volume Index, FES: Falls Efficacy Scale, POMA: Performance Oriented Mobility Assessment, OLST: One-Leg Stance Test, GARS: Groningen Activity Restriction Scale, POMAbal: balance portion of the Tinetti Performance Oriented Mobility Assessment; POMAgait: mobility portion of the Tinetti, Performance Oriented Mobility Assessment, SBEP: standard balance exercise program.

*Percentage

Source: Own elaboration.