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Abstract

This note discusses common errors on using convex modelling and linear matrix inequalities for nonlinear control, a metho-
dology that has become increasingly popular due to its systematicness and numerical implementability. Illustrations on common
problems are made from existing literature: they are classified and discussed; advices are given to prevent them. Convex mode-
lling is employed in linear parameter varying, Takagi-Sugeno models, and other convex structures in order to subsume or rewrite
a nonlinear system for analysis or design via the direct Lyapunov method. Convexity plays a central role in allowing a finite set of
vertex conditions in the form of linear matrix inequalities to be sufficient for the corresponding task. In contrast with other nonlinear
methodologies, this one produces expressions resembling linear results, which makes it easier to grasp while often inducing subtle
mistakes.
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Resumen

Este trabajo analiza los errores comunes al usar el modelado convexo y las desigualdades matriciales lineales para el control
no lineal, una metodologı́a que se ha vuelto cada vez más popular debido a su sistematicidad e implementabilidad numérica. Los
ejemplos sobre problemas comunes son tomados de literatura existente: se clasifican, discuten y se dan consejos para prevenirlos. El
modelado convexo se emplea en la variación de parámetros lineales, los modelos Takagi-Sugeno y otras estructuras convexas para
subsumir o reescribir un sistema no lineal para el análisis o diseño a través del método directo de Lyapunov. La convexidad juega
un papel central al permitir que un conjunto finito de condiciones en forma de desigualdades matriciales lineales sea suficiente para
la tarea correspondiente. A diferencia de otras metodologı́as no lineales, ésta produce expresiones que se asemejan a resultados
lineales, lo que hace que sea más fácil de comprender y, a menudo, induce errores sútiles.
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Desigualdades Matriciales Lineales, Método Directo de Lyapunov, Modelo Convexo, Control no Lineal, Dominio de atracción.

1. Preliminaries

Nonlinear control via convex structures (Lendek et al.,
2010) and linear matrix inequalities (LMIs) (Boyd et al., 1994)
have become a very well-established methodology in the last
three decades; its origins can be traced back to approxima-
te linear parameter varying (LPV) systems (Shamma, 2012),
Takagi-Sugeno (TS) fuzzy models (Tanaka y Wang, 2001), and

linear fractional transformations (LFT) (Cockburn y Morton,
1997). Since the appearance of the sector nonlinearity metho-
dology in Taniguchi et al. (2001); Ohtake et al. (2003), which
allows rewriting a nonlinear system as a convex sum of linear
ones within a region of interest, the use of convex modelling and
LMIs has become a legitimate nonlinear control tool, i.e., for-
mally based on the direct Lyapunov method, results on analysis
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and design apply to the original nonlinear model (Bernal et al.,
2019).

Convex modelling can be briefly described as rewriting a
nonlinear system

ẋ(t) = f (x) + g(x)u(t), y(t) = s(x), (1)

where x ∈ Rn is the state vector, u ∈ Rm gathers the sys-
tem inputs, and y ∈ Ro represents measurable outputs, with
f : Rn → Rn, g : Rn → Rn×m, and s : Rn → Ro being suf-
ficiently smooth vector fields of appropriate size, as a convex
sum of linear systems within a region of interest x ∈ Ω ⊂ Rn,
0 ∈ Ω.

Such task begins by finding A(x), B(x), and C(x) such that
f (x) = A(x)x, g(x) = B(x), and s(x) = C(x)x with any non-
constant term in A(x), B(x), and C(x) being well-defined and
bounded withinΩ. If these conditions are met, the referred non-
constant terms can be grouped in z(x) = [z1(x) z2(x) · · · zp(x)]T

where zi(x) ∈ [z0
i , z

1
i ], ∀x ∈ Ω. Based on these terms, the follo-

wing can be defined:

wi
0(x)=

z1
i −zi(x)

z1
i −z0

i

, wi
1(x)=1−wi

0(x), i ∈ {1, 2, . . . , p} (2)

which in turn allows rewriting any non-constant term in A(x),
B(x), and C(x) as

zi(x)=wi
0(x)z0

i +wi
1(x)z1

i =

1∑
i j=0

wi
i j

(x)zi j

i , i∈{1, 2, . . . , p}. (3)

Convexity of functions wi
0(x), wi

1(x), i ∈ {1, 2, . . . , p} allows
gathering them at the leftmost side of expressions (Bertsekas et
al., 2003), which means (1) is equivalent to:

ẋ(t)=
∑
i∈Bp

wi(x) (Aix(t)+Biu(t)) , y(t)=
∑
i∈Bp

wi(x)Cix(t), (4)

where convexity lies on the fact that wi(x) ∈ [0, 1], ∀x ∈ Ω and∑
i∈Bp wi(x) = 1, ∀x ∈ Rn; B = {0, 1}, i = (i1, i2, . . . , ip), wi(x) =

w1
i1

(x)w2
i2

(x) · · ·wp
ip

(x), Ai = A(x)|wi(x)=1, Bi = B(x)|wi(x)=1, Ci =

C(x)|wi(x)=1.
The direct Lyapunov method (Khalil, 2002) comes at hand

to perform stability analysis and/or controller/observer design
for a nonlinear system that has been put in the convex form (4).
Usually, a quadratic Lyapunov function candidate V = xT Px,
P = PT > 0, is employed, along with controllers that em-
ploy the same nonlinearities of the system (parallel distributed
compensation (PDC)) (Wang et al., 1996) or observers that em-
ploy the measurable nonlinearities (Tanaka et al., 1998). For
illustration purposes, consider the stability theorem along with
its proof, inspired in the classical result in Tanaka y Sugeno
(1990):

Theorem 1. The origin x = 0 of the nonlinear system (1) with
u = 0 and equivalent convex model (4) ∀x ∈ Ω, is asymptoti-
cally stable if there exists P = PT > 0 such that PAi +AT

i P < 0,
∀i ∈ Bp. Any trajectory starting in {x : xT Px ≤ c} ⊂ Ω goes
asymptotically to 0.

Proof. Since P = PT > 0, V(x) = xT Px is a valid Lyapunov
function candidate; its time derivative is

V̇ =2xT Pẋ = xT P

∑
i∈Bp

wi(x)Aix

 + ∑
i∈Bp

wi(x)Aix

T

Px

=xT
∑
i∈Bp

wi(x)
(
PAi + AT

i P
)

x,

which is negative-definite for x , 0 if PAi + AT
i P < 0, ∀i ∈ Bp,

since wi(x) ∈ [0, 1], ∀x ∈ Ω; this makes V(x) a Lyapunov fun-
ction guaranteeing asymptotic stability of x = 0.

Since the validity of V(x) as a Lyapunov function depends
on x ∈ Ω, it is clear that any trajectory within the Lyapunov
level {x : xT Px ≤ c} ⊂ Ω goes asymptotically to 0. □

2. Boundedness and convexity of modelled nonlinearities

2.1. Incorrect handling of fractional convex expressions
As shown in Section 1, a convex model is not unique as

there are many ways to factorize f (x) = A(x)x and select non-
constant terms within A(x) (Sala et al., 2005). Valid choices for
non-constant expressions are terms and factors; denominators
cannot be considered among these choices since we intend to
use convexity to group terms at the rightmost side of the ex-
pressions while convex sums and convex functions wi(x) are
grouped at the leftmost side.

For example, consider expressions z1(x) ∈ [z0
1, z

1
1] and

z2(x) ∈ [z0
2, z

1
2], ∀x ∈ Ω, which can be rewritten as convex sums

of their bounds z1(x) =
∑1

i1=0 w1
i1

(x)zi1
1 , z2(x) =

∑1
i2=0 w2

i2
(x)zi2

2

with w j
0(x)+w j

1(x) = 1, w j
0, w j

1 ∈ [0, 1], ∀x ∈ Ω, j ∈ {1, 2}; then

z1(x) + z2(x) =
1∑

i1=0

w1
i1 (x)zi1

1 +

1∑
i2=0

w2
i2 (x)zi2

2

=

1∑
i1=0

1∑
i2=0

w1
i1 (x)w2

i2 (x)
(
zi1

1 +zi2
2

)
,

z1(x)z2(x) =

 1∑
i1=0

w1
i1 (x)zi1

1


 1∑

i2=0

w2
i2 (x)zi2

2


=

1∑
i1=0

1∑
i2=0

w1
i1 (x)w2

i2 (x)zi1
1 zi2

2 ,

hold, but

z1(x)/z2(x) =

 1∑
i1=0

w1
i1 (x)zi1

1

/
 1∑

i2=0

w2
i2 (x)zi2

2


,

1∑
i1=0

1∑
i2=0

w1
i1 (x)w2

i2 (x)zi1
1 /z

i2
2,

which unfortunately keeps appearing as an equivalence from
time to time in a variety of proposals.

Conversely, lifting convex sums from their inverses is also,
in general, incorrect. Indeed, while the implication

P−1
j >0 =⇒

∑
j∈Bp

wj(x)Pj

−1

> 0,
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holds, it cannot be extended to other cases as

AiP−1
j >0 ≠⇒

∑
i∈Bp

wi(x)Ai

∑
j∈Bp

wj(x)Pj

−1

> 0.

Such inverses of convex sums usually appear during the deve-
lopments of the direct Lyapunov method (Daafouz y Bernus-
sou, 2001) while applying matrix properties such as congruen-
ce, Schur complement, etcetera (Scherer, 2004).

Another source of problems during modelling of fractio-
nal expressions, is the fact that the resulting non-constant terms
zi(x) must be bounded ∀x ∈ Ω. This is a condition usually dis-
regarded. For instance, in Chiu (2010), the non-constant term
z1 = 1 − io/iL, where iL ∈ [−5 5] has been defined, but, since iL

can be 0, z1 is not well defined in the specified compact set.

2.2. Incorrect conclusions on nonlinear systems based on
their convex approximations

Convex models resulting from applying the methodology
described in Section 1 are equivalent to their original nonlinear
model (Taniguchi et al., 2001; Sala y Ariño, 2009). Such equi-
valence allows drawing conclusions over the plant based on
the convex representation and, ultimately, on the vertices of a
simplex of linear systems. Nevertheless, when this equivalence
is broken, conclusions cannot be drawn over the original non-
linear system based on approximate convex models, e.g., TS
fuzzy models resulting from linearization at multiple operating
points (Johansen et al., 2000), LPV systems resulting from con-
vex embedding of nonlinearities (Shamma, 2012), etc.

In the context of stability analysis, this means that asym-
ptotic stability can be ensured of x = 0 for a convex model of
the form (4) (u = 0) based on its vertices Ai if convexity holds,
i.e., if ∃Ω such that 0 ∈ Ω and wi(x) ∈ [0, 1],

∑
i∈Bp wi(x) = 1.

Additionally, if asymptotic stability of x = 0 has been ensured
for a convex model of the form (4) (u = 0), the same thing can
be claimed for the origin of the nonlinear model ẋ = f (x) only
if f (x) =

∑
i∈Bp Aix, i.e., if no approximation has been invol-

ved (Vázquez et al., 2016). Moreover, any trajectory beginning
in the outermost Lyapunov level within Ω is guaranteed to go
asymptotically to 0 (see subsection 3.2).

Thus, while being negligible from a practical standpoint,
drawing conclusions on a nonlinear plant based on convex ap-
proximations is not correct from a theoretical perspective, e.g.,
the PENDUBOT in Begovich et al. (2002) or the inverted pen-
dulum in Meda-Campaña et al. (2017) have been successfully
controlled or observed by means of an approximate fuzzy TS
model, but this is a mere coincidence as no mathematical gua-
rantees have been established.

2.3. Incorrect assumptions on the membership functions

In the LPV and TS fuzzy context, membership functions
do not necessarily come from modelling nonlinear terms, i.e.,
their dependency is usually ignored in favour of global assum-
ptions on their convexity Tanaka y Wang (2001); Tóth (2010).
Nevertheless, when the sector nonlinearity approach described
in Section 1 is employed to rewrite a nonlinear system as a con-
vex model within a compact set of the states Ω, membership
functions hold the convex sum property exclusively in Ω and

their dependency on the state is not to be ignored Quintana et
al. (2021).

Perhaps influenced by the LPV or fuzzy perspective, many
works handle the membership functions without checking if
their availability makes sense, leading to the following common
problems:

1. Using membership functions that are not available: Ob-
server design based on convex structures mimics parallel
distributed compensation, which means that a nonlinear
observer gain of the form

L(x̂, y, u) =
∑
k∈Bp

wk(x̂, y, u)Lk,

where x̂ is the state estimate, y is the output, and u is
the input, is sought. Obviously, availability of the mem-
bership functions wk(·) is crucial to make sense of such
configuration; hence, the specified dependency on avai-
lable variables. Nevertheless, such dependency is often
ignored, leading to observers that use the very varia-
bles they are supposed to observe, e.g., in Chiu (2010)
an observer uses membership functions that depend on
z1 = 1 − io/iL where io = 0,5vb; but vb is to be esti-
mated by the observer, which is an inconsistency. It can
be argued that the membership function might be availa-
ble while some of the terms it depends upon are not; ne-
vertheless, the mathematical relationship is known and,
if solvable, the variables to be estimated by the observer
can be directly obtained from this relationship.

2. Assuming availability of the membership functions, ren-
ding an observer unnecessary: The simplest solution for
observer design based on convex structures is to assume
the membership functions are available, but even in this
case consistency should be double-checked. For instan-
ce, consider (Lendek et al., 2010, Example 4.1) where an
observer is designed for a 2nd-order system whose output
is y = [x1 x1x2]T . Clearly, x1 and x2 can be directly cal-
culated from the output y if x1 , 0, i.e., there is no need
of constructing an observer whose membership functions
depend on the output.

3. Using membership functions that depend on uncertain-
ties: Similar to the case where a controller/observer uses
membership functions depending on unavailable varia-
bles, capturing uncertainties in membership functions
makes them unavailable. Modelling stands, but unless a
split of available/unavailable signals of membership fun-
ctions is performed, the “captured” uncertainties should
not be used due to their nature (Chadli y Guerra, 2012).

3. Connections with the direct Lyapunov method

3.1. Incorrect use of time-invariant Lyapunov theorems for
time-variant systems

In the classical book Tanaka y Wang (2001), a TS model
is defined as a “fuzzy blending of linear system models”, whe-
re the “blending” is performed by membership functions which
depend on “state variables, external disturbances, and/or time”.
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This class of systems is therefore not limited to time-invariant
nonlinear ones. Yet, the Lyapunov theorems invoked along the
book for analysis and design are those reserved for the time-
invariant case, e.g., the stability of the origin of a TS system
of the form ẋ(t) =

∑r
i=1 hi(z(t))Aix(t), where hi(z(t)) are con-

vex functions depending on states, parameters, and/or time, is
determined by means of a Lyapunov function V(x) = xT Px,
P = PT > 0, such that PAi + AT

i P < 0, i ∈ {1, 2, . . . , r}, regard-
less of the fact that such Lyapunov function candidate is only
adequate for time-invariant systems.

This is not a technicality that can be ignored; take for ins-
tance the time-varying system ẋ = A(t)x(t), x ∈ R2, in (Khalil,
2014, Example 4.22), with

A(t) =
[
−1 + 1,5 cos2 t 1 − 1,5 sin t cos t
−1 − 1,5 sin t cos t −1 + 1,5 sin2 t

]
, (5)

where it has been proven that the states go to infinity no matter
how close x(0) is set from the origin, and regardless of the fact
that σ(A(t)) = −0,25 ± 0,25

√
7 j. Nevertheless, once t is repla-

ced by x1 as to obtain ẋ = A(x1)x, where A(x1) has obviously
the same eigenvalues as A(t), the origin becomes asymptotically
stable. What does it mean for convex modelling and stability
analysis via LMIs? It implies that any convex model of both
systems with the same bounds may lead to the same vertices
Ai, based on which stability is determined; the only difference
between both representations being the dependency of convex
functions wi(·) on time or states, i.e.:

ẋ(t) =
∑
i∈Bp

wi(t)Aix(t) time-variant,

ẋ(t) =
∑
i∈Bp

wi(x1)Aix(t) time-invariant.

If z1 = cos2 t and z2 = sin t cos t for the time-variant sys-
tem, or z1 = cos2 x1 and z2 = sin x1 cos x1 for the time-invariant
system, the vertices of the resulting convex model in both cases
are

A00 =

[
0,44 1,15
−0,85 −0,94

]
, A01 =

[
0,44 0,7
−1,29 −0,94

]
,

A10 =

[
0,5 1,15
−0,85 −1

]
, A11 =

[
0,5 0,7
−1,29 −1

]
,

provided that −0,1 ≤ t ≤ 0,2 (time-variant case) or −0,1 ≤ x1 ≤

0,2 (time-invariant case).
Besides the fact that bounding t is not a wise option when

asymptotic stability is investigated, if a time-invariant version
of the Lyapunov theorems is employed on the time-variant sys-
tem1, it may draw the incorrect conclusion that x = 0 is asym-
ptotically stable. Indeed, the LMIs in Theorem 1, P = PT > 0
and PAi + AT

i P < 0, i ∈ B2, are feasible with

P =
[

628,53 −481,52
−481,52 720,75

]
.

3.2. Incorrect conclusions about the guaranteed domain of at-
traction

When a nonlinear system is rewritten as a convex model
following the sector nonlinearity approach sketched in Section

1, membership functions wi(x) are guaranteed to hold the con-
vex sum property, i.e.,

∑
i∈Bp wi(x) = 1, wi(x) ∈ [0, 1], within

Ω ⊂ Rn. As it has been seen in Section 1, convexity plays a cen-
tral role in finding sufficient LMI conditions for analysis and/or
design. If convexity is ignored, some properties still remain va-
lid (though they are useless), for instance,

∑
i∈Bp wi(x) = 1 and∑

i∈Bp wi(x)Aix = f (x).
TS models in the fuzzy context did not consider these

subtleties since the membership functions where assumed to
hold the convex sum property everywhere, regardless of their
specific dependency on time, states, or external variables. This
is the reason why theorems in Tanaka y Wang (2001) and many
other works within the TS fuzzy context, claim global stability
of the origin, paying little or no attention to the actual bounds
of the outermost Lyapunov level.

If a modelling region Ω is employed for sector nonlinearity
approach, trajectories are guaranteed to behave as specified by
the LMI analysis or design, only if they are contained in the ou-
termost Lyapunov level within Ω, e.g., {x : xT Px ≤ c, c > 0} ⊂
Ω (Bernal y Guerra, 2010; Lee y Kim, 2014; González et al.,
2017). Very often, careless simulations are presented where the
trajectories are outside the outermost Lyapunov level within the
modelling region or, plainly, outside the modelling region. See
Figure 1 for an illustration of these remarks.

Figura 1: Outermost Lyapunov level within Ω

3.3. Incorrect formulation of quadratic Lyapunov functions

Since the quadratic Lyapunov function V(χ) = χT Pχ is the
simplest to accommodate when LMI tests are sought, and the
developments usually involve a variety of matrix properties, it
is common to find that inadequate or incorrect vectors have ma-
de their way into the final form of the time derivative V̇(χ),
leading to incorrect conclusions.

Indeed, consider the numerical examples in (Chiu y Ou-
yang, 2011, Section 5) where the maximum power point trac-
king (MPPT) is sought by means of a Lyapunov function of the
form

V(xc) = [xT s x̃T ]P[xT s x̃T ]T ,

with xc = [xT s x̃T ]T . Since only y = x1 (for maximum-
power-voltage-based control) or y = (Ga − npγIrseγx1 )x1 (for
direct-maximum-power control) are required to go to 0 to achie-
ve MPPT, guaranteeing xc → 0 by means of the LMI condi-
tions in (Chiu y Ouyang, 2011, Theorem 1) goes far beyond

1For time-variant versions of the Lyapunov theorems, we refer the interested reader to Vidyasagar (2002).
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the objective. This is clear from the fact that these conditions
were supposedly used to obtain the controller/observer scheme
for the simulation in (Chiu y Ouyang, 2011, Figure 4), where
x1 = vpv → x1ss > 10; this is a contradiction as xc → 0 implies
x1 → 0.

A similar misunderstanding can be found in the discrete-
time context, where several works using Lyapunov functions
that depend on past/future values of the state have been used,
claiming bigger chances of feasibility or numerical advanta-
ges (Guerra et al., 2012). Fundamentals on dynamical systems
are very clear about the state being all the information required
to predict the future (Kailath, 1980); at the same time, Lyapu-
nov theory establishes asymptotic stability of the origin based
on a Lyapunov function that depends on the state vector for
time-invariant systems (Khalil, 2002). Based on these facts, it
has been proven that the use of past/future values of the state
adds no value to the feasibility chances of time-invariant sys-
tems, provided that enough computational resources are availa-
ble (Ariño et al., 2017).

4. Sufficiency and necessity of LMI conditions

As shown in Theorem 1 of Section 1, sufficient LMI con-
ditions guaranteeing a nonlinear convex sum to be negative-
definite are extracted from the vertices of the corresponding
simplex. Conversely, it is necessary for any particular choice of
values of the weighted convex sum to be a valid inequality; the
same applies for properties such as controllability and observa-
bility: it is impossible for a set of sufficient controller/observer
design LMIs to yield a feasible solution if there exists a par-
ticular combination of the convex sum that is not stabiliza-
ble/detectable (Meda-Campaña et al., 2017).

To illustrate the previous points, consider the LMIs (28)-
(30) in (Chiu, 2010, Theorem 2), which are

X1, P2 > 0, (6)
(

ACiX1 + X1AT
Ci + BeiM j

+MT
j BT

ei + ρ
2HsHT

s

)
X1Q1

Q1X1 X1

 < 0, (7)

A
T
i P2 + P2Ai − ET NT

i − NiE + Q2 P2H

HT P2
1
ρ2 Is

 < 0, (8)

where X1 ∈ R
4×4, P2 ∈ R

3×3, Ni ∈ R
3×2, M j ∈ R

1×4 are deci-
sion variables; ACi ∈ R

4×4, Bei ∈ R
4×1, Ai ∈ R

3×3, E ∈ R2×3,
H ∈ R3×s (where s is the rows number of the disturbance vec-
tor of the system) are known matrices corresponding to the
TS exact modelling of the dc/dc buck converter given in Chiu
(2010); Hs = [HT 0s×1]T ; Q1 ∈ R

4×4, Q2 ∈ R
3×3, and ρ ∈ R are

given for Lyapunov analysis. If feasible, controller and obser-
ver gains Ki = MiX−1

1 and Li = P−1
2 Ni, i, j ∈ {1, 2, . . . , 32}, can

be found from LMIs (6)-(8).
Nevertheless, note that in order to satisfy LMIs (7), it is

necessary to guarantee that all principal minors are negative-
definite; thus, the following LMIs must hold

ACiX1 + X1AT
Ci + BeiM j + MT

j BT
ei + ρ

2HsHT
s < 0, (9)

for i, j ∈ {1, 2, . . . , 32}; applying the Schur complement to (9)
yieldsACiX1 + X1AT

Ci + BeiM j + MT
j BT

ei Hs

HT
s −

1
ρ2 Is

 < 0, (10)

which, in turn, implies that

ACiX1 + X1AT
Ci + BeiM j + MT

j BT
ei < 0

must be satisfied to guarantee LMIs (10) (and, consequently,
(7)-(9)) hold.

Considering the values of ACi and Bei, i, j ∈ {1, 2, . . . , 32},
in Chiu (2010), it is possible to calculate the convex combina-
tions Aconv =

∑32
i=1 µiACi, Bconv =

∑32
i=1 µiBei, with the particular

choice of values for µi,
∑32

i=1 µi = 1, given in table 1:

Aconv=


−1,026973/L 0 −1/L 0

0 191,05 0 0
166,5 0 0 0

0 −0,87055 0 0

, Bconv=


14,73/L

0
0
0

,
where L = 150× 10−6H, given in Chiu (2010), has been written
as a symbol to underline the fact that the validity of the argu-
ment that follows does not depend on any particular value of
L. Importantly, the decimals in Aconv and Bconv are finite and
complete.

Tabla 1: Values for µi

µi

index value index value
1 0.012 17 0.129
2 0.06 18 0.078
3 0.003 19 0.01
4 0.015 20 0.038
5 0.022 21 0.031
6 0.096 22 0.046
7 0.059 23 0.018
8 0.035 24 0.013
9 0.017 25 0.014
10 0.013 26 0.023
11 0.003 27 0.047
12 0.019 28 0.019
13 0.022 29 0.017
14 0.022 30 0.005
15 0.02 31 0.016
16 0.03 32 0.048

An L-dependent linear transformation T

T =


−

√
c1 − c2 + c3

c4L

√
c1 − c2 − c3

c4L
0 0

0 0 c5 0
1 1 0 0
0 0 1 1

 ,
where parameters ci, i ∈ {1, 2, 3, 4, 5} are shown in table 2 (ob-
tained with all their decimal positions via the Symbolic Tool-
box in MATLAB™R2015a) is applied to the pair (Aconv, Bconv)
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in order to split the controllable and uncontrollable parts; the
transformed matrices are:

Ā = T−1AconvT =
[
Ā11 02×2
02×2 Ā22

]
, B̄ = T−1Bconv =

[
B̄1
02×1

]
,

where Ā22 = diag{191,05, 0} (regardless of the value of L); the-
refore, the pair (Aconv, Bconv) is not stabilizable. Consequently,
by continuity arguments, there is a neighbourhood of values
around those of the referred pair which yield an infinite number
of convex combinations that are not stabilizable. This implies
that LMIs (6)-(8) in (Chiu, 2010, Theorem 2) cannot be feasi-
ble, for any value of L; this is confirmed for L = 150 × 10−6H
as in the example in Chiu (2010), both using the LMI Toolbox
(Gahinet et al., 1995) and Yalmip/SeDuMi (Sturm, 1999), even
if H is sought.

Tabla 2: Values for parameters ci

parameter value
c1 334239387371312443540948353025
c2 211063824938000195349201083695104
c3 578134402514945
c4 187462334489296896
c5 -3821000/17411

5. BMIs disguised as LMIs

LMIs belong to the class of convex optimization problems,
which are guaranteed to be solved in polynomial time, where
“being solved” means being able to find a solution if the pro-
blem is feasible or determine that no solution exists (unfeasi-
ble) (Boyd et al., 1994). No ambiguity can prevail at this level.
Least-squares and linear programming also belong to this class.
In contrast, there is no certainty about the feasibility of a non-
convex problem for which a method has been tried yielding no
results; moreover, if a solution is found it might not be “opti-
mal” in any sense (local minima) (VanAntwerp y Braatz, 2000).
Common examples of non-convex problems are bilinear matrix
inequalities (BMIs), which, due to the reasons above, are not
the desired form for analysis and design of nonlinear systems
via convex modelling (Kau et al., 2007).

BMIs are not to be mistaken for LMIs that have not been
properly worked out, e.g., when performing controller design,
a middle step is finding P = PT > 0 and F such that

P(A + BF) + (A + BF)T P < 0,

which is not an LMI in P and F. Nevertheless, a bijective chan-
ge of variables turns this inequality into an LMI because, in fact,
the solution space for P and F above is indeed convex, namely,

AX + BM + XAT + MT BT < 0,

where X = P−1 and M = FP−1. Conversely, sufficient LMI con-
ditions can be found for solving a BMI problem if the solution
space has been “cut” into a convex one.

Despite these facts, many works can be found (fortunately
in receding numbers) whose design conditions are formulated
as open or disguised BMIs (Cao et al., 1998; Chadli y Guerra,

2012). It is understandable: finding sufficient LMI conditions
for solving a specific problem can be very difficult; if found,
these conditions can be prohibitively conservative (Crusius y
Trofino, 1999).

A very good example of this situation is the develop-
ment of piecewise controller design for TS systems: condi-
tions in (Feng, 2003, Theorem 3.1) are what many refer to
as parameter-dependent LMIs, an euphemism for the fact that
conditions are BMIs with “only a handful” of scalar parame-
ters to be “chosen”, more specifically, scalars ϵl > 0, l ∈
{1, 2, . . . ,m} have to be chosen to solve the following “LMIs”
for Pl and Ql: 

Ωl Pl QT
l

Pl −M−1
Pl 0

Ql 0 −M−1
Ql

 < 0,

where Ωl = PlAT
l +AlPl +QT

l BT
l + BlQl + ϵl(ElAET

lA +ElBET
lB)+

γ−2(1 + ϵ−1
l )DlDT

l + γ
−2(1 + ϵl)ElDET

lD, MPl = ϵ
−1
l I + (1 +

3ϵ−1
l )HT

l Hl + (1 + 2ϵl + ϵ−1
l )ET

lH ElH , and MQl = ϵ
−1
l I + (1 +

ϵl + 2ϵ−1
l )GT

l Gl + (1 + 3ϵl)ET
lGElG.

These conditions were rapidly recognized as flawed and
the authors took one step back to the BMI formulation, now
openly exhibited in (Feng et al., 2005, Theorem 3.1), whe-
re Kl and T in expressions such as Pl = FT

l T Fl and Ωl =

AT
l Pl + PlAl + KT

l BT
l Pl + PlBlKl + ϵlET

lAElA + ET
l WlEl + (1 +

3ϵ−1
l )HT

l Hl + (1 + 3ϵl)ET
lH ElH within an inequality, are sought.

Notice that Kl and Pl appear multiplied in a couple of terms;
hence, the BMI nature of the expression.

The mistakes of the first work were discussed in Shirani
et al. (2010), but the BMI “correction” in Feng et al. (2005)
is neither false nor useful as no method can decide in polyno-
mial time the existence (or not) of a solution for a non-convex
problem. Otherwise stated, if non-convex formulations were
welcomed as “solutions” to control problems, practically all of
them would have to be declared solved, even if no guaranteed
method is offered to find a solution.

6. Conclusions

Common errors on using convex modelling and linear ma-
trix inequalities for nonlinear control have been discussed. The
main contributions of this work are listed below:

(A) Four problems in the area have been adressed.

(B) Both analytical and numerical problems have been illus-
trated.

(C) Clarifications concerning the difference between convex
modelling, analysis and design for linear parameter var-
ying and Takagi-Sugeno fuzzy models, on the one hand,
and nonlinear systems on the other hand, have been ma-
de.

(D) Some advices to avoid the aforementioned issues have
been included.
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