

DESDE 2013 https://repository.uaeh.edu.mx/revistas/index.php/icbi/issue/archive Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI

Publicación Semestral Pädi Vol. 12 No. 24 (2025) 122-126

Thermodynamic simulation of α -spodumene calcination with Na₂SO₄ Simulación termodinámica de la calcinación de α -espodumena con Na₂SO₄

M. Pérez-Labra ⁽¹⁰⁾^a, *, A. Hernández-Ramírez⁽¹⁰⁾^b, J. A. Romero-Serrano⁽¹⁰⁾^b, M. U. Flores-Guerrero⁽¹⁰⁾^c, F. Patiño-Cardona^d I. Mendoza-Sánchez⁽¹⁰⁾^a

^a Academic Area of Earth Sciences and Materials. Autonomous University of Hidalgo State. Road Pachuca- Tulancingo Km 4.5 Mineral de la Reforma Zip Code 42184, Hidalgo México.

^b Metallurgy and Materials Department, ESIQIE-IPN. UPALM, Zacatenco, Zip Code 07738, Ciudad de México. México.

^c Industrial Electromechanics Area, Technological University of Tulancingo, 43642 Hidalgo, México.

^d Consejo de Ciencia, Tecnología e Innovación de Hidalgo Science Building, Exhacienda de la Concepción 3, La Concepción, 42162, Hidalgo, México.

Abstract

In this research work, the calcination reaction of α -spodumene (LiAlSi2O6) with Na2SO4 through thermodynamic simulation using the Equilib module included in the Fact Sage 8.2 software was studied. The LiAlSi2O6:Na2SO4 molar ratios (RM) analyzed were: 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.85, 1:1, and 1:1.5 in the temperature range from 50°C to 1200°C and 1 atmosphere of pressure determining the chemical species in equilibrium every 50 °C through Gibbs energy minimization. The most stable chemical species formed in all RMs were: Li2SO4, NaAlSi3O8, NaAlSiO4 and LiNaSO4. The maximum % percentage yield (% PY) for the Li2SO4 specie was 50% in the solid state starting at 500°C and in the liquid state at temperature \geq 900°C for the 1:1 RM with an excess of Na2SO4 of 15%. The results obtained from the present study allowed us to propose the reaction mechanism of the calcination process of α -spodumene with Na₂SO₄.

Keywords: a-spodumene, Calcination, Lithium, Simulation, Thermodynamics.

Resumen

En este trabajo de investigación se estudió la reacción de calcinación de α -espodumena (LiAlSi₂O₆) con Na₂SO₄ mediante simulación termodinámica utilizando el módulo Equilib incluido en el software Fact Sage 8.2. Las relaciones molares (RMs) LiAlSi₂O₆:Na₂SO₄ analizadas fueron: 1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.85, 1:1, y 1:1.5 en el rango de temperatura de 50°C a 1200°C y 1 atmosfera de presión determinando las especies químicas en equilibrio cada 50 °C a través de la minimización de energía de Gibbs. Las especies químicas más estables formadas en todas las RMs fueron: Li₂SO₄, NaAlSi₃O₈, NaAlSiO₄ y LiNaSO₄. El máximo % de rendimiento porcentual (% PY) para la especie Li₂SO₄ fue de 50% en estado sólido a partir de 500°C y en estado líquido a temperatura \geq 900°C para la RM 1:1 con un exceso de Na₂SO₄ de 15%. Los resultados obtenidos del presente estudio permitieron proponer el mecanismo de reacción del proceso de calcinación de α -espodumena con Na₂SO₄.

Palabras Clave: α-espodumena, Calcinación, Litio, Simulación, Termodinámica.

1. Introduction

 α -spodumene is an anhydrous alumino-silicate mineral with the formula LiAlSi₂O₆ belonging to the group of inosilicates/pyroxenes, it has a monoclinic system and can appear as prismatic crystals or with acicular habits, associated with lithium-rich pegmatites, along with quartz, albite, potassium feldspar, lepidolite, tourmaline and other lithium minerals (Garrett, 2004). Its physical appearance can vary from green, yellow, purple, gray or white depending on the amount and presence of other metals such as sodium, manganese, magnesium, iron, or titanium (Garrett, 2004). α podumene contains lithium as LiO₂ at approximately 8 wt% in pure mineral samples (Garrett, 2004), (Choubey et al., 2016) and is transformed to the β phase with a tetragonal structure by calcination at 900°C, which has a greater crystal volume, increasing the mobility of lithium atoms that then become easily accessible to acidic or alkaline aqueous

^{*}Autor para la correspondencia: miguel_perez5851@uaeh.edu.mx

Correo electrónico: miguel_perez5851@uaeh.edu.mx (M. Pérez-Labra), ahernandezr@ipn.mx (A. Hernandez-Ramirez), romeroipn@hotmail.com (J. A. Romero-Serrano), mflores@utectulancingo.edu.mx (M. U. Flores-Guerrero), franciscopatinocardona@gmail.com (F. Patiño-Cardona), me276575@uaeh.edu.mx (I. Mendoza-Sánchez).

123

leaching solutions. The type of monoclinic highly packed crystal structure type α , which consists of SiO₃ chains linked through Al⁺³ ions, and its high density (3.27 g cm⁻³) makes the mineral spodumene hard, abrasive and refractory to attack by liquid or gaseous chemical agents (Peltosaari et al., 2015), (Abdullah et al., 2019). The greatest use of lithium is due to its use as a component of rechargeable batteries used in electronic devices, in the manufacture of high-temperature lubricants, pharmaceutical products, chemical products and psychopharmacological agents (Champion, 2019), (Nguyen and BOHLE 2004). The most common method to obtain a lithium oxide as a soluble aluminate (LiAlO₂) is the alkaline method (calcination) of LiAlSi₂O₆ with limestone (CaCO₃) in a 1:4 ratio from which Li can be recovered by leaching with water with a maximum Li recovery percentage of 64% (Choubey et al., 2016). Looking for alternatives, various investigations have been carried out on calcination of spodumene with salts such as CaSO₄, Na₂CO₃, and NaCl and its subsequent leaching in an autoclave at a temperature around 250°C (Chen et al., 2011), (Yan et al., 2012), (Yan et al., 2012). The objective of this work is to evaluate, by using the FactSage 8.2 thermodynamic software, the calcination of pure a spodumene with Na₂SO₄ analyzing different molar ratios between LiAlSi2O6 and Na2SO4 in order to determine the optimal amount of Na₂SO₄ and obtain the water-soluble lithium mineral specie (Li₂SO₄) that facilitates the posterior recovery of the metal of interest. Computational thermodynamics is an important tool that will allow us to better understand the equilibrium phase relationships present during the calcination of the mineral spodumene with Na₂SO₄ in addition to optimizing the process.

2. Experimental method

The experimental method used consisted of using the equilib module included in FactSage 8.2 computational thermodynamic software (Bale et al., 2002), (Bale et al., 2009) to calculate the chemical species and their concentrations generated when the reactants $\text{LiAlSi}_2\text{O}_6$ and NaSO_4 reacted at different RMs (1:0.5, 1:0.6, 1:0.7, 1:0.8, 1:0.85, 1:1 and 1:1.5), temperatura range 50 to 1200°C with step of 50°C and 1 atm. of pressure totally or partially to reach a state of chemical equilibrium by minimizing Gibbs energy as a function of temperature according to the equation (1).

$$G = \sum_{\substack{Ideal \ gas}} n_i(g_i^o RTlnP_i) + \sum_{\substack{Pure \ condensed \\ phases}} n_i g_i^o \sum_{\substack{Solution-1}} n_i(g_i^o + RTlnx_i) + RTln_{\gamma i} \sum_{\substack{Solution-2}} n_i(g_i^o + RTlnx_i + RTln_{\gamma i}) + \dots$$
(1)

Where: n = moles, Pi = partial pressure of gas, xi = mole fraction, $\gamma i = \text{activity coefficient}$, $gi^\circ = \text{standard Gibbs molar}$ energy. The thermodynamic properties of the LiAlSi₂O₆, such as heat capacity (Cp), absolute entropy at 298.15 K (S298.15) and relative enthalpy of formation at 298.15 K (Δ H298.15), were taken from fitting the recommended experimental data

performed by Barin (Barin, 1995), (Konar et al., 2018), see Table 1.

Table 1: Thermodinamic properties of α -spodumene.

Function			
C _p J mol ⁻¹ K ⁻¹	S _{298.15} J mol ⁻¹ K ⁻¹	ΔH _{298.15} J mol ⁻¹	Reference
(298 to 800 K)			
312.1 +			
0.02604T -			
2759T ^{-0.5}	120.20	2 05 4 701	Dania 1005
(800 to 1200	129.29	-3,034,701	Barin, 1995
K)			
354.717 -			
3375T ^{-0.5}			
(>1200 K)			V 1
354.717 -	131	-3,060,000	Konar et al., 2018
3375 T ^{-0.5}			2018

The program considered 1127 possible pure species from the databases FTmisc 8.2, FToxid 8.2, and FactPS 8.2 (Bale et al., 2002), (Bale et al., 2009) and only reported those that showed an activity coefficient of 1. The results were analyzed and processed to establish the mechanism of the calcination reaction of LiAlSi₂O₆ with NaSO₄.

3. Results and discussion

The species generated for each simulation were expressed in % percentage yield (% PY) calculated according to equation 2 (Mosher and Kelter, 2023):

Percentage yiel (%) =
$$\frac{Simulated yield}{Theoretical yield} x 100$$
 (2)

Where the *simulated yield* is the amount of the species obtained during the simulation and the *theoretical yield* is the amount of the species obtained theoretically. Additionally, the initial percentages of the molar concentrations of the reactant species were included in the graphs.

Figure 1 presents the % PY for the molar ratio $1LiAlSi_2O_6:0.5Na_2SO_4$, showing that the species of interest, Li_2SO_4 , is stable above 500°C with a % PY of 25%. This indicates that the thermal decomposition of $LiAlSi_2O_6$ with Na_2SO_4 generates $LiNaSO_4$ at 350°C, which is stable from 400°C to 450°C, and then forms Li_2SO_4 , $NaAlSiO_4$ (Nepheline) and $NaAlSi_3O_8$ (albite) which are stable from 500°C to 1200°C. Also, 50% of $LiAlSi_2O_6$ remains unreacted up to 450°C. Luong et al. (Loung et al., 2013) reported that experimentally, 1000°C was required to achieve a 90.4% conversion of $LiAlSi_2O_6$ to Li_2SO_4 but thermodynamically temperatures greater than 900°C generate Li_2SO_4 in a liquid state, considering chemically pure reactants, see Figure 1.

Figure 1: Percentage yield (%) for calcination of 1 mol LiAlSi₂O₆ with 0.5 mol Na₂SO₄.

Figure 2 presents the results for the molar ratio $1LiAlSi_2O_6:0.6Na_2SO_4$ showing that Li_2SO_4 is stable from 500°C with a % PY of 30%. Has been reported (Loung et al., 2014) that calcination of α -spodumene with Na_2SO_4 (melting point of 884 °C), in mass ratios of α -spodumene: Na_2SO_4 low, results in low extraction of lithium which is consistent with the results obtained thermodynamically in this study.

In Figure 2 also an increase in the formation temperature (400°C) of LiNaSO₄ was also observed with a % PY of 30% at 450°C that remained stable for 50°C. Setoudeh et al., 2020, reported the LiNaSO₄ and β -spodumene phases from 500°C in the produced calcine after roasting at 1000 °C in air, in a study carried out experimentally for α -spodumene:Na₂SO₄ mixtures mechanically activated with a mass ratio of 1:0.5.

Figure 2: Percentage yield (%) for calcination of 1 mol LiAlSi₂O₆ with 0.6 mol Na₂SO₄.

NaAlSiO₄ (Nepheline) and NaAlSi₃O₈ (High albite) formed from 450°C and remained stable from 500°C. It was also observed that 39% of LiAlSi₂O₆ remained unreacted from 400°C to 450°C, with 4% of unreacted Na₂SO₄ observed from 450°C in the solid state and \geq 900°C in the liquid state. It is important to mention that the nepheline phase (NaAlSiO₄) is valued for use in glass manufacturing in place of feldspar and is decomposed by hydrochloric acid, with separation of gelatinous silica and cubes of salt (Esposito et al., 2005)

The %PY of the species of interest, Li₂SO₄, increased 35% at 550°C where it remained stable in the solid state up to 900°C at a molar ratio of 1:0.7 LiAlSi₂O₆:Na₂SO₄, see Figure 3. A decrease to 30% of the unreacted LiAlSi₂O₆ species was also observed, which remained stable from 400°C to 450°C. Also, 25% of NaAlSiO₄ formed at 400°C and NaAlSi₃O₈ remained stable at 500°C with an increase to 6.5% of unreacted Na₂SO₄. Mineralogically, the NaAlSi₃O₈ phase is an impurity feldspars common associated with α -spodumene that is considered gangue minerals and are not included in elemental substitution reactions that occur with α -spodumene. However, in this study, thermodynamic functions determine the formation of this species during the thermal decomposition of the mineral with Na₂SO₄ (Edgar et al., 1967).

Figure 3: Percentage yield (%) for calcination of 1 mol LiAISi₂O₆ with 0. / mol Na₂SO₄.

With the increase in the molar amount of Na_2SO_4 to 0.8 and 0.85 mol, see Figure 4 and Figure 5, there was an increase in the % PY of Li_2SO_4 to 40% and 42% respectively, with 25% of NaALSi₃O₈ and NaAlSiO₄ remaining in equilibrium from 500°C. LiNaSO₄ increased to 40% with 0.8 mol of Na₂SO₄ and to 42.5% with 0.85 mol of Na₂SO₄ and was maintained in equilibrium from 550°C to 600°C and 400°C to 450°C respectively. Also, 9.6% and 12% unreacted Na₂SO₄ were observed for 0.8 and 0.85 mol Na₂SO₄.

Finally, 50% Li₂SO₄ was obtained for the molar amounts of 1 and 1.5 of Na₂SO₄, see Figure 6 and Figures 7, the highest % PY for this species, and LiNaSO₄ remained stable at 50% from 600°C to 650°C and 650°C to 700°C respectively.

NaALSi₃O₈ and NaAlSiO₄ remained constant at 25% in equilibrium from 450°C, indicating that the increase in the molar amount of NaSO₄ during the calcination of α spodumene tends to decrease the equilibrium temperature. The excess unreacted Na₂SO₄ was 15.7% and 26.5% for 1 and 1.5 mol of Na₂SO₄ respectively. A summary of the evolution of Li₂SO₄ as a function of the molar amount of Na₂SO₄ is shown in Figure 8, with the maximum % PY of 50% at a molar ratio of 1:1 LiAlSi₂O₆:Na₂SO₄.

Figure 4: Percentage yield (%) for calcination of 1 mol LiAlSi₂O₆ with 0.8 mol Na₂SO₄.

Figure 5: Percentage yield (%) for calcination of 1 mol LiAlSi $_2O_6$ with 0.85 mol Na $_2SO_4$.

Accordingly, the proposed reaction mechanism for the calcination of α -spodumene with Na₂SO₄ is as follows:

 $4LiAlSi_2O_6 + 3Na_2SO_4 = 2NaAlSi_3O_8 + 2LiNaSO_4 + 2NaAlSiO_4 + Li_2SO_4$ (3)

This reaction differs from that previously reported by Foss et al. (Foss et al., 2020), who only determined Li_2SO_4 as a

reaction product but not the formation of NaAlSi₃O₈, LiNaSO₄ and NaAlSiO₄ during the calcination process.

Temperature (°C)

Figure 6: Percentage yield (%) for calcination of 1 mol LiAlSi₂O₆ with 1 mol Na₂SO₄.

On the other hand, in the literature it has been reported that the calcination of α -spodumene with a large excess of Na₂SO₄ melt (at 1000 °C) extracted about 90 % of the total lithium content (Arne and Johan, 1941) and that the decrease in calcination temperature to 850 °C resulted in a significant reduction in the lithium recovery in lepidolite to less than 60 %.

This reaction deserves further consideration, since in the results obtained in the present investigation, considering that

the spodumene species is pure, the phase containing lithium, Li₂SO₄, melts at 900°C.

Figure 7: Percentage yield (%) for calcination of 1 mol LiAlSi₂O₆ with 1.5 mol Na₂SO₄.

Figure 8: Percentage Yield (%) of Li₂SO₄ obtained at different molar ratios of LiAlSi₂O₆:Na₂SO₄.

4. Conclusions

This work simulated the calcination of α -spodumene with different molar ratios of Na₂SO₄ using the equilib module in the Fact Sage 8.2 software. The maximum percentage yield of Li₂SO₄ was 50% in the solid state obtained from 500°C and in the liquid state at \geq 900°C for 1:1 LiAlSi₂O₆:Na₂SO₄ with an excess of NaSO₄. The formation Li₂SO₄ was preceded by the formation of LiNaSO₄ at 350°C which increased to 600°C with the increase in the molar amount of Na₂SO₄. NaALSi₃O₈ and NaAlSiO₄ reached equilibrium from 350°C to 500°C.

These results allowed us to propose the reaction mechanism of the calcination of α -spodumene with Na₂SO₄.

Acknowledgments

The authors would like to thank the *Consejo de Ciencia*, *Tecnología e Innovación de Hidalgo* (CITNOVA) for financial support and the Superior School of Chemical Engineering and Extractive Industries of the National Polytechnic Institute (ESIQIE-IPN) and AACTyM-UAEH for technical support.

References

- Abdullah, A. A., Oskierski, H. C., Altarawneh, M., Senanayake, G., Lumpkin, G., Dlugogorski, B.Z., (2019). Phase transformation mechanism of spodumene during its calcination. Miner. Eng, 140, pp. 105883. https://doi.org/10.1016/j.mineng.2019.105883
- Arne, S. K., & Johan, W. S., (1941). U.S. Patent No. 2,230,167. Washington, DC: U.S. Patent and Trademark Office.
- Bale, C.W., Belisle, E., Chartrand, P., Decterov, S.A., Eriksson, G., Hack, K., Jung, I. H., Kang, Y.B., Mélançon, J., Pelton, A. D., et al., (2009). FactSage Thermochemical Software andDatabases-Recent CALPHAD Developments. Comput. Coupling Phase Diagr. Thermochem, 33, 295-311. pp. https://doi.org/10.1016/j.calphad.2008.09.009

- Bale, C. W., Chartrand, P., Degterov, S. A., Eriksson, G., Hack, K., Mahfoud, R., Melançon, J., Pelton, A.D., Petersen, S., (2002). FactSage Thermochemical Software and Databases. CALPHAD Comput. Coupling Phase Diagr. Thermoche, 26, pp. 189-228. https://doi.org/10.1016/j.calphad.2016.05.00
- Barin, I., (1995). Thermochemical Data of Pure Substances, 3rd ed., VCH Verlag GmbH: Weinheim, Germany.
- Champion, D., (2019). Australian Resource Reviews: Lithium 2018. Geoscience Australia:Camberra: https://d28rz98at9flks.cloudfront.net/126759/ARR Lithium 2018.pdf
- Chen, Y., Tian, Q., Chen, B., Shi, X., & Liao, T. (2011). Preparation of lithium carbonate from spodumene by a sodium carbonate autoclave process. Hydrometallurgy, 109 (1-2), pp. 43-46. https://doi.org/10.1016/j.hydromet.2011.05.006
- Choubey, P. K., Kim, M. S., Srivastava, R. R., Lee, J. C., & Lee, J. Y. (2016). Advance review on the exploitation of the prominent energy-storage element: Lithium. Part I: From mineral and brine resources. Minerals Engineering, 89, pp. 119-137. https://doi.org/10.1016/j.mineng.2016.01.010
- Edgar, A. D., & Piotrowski, J. M., (1967). Δ20131-131 for albites crystallized in the systems NaAlSi₃O₈-β-LiAlSi₂O₆-H₂O and NaAlSi₃O₈-LiAlSiO₄-H₂O. Mineralogical magazine and journal of the Mineralogical Society. 36(280), pp. 578-582. https://doi.org/10.1180/minmag.1967.036.280.10
- Esposito, L., Salem, A., Tucci, A., Gualtieri, A., & Jazayeri, S. H. (2005). The use of nepheline-syenite in a body mix for porcelain stoneware tiles. Ceramics International, 31(2), pp. 233-240. https://doi.org/10.1016/j.ceramint.2004.05.006
- Foss, A. Y., Kanari, N., Vaughan, J., & Chagnes, A. (2020). Literature review and thermodynamic modelling of roasting processes for lithium extraction from spodumene. Metals, 10(10), pp. 1312. https://doi.org/10.3390/met10101312
- Garrett, D. E. (2004). Handbook of lithium and natural calcium chloride. Elsevier.
- Konar, B., Kim, D. G., and Jung, I. H. (2018). Critical thermodynamic optimization of the Li₂O-Al₂O₃-SiO₂ system and its application for the thermodynamic analysis of the glass-ceramics. Journal of the European Ceramic Society, 38(11), pp. 3881-3904. https://doi.org/10.1016/j.jeurceramsoc.2018.04.031
- Luong, V. T., Kang, D. J., An, J. W., Dao, D. A., Kim, M. J., & Tran, T. (2014). Iron sulphate roasting for extraction of lithium from lepidolite. Hydrometallurgy, 141, pp. 8-16.
- Luong, V. T., Kang, D. J., An, J. W., Kim, M. J., & Tran, T. (2013). Factors affecting the extraction of lithium from lepidolite. Hydrometallurgy, 134, pp. 54-61. https://doi.org/10.1016/j.hydromet.2013.01.015
- Mosher, M., and Kelter, P. (2023). Chemical Calculations—Introducing Quantitative Chemistry. In an Introduction to Chemistry (pp. 99-140). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-90267-4_3
- Nguyen, A. N. H., and BOHLE, D. S. (2004). Selectivity and uptake of lithium. Comments on Inorganic Chemistry, 25(5-6), pp. 129-146. https://doi.org/10.1080/02603590490883544
- Peltosaari, O., Tanskanen, P., Heikkinen, E. P., & Fabritius, T. (2015). $\alpha \rightarrow \gamma \rightarrow \beta$ -phase transformation of spodumene with hybrid microwave and conventional furnaces. Minerals Engineering, 82, pp. 54-60. https://doi.org/10.1016/j.mineng.2015.04.012
- Setoudeh, N., Nosrati, A., & Welham, N. J. (2020). Phase changes in mechanically activated spodumene-Na₂SO₄ mixtures after isothermal heating. Minerals Engineering, 155, pp. 106455. https://doi.org/10.1016/j.mineng.2020.106455
- Yan, Q., Li, X., Wang, Z., Wu, X., Wang, J., Guo, H., ... & Peng, W. (2012). Extraction of lithium from lepidolite by sulfation roasting and water leaching. International Journal of Mineral Processing, 110, pp. 1-5. https://doi.org/10.1016/j.minpro.2012.03.005
- Yan, Q., Li, X., Yin, Z., Wang, Z., Guo, H., Peng, W., & Hu, Q. (2012). A novel process for extracting lithium from lepidolite. Hydrometallurgy, 121, pp. 54-59. https://doi.org/10.1016/j.hydromet.2012.04.006