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Abstract

This paper presents the gain tuning of an adaptive control law by means of Particle Swarm Optimization (PSO). The restrictions
imposed on the particles in the PSO are obtained from the stability analysis of the adaptive control law. In this way, the PSO
produces particles associated with optimal gains that simultaneously guarantee closed-loop stability and the minimization of the
Fitness Function. The adaptive controller employs the velocity and acceleration of the desired trajectory signal for constructing the
regressor vector used in the update law. In addition, a new technique is proposed for bounding the parameter estimates allowing them
to remain within certain prescribed limits. The performance of the adaptive law tuned using the PSO is evaluated by experiments
on a low-cost servo system.

Keywords: Adaptive Control, Optimization, PSO, DC servomotor.

Resumen

Este trabajo presenta una estrategia de sintonización de las ganancias de una ley de control adaptable mediante la Optimización
por Enjambre de Partı́culas (PSO). Las restricciones impuestas a las partı́culas en el PSO se obtienen a partir del análisis de
estabilidad de la ley de control adaptable. De esta forma, el PSO produce partı́culas asociadas a ganancias óptimas que garantizan
simultáneamente la estabilidad en lazo cerrado y la minimización de la función objetivo. El controlador adaptable emplea la
velocidad y la aceleración de la señal de trayectoria deseada para construir el vector regresor utilizado en la ley de adaptación
propuesta. Además, se propone una nueva técnica de acotación para los parámetros estimados que permite mantenerlos dentro de
lı́mites prescritos. El desempeño de la ley adaptable sintonizada mediante PSO se evalúa mediante experimentos en un servosistema
de bajo costo.

Palabras Clave: Control adaptable, Optimización, PSO, Servomotores de CD.

1. Introduction

Knowledge of the parameters of a model of the plant to be
controlled is of great importance for the design of classical and
advanced control laws. These parameters are not always ex-
actly known and may exhibit changes over time. A possible so-
lution to this problem is the use of adaptive controllers, which
dispense the exact knowledge of the plant parameters and may
improve performance in face of parametric changes. A wide va-
riety of adaptive controllers have been reported in the literature,
and they are classified as direct and indirect, and are designed

for trajectory tracking, reference model tracking or regulation
tasks (Åström y Wittenmark, 2013), (Narendra, 2013), (Sastry,
1989), (Sastry y Bodson, 2011).

On the other hand, the effect of disturbances and measure-
ment noise produce what is called parametric drift in the update
laws that produce the parameter estimates. This problem may
prevent the tracking error from converging to zero or may in-
duce closed-loop instability. In (Narendra y Annaswamy, 2012)
(Narendra, 2013), (Sun, 1995) several solutions to this problem
is proposed, one of the them is the so called e-modification,
which adds an extra term to the update law to counteract the
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parametric drift.
Another aspect to be considered in the design of an adap-

tive controller in practice is the construction of the regressor
vector used in the adaptive law. In many cases the regressor is
designed using measured signals. This approach is unfeasible
if the noise level in the measurements is large, which trans-
lates into poor performance. Interestingly enough, in (Sadegh
y Horowitz, 1990), (Lewis et al., 2003) in the case of the adap-
tive control of robot manipulators, the Desired Compensation
Adaptation Law (DCAL) employs the position, velocity and ac-
celeration of the desired trajectory to build the regressor. This
approach allows computing off-line the nonlinear terms related
to the inertia and Coriolis matrices as well as the gravity vector
thus reducing the computational burden when computing the
DCAL.

On the other hand, as far as the adaptive control design is
concerned, the gain tuning is performed using classical tech-
niques such as Zigler-Nichols rules, an approach applied to
auto-tuners (Astrom, 1987), and statistical or heuristic tuning
(Åström et al., 1993). Currently, the use of intelligent optimiza-
tion techniques in the area of automatic control and mechatron-
ics has become an useful tool for tuning the gains of control
algorithms. There are a variety of intelligent optimization tech-
niques in the literature, related to the tuning of classical con-
trollers such as PID (Chang, 2022), (Ibrahim et al., 2019), ac-
tive disturbance rejection control algorithms (Liu et al., 2022),
(Hu y Chen, 2022), and adaptive controllers (Mohideen et al.,
2013), (Rodrı́guez-Molina et al., 2019b), among others.

On the other hand, several metaheuristics including the Ge-
netic Algorithm, Simulated Annealing, and Tabu Search has
been used for PID controller tuning applied to bioprocess con-
trol (Roeva y Slavov, 2012). An interesting survey on applying
intelligent optimization techniques to PID controller tuning is
found in (Joseph et al., 2022) whereas reference (Rodrı́guez-
Molina et al., 2020) gives an account on how to apply multiob-
jective optimization to controller tuning.

The aforementioned works give rise to the objective of this
work. It is intended to design a new adaptive control algorithm
applied to the control of servomotors which has the following
features. The proposed algorithm employs only noise-free ve-
locity and acceleration of the desired trajectory in the regressor
vector. On the other hand, the proposed adaptive controller is
based on a new smooth bounding technique for the parameter
estimates combined with the standard e modification. In addi-
tion, Particle Swarm Optimization techniques are used for the
tuning of the adaptive controller gains.

The outline of the paper is as follows. Section 2 describes
the mathematical model and the parametrization of the dynam-
ical model of a servo system. Section 3 is devoted to the
proposed adaptive controller. Section 4 presents the Particle
Swarm Optimization algorithm. The Optimization of the Pa-
rameters is developed in Section 5. Experiments with a labora-
tory prototype are reported in Section 6. The paper ends with
some concluding remarks.

2. Mathematical Model of a Servo System

The model of the servo system under study assumes that a
power amplifier working in current mode drives a DC motor,

the latter endowed with a position sensor. The model is de-
scribed as:

Jÿ = − f ẏ + ku + d̄ (1)

where y, ẏ and ÿ are respectively the DC motor angular posi-
tion, velocity and acceleration, u is the control voltage, J cor-
responds to the DC motor and load inertias, f is the viscous
friction coefficient, k is the input gain, which depends on the
power amplifier gain and the motor torque constant, and d̄ cor-
responds to bounded external disturbances.

Multiplying (1) by
1
k

gives:

J
k

ÿ = −
f
k

ẏ + u +
d̄
k

(2)

which has the next alternative writing:

θ1ÿ + θ2ẏ = u + d (3)

with θ1 =
J
k
> 0, θ2 =

f
k
> 0 and d =

d̄
k

where |d| ≤ D.

3. Proposed Adaptive Controller

3.1. Control law
The following algorithm computed using known parameters

is proposed to control the servo model (3):

u = kPe + Kr + θ1ÿd + θ2ẏd (4)

with

e = yd − y

r = e + ė

ṙ = ė + ë
(5)

Variable e = yd − y is the tracking error and the terms yd, ẏd

and ÿd are the desired reference signal and its first and second
time derivatives. The feedback part of controller (4) is equiva-
lent to a standard Proportional Derivative (PD) control law:

kPe + Kr = kPe + K(ė + e) = (kP + K)e + Kė (6)

and the proportional and derivative gains correspond to kp =

kP + K and kd = K respectively.
Now, assume that the control law is computed using param-

eter estimates θ̂1 and θ̂2 instead of θ1 and θ2:

u = Kr + kPe + θ̂1ÿd + θ̂2ẏd (7)

The dynamics of the closed-loop system is obtained by sub-
stituting (7) into (3):

θ1ÿ + θ2ẏ = Kr + kPe + θ̂1ÿd + θ̂2ẏd + d (8)

Adding and subtracting θ1ÿd and θ2ẏd in (8), considering
the tracking error e and its time derivative, and the parametric
errors defined as:

θ̃ =

[
θ̃1
θ̃2

]
=

[
θ̂1 − θ1
θ̂2 − θ2

]
(9)

produce:

θ1ë + θ2ė = −Kr − kPe − θ̃1ÿd − θ̃2ẏd − d (10)
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Substituting ë = ṙ − ė and ė = r − e defined in (5) into (10)
yields:

θ1ṙ + θ2r = θ1ė + θ2e − θ̃1ÿd − θ̃2ẏd − Kr − kPe − d (11)

Define:

ϕ =
[

(ÿd + ė) (ẏd + e)
]T

(12)

ϕd =
[

ÿd ẏd

]T
(13)

θ =
[
θ1 θ2

]T
(14)

Φ = ϕT θ − ϕT
d θ

= θ1(ÿd + ė) + θ2(ẏd + e) − θ1ÿd − θ2ẏd

= θ1ė + θ2e (15)

The above definitions allow writing (11) as follows:

θ1ṙ + θ2r = Φ − ϕT
d θ̃ − Kr − kPe − d (16)

where θ̃ is defined in (9).

3.2. Update law

In order to proceed consider the next assumption:
Assumption 1: Parameters θi, i = 1, 2 are bounded as

θmin i ≤ θi ≤ θmax i and the bounds are known.
Now, define the next function:

θi = f (ηi) = σi[1 + tanh(ηi)] + θmin i (17)

σi =
1
2

[θmax i − θmin i], i = 1, 2 (18)

for θi, ηi, i = 1, 2. Function (17) guaranties that for any ηi ∈ R
the value of θi ∈ Ωi = [θmin i, θmax i], i = 1, 2. Function tanh(·)
corresponds to the hyperbolic tangent.

The function:

Vsi = ln cosh(η̂i) − ln cosh(ηi) − (η̂i − ηi) tanh(ηi) (19)

linked to (17), is positive definite with a minimum η̂i = ηi i =
1, 2.

Moreover, note also that:

θ̃i = θ̂i − θi

= σi[1 + tanh(η̂i)] + θmin i

− σi[1 + tanh(ηi)] + θmin i

= σi[tanh(η̂i) − tanh(ηi)] (20)

Bearing in mind function (17), computing the estimate θ̂i of
θi for i = 1, 2 is performed as follows:

θ̂i = σi[1 + tanh(η̂i)] + θmin i

σi =
1
2

[θmax i − θmin i], i = 1, 2 (21)

˙̂η1 = γ1ÿdr − γ1κθ̂1|r|
˙̂η2 = γ2ÿdr − γ2κθ̂2|r|

3.3. Stability issues
The stability analysis of the closed-loop system is per-

formed by taking into account the error dynamics (16) and the
update laws (21). To this end, the next Lyapunov function can-
didate:

V =
1
2
θ1r2 +

1
2

kPe2 +
σ1

γ1
Vs1 +

σ2

γ2
Vs2 (22)

allows obtaining the following conditions:
The term:

λ = θ2 + K −
1

2kP
(θ2 − θ1)2 − θ1 (23)

is positive if:

K > θmax 1 +
1

2kP
(θmax 1 + θmax 2)2 (24)

Besides, the Lyapunov function time derivative (22) is neg-
ative definite if

|r| >
Λ

λ
(25)

where
Λ = D +

1
4
κθ2max 1 +

1
4
κθ2max 2 (26)

which allows concluding that the solutions of the closed-loop
system are uniformly ultimately bounded.

4. Particle Swarm Optimization (PSO) algorithm

Created in 1995 by Kennedy and Eberhart, this algorithm
is based on the mathematical abstraction of a simplified social
model behavior of bird flocks (Kennedy y Eberhart, 1995). The
potential solutions that the PSO generates are represented as
a swarm of particles moving towards a search space defined
by the optimization problem. The movement of the particles is
called flight and the main idea is that every particle finds a place
in the search space that minimizes a cost function.

It is worth mentioning that the PSO algorithm is one of the
most widely applied swarm intelligence methods due to its abil-
ity to solve many complex optimization problems in different
areas (Wang et al., 2018). It is also important to highlight that
unlike the PSO algorithms employed in the literature to tune
adaptive controllers Rodrı́guez-Molina et al. (2019c); Chang
(2022); Rodrı́guez-Molina et al. (2019a), the PSO algorithm
presented here considers the stability conditions of the closed-
loop system to define the set of feasible search solutions.

4.1. Theory
The PSO algorithm with inertia weight ω-PSO algorithm

(Sidorov, 2018) is composed of N particles of dimension L.
The particles are defined as zn(k) = [zn,1, . . . , zn,L]T where
n ∈ [1, . . . ,N]. For every particle, there exists a velocity vector
vn(k) = [vn,1, . . . , vn,L]T . The following second order discrete-
time dynamic system describes the evolution of the algorithm:

vn(k + 1) = ωvn(k) (27)
+c1rand()(pBest(k, n) − zn(k))
+c2rand()(gBest(k) − zn(k))

zn(k + 1) = zn(k) + vn(k + 1) (28)
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where the initial conditions are zn,l(0) = rand() and vn,l(0) = 0
such that l ∈ [1, . . . , L] and rand() is the uniformly distributed
random number function. The parameter ω ∈ [0, 1) is called the
inertia weight and c1 ∈ [0, 1), c2 ∈ [0, 1) are called the learning
factors. The terms pBest (k, n) ∈ RL and gBest (k) ∈ RL are
defined as follows:

pBest(k, n) = arg min
0≤s≤k

J(zn(s)) (29)

gBest(k) = arg min
0≤s≤k,1≤ j≤n

J(z j(s)) (30)

and J(·) is a fitness function. The pseudocode of the PSO algo-
rithm is shown in Fig. 1.

The PSO algorithm doesn’t have the ability to take into ac-
count the limits of the search space in the particles to ensure
closed-loop stability, then, it is important to define a set of fea-
sible solutions. This set is called Ω ∈ RD. In this work, the
Projection Boundary method (Juarez-Castillo et al., 2019) is
implemented in the PSO algorithm to limit the particle posi-
tions to the set Ω. In this technique if an element of the solution
zn(k+1) falls out ofΩ, the Projection Boundary method projects
it into the boundary of Ω:

zn,d(k + 1)

=


zn,d(k + 1) if min(Ωd) < zn,d(k + 1) < max(Ωd)
min(Ωd) if min(Ωd) > zn,d(k + 1)
max(Ωd) if max(Ωd) < zn,d(k + 1)

(31)

where d = 1, . . . ,D.

5. Parameter optimization

Carrying out the optimization requires performing a dy-
namic simulation of the servo system, an due to this fact, it
is necessary to use the parameter estimates θ̂1I and θ̂2I of θ1, θ2
obtained according to (36).

Figure 1: ω-PSO algorithm

The parameters to estimate using the PSO algorithm are kP

and K from the control law (7) and the adaptation law param-
eters γ1, γ2 and κ in (21). Thus, the particles of the PSO algo-
rithm are defined as:

zn := [kP,K, γ1, γ2, κ]T (32)

On the other hand, the fitness function J is defined as fol-
lows:

J =

∫ T2

T1

(
w1|e| + w2|ė| + w3exp(|θ̂1 − θ̂1I |)

+w4exp(|θ̂2 − θ̂2I |) + w5|u| + w6

∣∣∣∣du
dt

∣∣∣∣) dt (33)

where T1 = 0, T2 = 100, exp(·) is the exponential function,
the weights w1 = 0.3,w2 = 0.3,w3 = 0.1,w4 = 0.1,w5 =

0.1,w6 = 0.1 define the importance given to every integrand, e
is the tracking error and ė is the velocity error, u is the control
signal and the last term corresponds to its time derivative.

The set of feasible solutions is defined as follows taking into
account the stability analysis:

Ω =

(
kP > 0, γ1 > 0, γ2 > 0, κ > 0,

∞ > K > θmax 1 +
1

2kP
(θmax 1 + θmax 2)2

)
(34)

Note that the stability condition (24) is used to define the
set Ω.

The tuning procedure of the parameters of the PSO is per-
formed using the irace package, which gives a number of n = 10
particles, a value of NP = 400 iterations, an inertia weight of
ω = 0.9, and values of the learning parameters of c1 = 0.9 and
c2 = 0.8. Each run of the algorithm stops after 4000 (n×NP)
evaluations.

The results of the optimization are depicted in Table 1. A
sampling of 30 independent runs with the same initial param-
eters is carried out to observe the behavior of the PSO algo-
rithm. The results of the tests are displayed in Table 2. This
table shows that the test produces minimum, median, and aver-
age values very similar and a standard deviation close to zero.
Therefore, the behavior of the PSO algorithm is considered con-
sistent.

Table 1: Parameters obtained by means of the PSO algorithm.
Control algorithm gains Adaptation law variables

kP = 1.44 γ1 = γ2 = 7.5
K = 1.1 κ = 0.002

Table 2: Statistical results.
Evaluation of J

Minimum 112.71
Median 112.76
Mean 113.00
Standard Deviation 0.4886

6. Experiments Results

6.1. Laboratory prototype

The Laboratory prototype used for implementing and test-
ing the proposed controller consists of a personal computer
and a Quanser Consulting Q2-USB data acquisition board
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(see Fig. 2). The control algorithm is coded in the MAT-
LAB/SIMULINK programming platform under the Quanser
QUARC real-time environment with a sampling time of 1 ms
and the Euler01 integration method. The control signal out-
put produced by the data acquisition board is processed through
a linear amplifier integrated circuit LM675 from Texas Instru-
ments, which drives a Makeblock 180 smart encoder motor (see
Fig. 3) whose load corresponds to an inertia disk.

Figure 2: Laboratory prototype.

Figure 3: Makeblock servomotor and its technical characteristics (Makeblock,
2019).

6.2. Experimental results

The next second-order dynamic system generates a refer-
ence signal yd and its first and second-time derivatives:

ÿd = −2ζωnẏd − ω
2
nyd + ω

2
nrm (35)

where ζ = 1 and ωn = 5 to make the reference signal yd as
close as possible to the reference defined as rm = 0.5 sin(0.3t)+
0.3 sin(0.2t)+0.1 sin(0.7t). This signal is amplified using a gain
of 2 and processed by a low-pass filter with a cut-off frequency
of 5 rad/s.

The parameters presented in Table 1 are used to imple-
ment the adaptive control law algorithm (7) using the adapta-
tion law (21). The initial condition are set to η1(0) = −10 and
η2(0) = 10. To obtain the θmin i and θmax i values shown in Ta-
ble 3, which are used in the evaluation of the proposed adaptive

controller the following relationships are used:

θmin 1 =
1
2
θ̂1I

θmax 1 = 2θ̂1I

θmin 2 =
1
2
θ̂2I (36)

θmax 2 = 2θ̂2I

where θ̂1I =
1
θ̂LS 2

and θ̂2I =
θ̂LS 1

θ̂LS 2
. θ̂LS 1 and θ̂LS 2 are parameters

previously estimated using the off-line Least Squares algorithm
(further details are found in (Morales et al., 2022)).

To assess the performance of the controller (7) the follow-
ing performance criteria are used: the integral squared error
(ISE) and the integral of the absolute value of the control signal
variation ( IACV). These indices are expressed as follows:

IS E =
∫ T2

T1

k[e(t)]2dt (37)

IACV =
∫ T2

T1

∣∣∣∣∣du(t)
dt

∣∣∣∣∣ dt (38)

where k represents a scaling factor and {T1,T2} defines a time
interval where the performance indexes are computed. For the
comparative study a value of k = 100 is used with T1 = 20s and
T2 = 30s. Table 4 shows the corresponding results.

Fig. 4(a) depicts the reference and the output signals of the
proposed adaptive controller (7), (21). It is noted that during
the first 5 seconds there is a large tracking error. Afterwards,
the tracking error decreases. This can be corroborated in Fig.
4(c) where the error signal exhibits a large peak and the de-
creases. In addition, the ISE index in Table 4 is very small.
Fig. 4(b) shows that the control signal never exceeds the upper
and lower limits of the power amplifer of ±7.4V . Besides, the
tuning generated by the PSO algorithm produces very low lev-
els of chattering. This is the result of taking into account the

term |
du
dt
| in the cost function. If this term is not included in

(33) large leves of chattering could appear in the control signal,
which may degrade the closed-loop performance.

Table 3: Limits used in the implementation of the Adaptive Control law.
Bounds on the parameter estimates

θmin 1 = 0.04 θmax 1 = 0.16
θmin 2 = 0.78 θmax 2 = 3.12

Table 4: Performance of the adaptive controller using update law (7), (21).
Control Law ISE IACV

Proposed adaptive controller (7), (21) 0.0036 114
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(a) Servomotor position output vs desired reference signal.
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Figure 4: Proposed adaptive controller (7), (21).
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(a) Estimated parameter θ̂1 bounded by θmin 1, θmax 1.
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(b) Estimated parameter θ̂2 bounded by θmin 2, θmax 2.

Figure 5: Estimated parameters θ̂ using the adaptive law (21).

Fig. 5 shows the graph of the parameter estimates produced
by the updated law (21). They remain within the bounds θmin i

and θmax i and converge to almost constant values. Note that the
estimate θ̂2 remains in its lower limit θmax less than 5 s. This be-
havior is due to the large initial condition in η2. However, after
this time period θ̂2 evolves towards an almost constant value. A
similar comment applies to θ̂1.

7. Conclusion

The results reported in this work indicate that the trajec-
tories of the closed-loop system are uniformly and ultimately
bounded. Moreover, the experiments show that the proposed
adaptive controller with the parameters tuned by the PSO algo-
rithm produces a small tracking error. Furthermore, as a nov-
elty, the PSO algorithm employed here uses the theoretical sta-
bility results to build the set of feasible solutions. Future work
includes extending the results to more complex systems includ-
ing robot manipulators and quadrotors, which may have mul-
tiple terms to tune. Moreover, in the case of quadrotors, opti-
mization is also required to cope with limited energy resources.
A potential limitation of the proposed optimization method is
that the stability conditions of more complex systems may be
complicated and difficult to use to build the set of feasible solu-
tions. Another potential problem is the fact that for larger sys-
tems, tuning more parameters would require the development of
more advanced PSO algorithms. Moreover, the computational
burden increases due to a larger number of parameters and a
larger set of feasible solutions to explore.
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Aldape-Pérez, M. (2019b). Adaptive controller tuning method based on on-

line multiobjective optimization: A case study of the four-bar mechanism.
IEEE transactions on cybernetics, 51(3):1272–1285.

Rodrı́guez-Molina, A., Villarreal-Cervantes, M. G., Mezura-Montes, E., y
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