® DESDE 2013
' https://repository.uaeh.edu.mx/revistas/index.php/icbi/issue/archive I

Pddi Boletin Cientifico de Ciencias Bdsicas e Ingenierias del ICBI
Universidad Auténoma del Estado de Hidalgo ISSN: 2007-6363

Publicacion Semestral Pédi Vol. 12 No. Especial 2 (2024) 28-33

Comparisson between generalized geometric triangulation and odometry
Comparativa entre triangulacion geométrica generalizada y odometria

E. Mar-Castro“*®*, L.M. Aparicio-Lastiri"*?, O.V. Pérez-Arista"®?, R.S. Nafez-Cruz"#?, E.D. Antonio-Yafez "*'*

2Laboratorio experimental de automatizacion y control, Universidad Politécnica de Tulancingo, 43629, Tulancingo, Hidalgo, México.

Resumen

La localizacién en robética mévil es fundamental para la realizacion de tareas auténomas. Por este motivo, se han desarrollado
diferentes algoritmos para estimar la pose del robot, ya sea de forma relativa o absoluta. Una de las mas conocidas es la odometria
basada en ruedas, la cual es facil de implementar pero con la desventaja de que el error en la estimacién tiende a aumentar con-
forme pasa el tiempo produciendo un cdlculo poco confiable. Por el contrario, los algoritmos de localizacién absoluta como la
Triangulacion Geométrica Generalizada (TGG) ofrecen una mayor precision, aunque su implementacion puede requerir sistemas
de medicién mds avanzados y la estimacion de la pose puede ser lenta. Este trabajo compara estos dos algoritmos y muestra lo
que sucede con la estimacion de pose después de un periodo de tiempo. Los resultados presentados se obtuvieron en una zona de
pruebas real equipada con un robot Turtlebot3 modelo burger.

Palabras Clave: Pose, robot diferencial, odometria, triangulaciéon geométrica generalizada, ArUco.

Abstract

The localization in mobile robotics is essential for carrying out autonomous tasks. For this reason, different algorithms have
been developed to estimate the robot’s pose, either relatively or absolutely. One of the best known is Wheel-based Odometry, which
is easy to implement but the error tends to increase with respect to time producing an unreliable estimation. In contrast, absolute
localization algorithms such as Generalized Geometric Triangulation (GGT) offer higher accuracy, although their implementation
may require more advanced measurement systems, and pose estimation can be slow. This work compares these two algorithms and
shows what happens with the pose estimation when used for period of time. The presented results were obtained in a real testing
area equipped with a Turtlebot3 model burger robot.

Keywords: Pose, differential robot, odometry, generalize geometric triangulation, ArUco.

1. Introduction Some robots often use Global Positioning Systems (GPS),
which is an absolute localization system that utilizes satellite
information to estimate their position. The use of this type of
technology is beneficial in environments where it is guaranteed
that the GPS signal will be perceivable (Ohno et al., 2004).
However, in many cases, such systems are not practical because
robotic systems require information with the highest possible
accuracy. Moreover, the GPS signal may not be perceivable
in the robot’s environments. To address these challenges, one
of the main techniques employed for this purpose is odometry,
which relies on sensor information that measures the robot’s
motion. This information can estimate changes in its position
over time, and a relative pose concerning the initial pose can be

Localization is an essential part of the navigation of mobile
robots, which consists of estimating the position and orientation
of the robot at each moment in time (Campbell et al., 2020).
To achieve this, many algorithms have been designed that use
sensors such as encoders, inertial measurement units, cameras,
LiDAR, ultrasonics, etc. Absolute measurement techniques are
more accurate than those that depend on integrating changes
in the robot’s motion, i.e., relative or dependent on a previous
pose state in space. Typically, absolute localization techniques
use sensors that allow the robot to sense its environment and
estimate its position based on this.

*Autor para correspondencia: enrique.mar1292 @upt.edu.mx
Correo electronico: enrique.mar1292@upt.edu.mx (Enrique Mar-Castro), luis.apariciol293@upt.edu.mx (Luis Mario Aparicio-Lastiri),
omar.perez2115005@upt.edu.mx (Omar Vicente Pérez-Arista), rafael.nunez@upt.edu.mx (Rafael Stanley Nufiez-Cruz), elba.antonio@upt.edu.mx (Elba Do-
lores Antonio-Yafez).

Historial del manuscrito: recibido el 12/12/2023, ultima versién-revisada recibida el 12/12/2023, aceptado el 10/03/2024, @ @@@
BY NC ND

publicado el 22/04/2024. DOI: https://doi.org/10.29057/icbi.v12iEspecial2.12240

https://repository.uaeh.edu.mx/revistas/index.php/icbi/issue/archive
https://orcid.org/0009-0002-3661-2941
https://orcid.org/0009-0004-7938-6950
https://orcid.org/0000-0003-4984-0468
https://orcid.org/0000-0003-4539-6232
https://orcid.org/0000-0002-4379-5582
https://doi.org/10.29057/icbi.v12iEspecial2.12240
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es

E. Mar-Castro et al. / Publicacion Semestral Pddi Vol. 12 No. Especial 2 (2024) 28-33 29

calculated. However, it is well known that the estimated pose
drifts over long integration times in relative localization algo-
rithms due to the accumulation of sensor measurement noise,
whether from internal or external factors (Siegwart ef al., 2011).

On the other hand, absolute localization techniques also
are used, which do not rely on previous pose states. Instead,
implementing these techniques allows robots to calculate their
pose based on the current measurement acquired by sensors. To
achieve this, prior information about the environment is needed.
This means that the absolute positions of specific objects must
be known so that, based on them, the robot’s position can be
estimated with respect to the inertial reference frame of the
workspace as presented in (Cavanini ef al., 2017). Accuracy
can be even more challenging indoors due to signal attenuation
and lack of direct visibility. Furthermore, absolute localiza-
tion often requires the installation of additional infrastructure,
such as visual markers, beacons, or GPS antennas, which can
be costly and restrict the robot’s mobility to specific areas.

The comparison of localization strategies is essential in the
field of mobile robotics because the results they yield enable
users to choose one method over others. In the literature, there
are reported comparisons of localization strategies that demon-
strate the accuracy of the tested algorithms, as shown in (Fauser
et al., 2017) (Almeida et al., 2018). On the other hand, (Esan
et al., 2020) provides a review of navigation systems in mo-
bile robots, and it also mentions some of the most commonly
used localization methods in these systems, which are classi-
fied based on the type of localization they offer, i.e., relative or
absolute. The variables analyzed in this review include imple-
mentation cost, accuracy, computational power, among others.

The main contribution of this work is to highlight the ad-
vantages and disadvantages of wheel-based odometry (WBO)
and generalized geometric triangulation (GGT) through exper-
imental tests that measure the magnitude of path following er-
rors. Both algorithms were chosen because of their relatively
easy implementation. Furthermore, these algorithms allow for
estimating the robot’s pose. However, generalized geometric
triangulation is a method that does so absolutely. This means
that the expected results, when compared to WBO, should be
more robust and accurate. In Section II explains the Odome-
try algorithm, detailing its components. Section III provides a
comprehensive description of the critical elements of the GGT
algorithm. Section IV discusses the computational implementa-
tion of both algorithms. Section V outlines the conducted test.
Section VI presents the test results, while in Section VII, the
conclusion and future work are mentioned.

2. Pose estimation using Odometry

Currently, there are different types of Odometry due to the
use of various sensors to estimate the robot’s motion. For in-
stance, Odometry that uses cameras is known as Visual Odom-
etry. According to (Scaramuzza y Fraundorfer, 2011), this al-
gorithm estimates the system’s movement by detecting features
in the environment. Therefore, to achieve good results, it is nec-
essary for the scene to be well-illuminated and have sufficient
textures for detection.

If lasers, such as LiDAR, are used instead of cameras, the
algorithm is known as Laser Odometry. LiDARs function as en-

vironment scanners, generating point clouds that can be three-
dimensional or two-dimensional. By comparing these point
clouds, the robot’s pose can be estimated. This type of Odome-
try is typically used in indoor environments. Still, algorithms
have also been developed that combine LiDAR with inertial
sensors and encoders to apply it in outdoor settings, as shown
in (Zhou et al., 2017). LiDAR odometry is used as an auxiliary
positioning system in outdoor environments to reduce accumu-
lated error when applying other types of Odometry based on
wheel encoders and inertial measurements.

Inertial Odometry, as described in (Campbell et al., 2020),
utilizes accelerometers, gyroscopes, and magnetometers to es-
timate the robot’s pose. However, these systems are prone to
error accumulation, which means that over time, the estimated
pose will deviate significantly from the actual pose.

Another common type of Odometry, widely used in ground
mobile robots, is Wheel-based Odometry. This technique re-
quires knowledge of the wheel speeds to estimate the robot’s
pose. This algorithm shares the same disadvantage as inertial
Odometry since it relies on integrating the wheel speeds, which
are often affected by environmental noise, such as wheel slip-
page. The accumulation of these errors leads to posing estima-
tion drift.

In this work, WBO was used. This algorithm was devel-
oped for a differential robot, and the forward kinematic model
was calculated for its implementation. The derivation of the dif-
ferential robot model has been widely reported in the literature.
According to (Siegwart et al., 2011), the contribution of each
wheel to the robot’s motion can be expressed as follows:

& = 0 [‘?’1]. (1)

R~ ONIs

Where &, is the vehicle’s velocity vector [%y, v, 0,17 with
respect to its own reference frame O,. ¢; and ¢, are the angular
velocities of the wheels, r is the wheel radius, and [is the dis-
tance between the wheel and the center of the axis that connects
them.

Yw.0

Xw,0 Xyt X

Figure 1: Odometry algorithm representation.

To obtain the robot’s velocities in the world reference frame

E. Mar-Castro et al. / Publicacion Semestral Pddi Vol. 12 No. Especial 2 (2024) 28-33 30

0, it is necessary to rotate &, from O, to 0,,, as follows:

Xy
é‘dw =):)w :R(e)ilé\w)
O

Where R(6) is the rotation matrix around z axis and is de-
fined as follows:

cos(d) -—sin(6) O
R(0) = |sin(d) cos(@) O]. 3)
0 0 1

To estimate the robot’s position in the world frame, vector
&, needs to be integrated with respect to time:

fw(t)=f0$w(T)dT+§w(0). “

Figure 2 shows the blocks diagram of the WBO algorithm.

#1 | Forward

; Kinematics [~
2

2, Model

Figure 2: Robot pose transformation to inertial reference frame.

The estimation produced by the original WBO algorithm
can be improved using sensor fusion techniques, such as
Kalman filter (Housein et al., 2022) with the estimation pro-
duced by other relative localization algorithms (Liu et al., 2016)
or even with absolute localization algorithms (Lobo et al.,
2014).

3. Pose Estimation using Generalized Geometric Triangu-
lation Algorithm

The Geometric Triangulation algorithm measures the an-
gles between the robot’s x, axis and each marker, whose po-
sitions are known in the world coordinate system O,,. This
is what sets this method apart from others like Trilateration,
which relies on measuring the distances between the robot and
the markers.

To estimate the robot’s position using this algorithm, the
robot must perceive at least three markers, as shown in Figure 3.
The markers must be uniquely identified in order to associate its
corresponding position, after that the orientation of each marker
with respect to the robot is calculated. The variable A; denotes
the relative angle of each marker i with respect to x,.

The angle 4;; is the “viewed” oriented angle between mark-
ers i and j, i.e., /l,'j = /lj—ﬂ,'. If/l, > /11', then /l,'j = 27T+(/lj—/l[).
This defines an arc between these two markers, which repre-
sents a set of possible robot positions.

When using three markers the point of intersection between
the arcs generated by A, and A3; corresponds to the robot’s po-
sition. According to (Esteves et al., 2004), the robot’s pose is
calculated using the following equations:

Xw = X1 — Ly - cos(¢p + 1), 5)
Yw =y1 — Ly - sin(¢ + 1), (6)
Oy =0 +T7—A. @)

Xy X2 X3 X1 X

Figure 3: Calculations performed in the GGT algorithm.

Where (x;, y) represents the coordinates of marker 1 in the
Cartesian plane of the workspace, L, is the distance between the
robot’s reference frame and marker 1. ¢ is the angle resulting
from the intersection between the x axis of the inertial reference
frame of the world and the line formed between markers 1 and
2. The angle 7 is the angle of the arc formed between marker 2
and the robot, measured from marker 1.

To calculate L;, the following equation is used:

u=f%$§ﬁ If [sin(di2)| > |sin(Aan)]
otherwise

®

L3y -sin(t+0—A131)
sin(A3;)

Ly, and L3 are the distances between the same markers. To
calculate them, we use the formula for the distance between two
points:

Liy = O = x)? + 01 =y ©)

Angle o is defined as the angle formed between x,, and the
line formed by markers 1 and 3, plus the angle ¢ with the inter-
section point at the coordinates of marker 1.

The calculation of 7 is performed as follows:

_1 sin Ay - (L1p - sin A3y — L3 - siny)
T =tan - . . (10)
L3y -sin Ay - cosy — Ly - cos Ayp - sin Az

The algorithm implemented in this work is the generalized
geometric triangulation, which differs from traditional geomet-
ric triangulation in that the markers do not need to be arranged
consecutively counterclockwise. The angles 4;, and A3; can be
equal to or greater than 180°, and the markers can be placed
anywhere in the working plane because the algorithm can esti-
mate the pose even if the robot is outside the triangle formed by
the three markers.

However, there are two critical restrictions to consider for
this algorithm. Firstly, it is well known in the literature that at
least three markers must be ’visible” to estimate the robot’s po-
sition. If fewer than three markers are visible, the robot’s pose
cannot be calculated using this method because there would be
multiple possible poses.

E. Mar-Castro et al. / Publicacion Semestral Pddi Vol. 12 No. Especial 2 (2024) 28-33 31

Secondly, even if three markers are visible, it does not guar-
antee that the position estimation can be performed correctly.
This is because the algorithm is limited when the circles gen-
erated by the arcs of the angles A4;, and A3; lie on the same
circumference. In this case, the intersection of these two arcs
will be another arc rather than a single point, similar to the first
restriction.

The authors in (Pierlot y Van Droogenbroeck, 2014), men-
tion several triangulation algorithms with 3 objects in a general
context. Additionally, it is noted that several authors have im-
plemented multi-markers triangulation algorithms. These algo-
rithms propose methods to improve accuracy in pose estimation
when more than 3 markers are available. Among these meth-
ods, computing the average of the estimated poses of n markers
is mentioned.

By leveraging the principles of geometry and the relation-
ships between the markers, this method allows for robust and
precise localization. However, it is essential to consider poten-
tial challenges, such as occlusions or excessive noise in marker
detection, which may affect the reliability of the localization re-
sults. Overall, geometric triangulation provides a valuable tech-
nique for enhancing the pose estimation capabilities of mobile
robots in various applications, including navigation, mapping,
and human-robot interaction.

4. Computational implementation of the pose estimators

The presented two algorithms were implemented on a com-
mercial differential robot, named TurtleBot3 Burger model.
This robot has 2 Dynamixel XL430-W250 motors that incor-
porate absolute position encoders. Also has a Raspberry Pi 4B
with 4 GB of RAM and a Raspberry Pi Camera V2.0. The
operating system used is Ubuntu Mate 20.04 for Raspberry pi
usage. The image processing, pose estimation using the Gen-
eralized Triangulation algorithm and trajectory generation were
performed on a separate external computer with an Intel Core
i5 processor and 16 GB of RAM. To compare the perform of
both localization algorithms, a system vision was place in the
top of the test area. The images from this system are processed
in a third computer with an Intel core i7 processor and 8 GB of
RAM.

There are several projects in the field that uses markers
to estimate pose using artificial vision, for this project ArUco
markers were used. While it is true that with a single marker
and knowledge of its position in the Cartesian plane, the robot’s
pose could be estimated (as demonstrated in the validation
method employed and explained in Section V), ArUco mark-
ers were chosen for their ease of generation and the exten-
sive documentation available for their implementation. Also,
other technology could be use, for example, in (Kristalina et al.,
2016) presents an application using Wireless Sensor Networks
(WSN5s) with Zigbee radio-frequency modules.

The ROS package used for image processing is called
aruco_detect, which calculates the transformation between
the camera and the detected markers. This package receives in-
formation from another package called usb_cam, which is the
interface between the camera and the software. It publishes a
message with the captured camera information and applies im-
age corrections using calibration parameters.

Once the transformation of the markers with respect to the
camera is estimated in the aruco_detect node, the orienta-
tion of each marker is estimated using the position information
(x;,y;) obtained from marker i. This is done using the trigono-
metric function arctan(y/x).

The process described above is carried out in a separate
node called aruco_getOrientation, part of the package de-
veloped in this work named triangulation. This node sub-
scribes to the topic /fiducial_transforms and publishes an-
other topic named /arucos_detected_info. The information
published is a custom data type that includes the marker IDs
and their orientations with respect to the camera.

Now, the data vector provided by the topic
/aruco_detected_info is read in another node called
GGT_algorithm, where the entire GGT algorithm is imple-
mented.

Jusb_cam/image_raw/compressed
Jusb_cam/camera_info

/GGT_algorithm IGGT_Pose

Figure 4: ROS nodes graph.

Murtiebot_node

Jarucos_detected info

In the proposed approach the robot’s pose can be estimated
using all the markers detected by the robot. To achieve this,
we implemented an algorithm for generating unique combina-
tions. The pose will be estimated once if the robot detects only
three markers. However, ten poses will be estimated if the robot
detects five markers. In other words, z

Where C, is the number of possible combinations without
repetition, and x represents the number of markers used for the
combinations, which in our case is 3. The number of markers n
can be determined by the size of the data vector received by the
GGT_algorithm node. The implementation of this algorithm
allows us to reduce the variation in the estimation of the robot’s
pose when more than three markers are detected, thereby im-
proving accuracy. Each calculated pose is passed through an
Exponential Moving Average (EMA) filter, which is defined by
the following formula:

&y =aM + (1 — a)p .)

In this case, & represents the absolute position vector of
the robot, M is the unfiltered estimated position vector, &; ,_; is
the previous absolute position vector of the robot, and « is the
gain applied to the filter. The value of a ranges between 0 and
1, where a value close to 1 gives more weight to the current es-
timation, reducing the filtering effect, while a lower value gives
more importance to the previous pose, resulting in a slower re-
sponse from the filter.

Regarding implementing the Odometry algorithm, we uti-
lized information from the turtlebot3_bringup package,
which publishes the /odom topic containing the robot’s odom-
etry information. This package was also used to control the
angular and linear velocities of the robot using both the Odom-
etry and GGT algorithms. This is achieved by publishing the
velocity commands to the /cmd_vel topic.

E. Mar-Castro et al. / Publicacion Semestral Pddi Vol. 12 No. Especial 2 (2024) 28-33 32

5. Experimental Testing

To conduct the comparison, a test area was built (figure 5)
based on the requirements of the GGT algorithm in such a way
that it could ensure that the robot could see at least 3 mark-
ers while following the given path. For this reason, a total of
forty-eight markers of size 7x7 bits, measuring 10x10 cm, were
placed around the walls that delimit the area. This were spaced
15 cm apart from center to center between each marker. Also,
other factors that impact the selection of the size are the camera
lens aperture and the distance at which the robot perceives the
markers.

Raspberry Pi Camera V2.0

Figure 5: Test area built and robot adaptations.

Four other markers were placed, with three fixed to the floor
and one mounted on the robot. These four markers are used to
estimate the robot’s pose in an absolute manner by calculating
the transformation between the marker on the robot and each
fixed floor marker. As mentioned in Section IV, another po-
sition estimation system was designed using a camera placed
above the test zone. This system was implemented on a sepa-
rate computer to avoid affecting the performance of image pro-
cessing and pose estimation when using the GGT algorithm.

The test to compare the pose estimation between the algo-
rithms mentioned in this work involves the robot following a
predefined trajectory consisting of straight segments and semi-
circular arcs for a defined duration. The shape of the trajec-
tory can also be seen in figure 6, indicated in blue. In the test,
the robot completed a total of 15 laps, with each lap taking 1
minute. The trajectory was generated using parametric equa-
tions. The following two equations were used to create the
semi-circular arcs:

recos(Y(t)) + x, (12)
P (n) + ye. (13)

Px
Py

Where r is the radius of the semicircle, (¢) is the angle as
a function of time, and x, and y, are the offsets from which the
semicircle will start. The parametric equations for the straight
line segments are given by:

Xf— X

pr=(—1t) + x;, (14)
tr—1t
Y=Y

Py =(t—t)2— 4y, (15)
Ir—1

Where ¢ is the current time in seconds, f; is the time at
which the straight segment should start, #; is the time at which

it should end, x; and y; are the coordinates from which the seg-
ment will start, and x; and y; are the coordinates at which it
should end. The advantage of generating the trajectory in this
way is that the references for the controllers are smooth.

Marker ID 1 Marker ID 47

& Marker ID 0

Robot Top Marker

B B E

Reference Marker

200 cm

Parametric Trajectory

I
|
I
I
I
I
I
I
I

[R e R —— T —— i R R I |

== R e]

245 cm

Figure 6: Layout diagram of markers and trajectory in the test zone.

To follow this trajectory, two PID controllers were imple-
mented to control the robot’s linear and angular velocity. The
equation for the distance between two points mentioned in (9)
was used to calculate the error in linear velocity. In this case,
the point (x,, y,) represents the reference point, and (xp, y;) rep-
resents the current estimated position of the robot. Thus, the
control signal for the linear velocity depends on the distance
between the robot and the current point generated by the trajec-
tory.

The error signal for the second controller is generated by
considering the heading orientation of the robot with respect to
the reference point given by the trajectory. As there are two
points in the Cartesian plane, the angle between them is calcu-
lated using the arctangent. There are two ways to consider this
error signal, one in a counterclockwise direction and the other
in a clockwise direction.

6. Comparison of results

In the proposed comparison the robot autonomously navi-
gate through 15 lap during 15 minutes with an average speed of
0.085%. The trajectory obtained during each test was recorded
using the vision system installed at the top of the testing area
for further comparison. This process was carried out for both
algorithms.

In Figure 7 at the top, the path following performed by the
robot with WBO is graphically depicted. In this graph, it can be
observed that during the initial minutes (approximately 4 min-
utes), the path followed by the robot closely matches the desired
trajectory. However, after this time, the described path starts to
deviate somewhat. This is because errors arising from finite
encoder resolution, imperfections in the floor, wheel slippage,
among other factors, begin to accumulate, leading to a diver-
gence in the pose estimation.

In contrast, figure 7 at the bottom displays the results ob-
tained in the same test but this time using the GGT algorithm.

E. Mar-Castro et al. / Publicacion Semestral Pddi Vol. 12 No. Especial 2 (2024) 28-33 33

From this graph, it is evident that the robot maintains a very
similar path to the reference throughout the entire duration of
the test. This is because the robot’s estimated pose is not af-
fected by previous estimation errors, as is the case with WBO.
However, this algorithm also experiences moments where the
estimation is not entirely accurate, especially when the robot
encounters semi-circular sections of the trajectory. These er-
rors are attributed to changes in lighting conditions and vibra-
tions caused by floor irregularities. Nonetheless, the robot’s
pose does not diverge.

Ml — T T T T T —
Parametric trayectory
o) —— WBO path following
N 0.5F b
.8
g
= Or E
8
=
S0.5F]
-1.5 -1 -0.5 0 0.5 1 1.5
f— T T T T L —]
Parametric trayectory
E — GGT path following
; 0.5F b
8
=
S of J
2
=
-0.5F b
1 1 1 1 1 1 1
-1.5 -1 -0.5 0 0.5 1 1.5

Position in X (m)

Figure 7: Path following test results from both algorithms. The robot’s trajec-
tory is shown in grayscale.

In figure 8 illustrates the magnitude of the following error.
It can be observed that the GGT algorithm has a maximum pose
estimation error of 0.28 m, while the odometry error grows over
time. Furthermore, it can be observed that the following error
in the GGT is bounded, which means corrective measures can
be applied to improve pose estimation. In the case of WBO,
this is not possible because the error grows over time.

o
=)

WBO error
— GGT error

N
~
T
1

S
o
T

Magnitude of the error (m)

100 200 300 400 500 600 700 800 900
Time (s)

Figure 8: Magnitude of path following error of WBO and GGT.

(=}

(=]

7. Conclusions and future work

The results show that the GGT algorithm had a better pose
estimation. This is because the estimation was based on the
position and orientation of known markers in the testing area.
On the other hand, in the WBO algorithm, the error due to the

factors mentioned before, provokes the robot’s pose estimation
to diverge. However, the WBO algorithm required fewer com-
ponents, as it only uses the encoder sensor in each motor and
the microcontroller that receives the trajectory. In contrast, the
GGT algorithm required a camera and a computer to process
images.

As a future work, the fusion of the two algorithms is pro-
posed in order to obtain the best of both cases. On one hand, a
fast pose estimation (odometry) can be achieved, while on the
other hand, an absolute estimation (triangulation) can be ob-
tained.

References

Almeida, A. C., Neto, S. R., y Bianchi, R. A. (2018). Comparing vision-based
monte-carlo localization methods. En 2018 Latin American Robotic Sympo-
sium, 2018 Brazilian Symposium on Robotics (SBR) and 2018 Workshop on
Robotics in Education (WRE), pp. 437-442.

Campbell, S., O'Mahony, N., Carvalho, A., Krpalkova, L., Riordan, D., y
Walsh, J. (2020). Where am i? localization techniques for mobile robots
a review. En 2020 6th International Conference on Mechatronics and
Robotics Engineering (ICMRE). IEEE.

Cavanini, L., Cimini, G., Ferracuti, F., Freddi, A., Ippoliti, G., Monteriu, A.,
y Verdini, F. (2017). A qr-code localization system for mobile robots: Ap-
plication to smart wheelchairs. En 2017 European Conference on Mobile
Robots (ECMR), pp. 1-6.

Esan, O., Du, S., y Lodewyk, B. (2020). Review on autonomous indoor wheel
mobile robot navigation systems. En 2020 International Conference on Arti-
ficial Intelligence, Big Data, Computing and Data Communication Systems
(icABCD), pp. 1-6.

Esteves, J. S., Carvalho, A., y Couto, C. (2004). Generalized geometric triangu-
lation algorithm for mobile robot absolute self-localization. En 2003 IEEE
International Symposium on Industrial Electronics (Cat. No.O3TH8692).
IEEE.

Fauser, T., Bruder, S., y El-Osery, A. (2017). A comparison of inertial-based
navigation algorithms for a low-cost indoor mobile robot. En 2017 12th In-
ternational Conference on Computer Science and Education (ICCSE), pp.
101-106.

Housein, A. A., Xingyu, G., Li, W., y Huang, Y. (2022). Extended kalman
filter sensor fusion in practice for mobile robot localization. International
Journal of Advanced Computer Science and Applications, 13(2).

Kristalina, P., Pratiarso, A., Badriyah, T., y Putro, E. D. (2016). A wireless sen-
sor networks localization using geometric triangulation scheme for object
tracking in urban search and rescue application. En 2016 2nd International
Conference on Science in Information Technology (ICSITech), pp. 254-259.

Liu, Y., Xiong, R., Wang, Y., Huang, H., Xie, X., Liu, X., y Zhang, G. (2016).
Stereo visual-inertial odometry with multiple kalman filters ensemble. /EEE
Transactions on Industrial Electronics, 63(10):6205-6216.

Lobo, A., Kadam, R., Shajahan, S., Malegam, K., Wagle, K., y Surve, S. (2014).
Localization and tracking of indoor mobile robot with beacons and dead
reckoning sensors. En 20714 IEEE Students’ Conference on Electrical, Elec-
tronics and Computer Science, pp. 1-4.

Ohno, K., Tsubouchi, T., Shigematsu, B., y Yuta, S. (2004). Differential
GPS and odometry-based outdoor navigation of a mobile robot. Advanced
Robotics, 18(6):611-635.

Pierlot, V. y Van Droogenbroeck, M. (2014). A new three object triangulation
algorithm for mobile robot positioning. [EEE Transactions on Robotics,
30(3):566-577.

Scaramuzza, D. y Fraundorfer, F. (2011). Visual odometry [tutorial]. [EEE
Robotics & Automation Magazine, 18(4):80-92.

Siegwart, R., Nourbakhsh, I. R., y Scaramuzza, D. (2011). Introduction to
Autonomous Mobile Robots. Intelligent Robotics and Autonomous Agents
series. MIT Press, London, England, 2 edicion.

Zhou, B., Tang, Z., Qian, K., Fang, F., y Ma, X. (2017). A LiDAR odometry
for outdoor mobile robots using NDT based scan matching in GPS-denied
environments. En 2017 IEEE 7th Annual International Conference on CY-
BER Technology in Automation, Control, and Intelligent Systems (CYBER).
IEEE.

	Introduction
	Pose estimation using Odometry
	Pose Estimation using Generalized Geometric Triangulation Algorithm
	Computational implementation of the pose estimators
	Experimental Testing
	Comparison of results
	Conclusions and future work

