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Abstract

Reaction Wheel Arrays (RWA) are groups of two or more actuators, known as reaction wheels, which operate together to achieve
the desired attitude control of an aircraft, space vehicle or satellite. The RWA are exceptionally useful actuator configurations, and
have been the subject of extensive studies in the last decades. However, despite these efforts, many areas of opportunity persist in
the present. In this work, a proposed solution is addressed and developed for one of them: the absence of a general and well-defined
mathematical rule to refer in a precise and reliable way to the different types of RWA that exist in the state of the art.
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Resumen

Los Arreglos de Ruedas de Reacción (RWA, por sus siglas en inglés), son agrupaciones de dos o más actuadores, a su vez
denominados ruedas de reacción, que operan en conjunto para alcanzar el control de actitud deseado de una aeronave, vehı́culo
espacial o satélite. Los RWA son configuraciones de actuadores excepcionalmente útiles, y han sido objeto de cuantiosos estudios
en las últimas décadas. Sin embargo, a pesar de dichos esfuerzos, es un hecho que persisten muchas áreas de oportunidad en la
actualidad. En este trabajo, se aborda y desarrolla una propuesta de solución para una de ellas: la ausencia de una regla matemática
general y bien definida para referirse de una manera precisa y confiable a los diferentes tipos de RWA del estado del arte.

Palabras Clave: actitud, satélite, rueda de reacción, RWA, actuador.

1. Introduction

The Reaction Wheel (RW) is an extremely versatile, power-
ful and useful actuator. Its applications go from inverted pendu-
lums to control of orientation – hereinafter “attitude” – of air-
craft, spacecrafts, airplanes, drones, planes, CanSats and satel-
lites (Cortés-Garcı́a, 2020); especially for CubeSat, thanks to
their compact size and clean operation (California-Polytechnic-
State-University, 2022).

In general, the use of RW is growing due to their reliabil-
ity, durability, performance, robustness and more properties that
make them highly desirable, (Oland and Schlanbusch, 2009).

The RW are active actuators powered by electric energy,
which is converted into mechanic power by a direct current
electric motor (Lechuga-Gerónimo et al., 2021). The output
power is expressed in angular speed and torque, which then is
amplified by an inertia disk on the motor shaft (Sugita, 2017).

In figure 1 there is an illustration of a reaction wheel, centered
in an arbitrary frame.

In practice, and specially in aerospace applications, it’s ex-
tremely common to find the RW in sets called Reaction Wheel
Arrays (RWA) (Ismail and Varatharajoo, 2010), (Oland and
Schlanbusch, 2009). By this way, they enhance their individ-
ual capabilities to meet a specific goal. An example of previous
statement is found in figure 2, where it is shown an Gyroscope
Moment Control (GMC) composed by a RWA of 4 RW, manu-
factured by AirBus for the aircraft attitude control (Airbus, nd).

While arrays have been extensively studied for properties
such as performance (Dae-Kwan, 2014), driver compatibility,
efficiency and effectiveness (Shirazi and Mirshams, 2014) (Sidi,
1997) (King, 2020); however, there is not a precise way to refer
to every RWA existent in the state-of-art; also, if a tilt angle is
included, it becomes a sophisticated issue (Yoon, 2021).
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The absence of a universal manner to refer to every RWA
represents an enormous problem because it may lead into con-
fusions and misinterpretation while working with a big number
of these actuators in one single RWA, which increases if there
are multiple RWA with several RW. Therefore, in this proposal,
an effort is made to solve the issue.

In order to present the solution, this work is structured as
follows: in section 3, it is presented an analysis of the state
of art related to RWA properties such: types, distribution and
more, the RWA matrix. In section 4, the nomenclature’s prob-
lem becomes exposed. In section 5, a nomenclature proposal is
reached. Finally, in section 6, some examples are provided to
demonstrate the effectiveness of the proposal.

Figure 1: Illustration of an RW over an arbitrary frame and centered at origin.

Figure 2: Control Moment Gyroscope (GMC), model 15-45 S, made by Air-
Bus. (Airbus, nd)

2. Notation and Abbreviations

The notation and abbreviations used along this work are es-
tablished as follows.

2.1. Notation

• A: Matrix.

• b: Vector.

• b̂: Unitary vector.

• r: constant.

2.2. Abbreviations and Acronyms

• RWA: Reaction Wheel Array.

• RW: Reaction Wheel.

3. Reaction Wheel Array (RWA)

In this section, the RWA state-of-art is studied. Although
they have several characteristics, the most important are three:
1) properties, 2) types and 3) matrix; all of them presented in
next subsections.

3.1. RWA Properties

1. Number. The quantity of RW in the array.
2. Position. The location of the RW with respect to a given

frame of reference.
3. Distribution. The geometry that resembles the RWA

with respect to the position of the RW.
4. Redundancy. It refers to the capacity of one or more RW

are able to cover each other in case of failure.
5. Colinearity. Unlike the property of dynamical systems,

it refers to whether an RW is coincident with one of the
principal axes of the reference frame.

6. Optimization. It indicates if a wheel is capable of reach-
ing a certain degree of inclination (tilt angle), from which
energy consumption can be optimized.

3.2. Types of Reaction Wheel Arrays

There is a certain number of well-defined RWA. However,
the reality is that there infinite number due to the infinite com-
binations that are possible.

Recently, in (Lechuga-Gerónimo, 2023), an effort was made
to classify and name them according to these properties, where
it is concluded that five are the most important, plus a sixth in
this work. The proposal consists of a binomial structure given
by the rule in equation (1) to refer to each RWA.

A − B (1)

where A is the number of RWs that builds the array, while
B is the one of the six type of distribution presented below.

• P: Perpendicular. When two wheels are perpendicular to
each other, considering that both are collinear with two
different main axes.

• O: Orthogonal. Every RW is exactly colineal to each
axis.

• TR: Tetraedral Regular. Similar to the above, but with a
redundant RW on one – and only one – of the axes in the
opposite direction.

• TI: Tetraedral Irregular. Similar to previous, but with the
two RW redundant with an inclination.

• PYR: Pyramidal. An improved version of previous,
where all the wheels are tilted by an angle.
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• C: Cubic. Similar to Ortogonal, but with an additional
RW in opposite direction for each axis.

Two examples are given as follows.

• (2-P), equals to 2 Reaction Wheel in perpendicular con-
figuration. See part a) in figure 3.

• (3-O), equals to 3 Reaction Wheel in orthogonal config-
uration. See part b) in figure 3.

3.3. Most Common Reaction Wheels Array

The popularity of one RWA depends on how useful it is.
For example, there are RWA that provides partial attitude con-
trol very useful for certain applications such CanSats. By the
other hand, there area RWA with a big number of RW that of-
fers complete attitude control and redundancy in all axis. In this
subsection, a list of the most relevant RWA is provided.

1. Two Reaction Wheels in Perpendicular (2-P).
It only has two RW and they are coincident with two of
the three main axes. It is incapable of offering complete
attitude control.
The 2-P is particularly useful for cases where there is not
enough space (i.e. CanSats) (Çelebi et al., 2011), by suffi-
ciency when only partial control is desired, or when there
is already another actuator to cover the remaining axis.
This array is illustrated in part a) of figure 3.

2. Three Reaction Wheels in Orthogonal (3-O).
It is the simplest RWA to offer complete attitude control.
It’s comprised of three collinear RW to each axis.
This RWA is extremely useful for small CubeSats close
to 1 Unity, where there is not so much space to allocate
for the attitude control system.
An illustration can be seen in part b) of figure 3.

3. Four Reaction Wheels in Regular Tetraedal (4-TR).
Similar to 3-O, this RWA counts with an additional and
collinear RW in one axis, which allows the capability to
generate twice the angular momentum on it. For this rea-
son, 4-TR is very useful for those satellites that have a
significantly larger axis of inertia.
An illustration is shown in part c) of figure 3.

4. Four Reaction Wheels in Irregular Tetraedal (4-TI).
Similar to previous case, but with the difference that the
two redundant RW are tilted by an angle in relation to the
horizontal plane of the reference frame, which causes the
RWA to become partially redundant.
An illustration can be seen in part d) of figure 3.

5. Four Reaction Wheels in Pyramidal (4-PYR).
This RWA is made up of four RW inclined by a tilt an-
gle and whose distribution resembles a pyramid; where
it gets its name from. This RWA is considered the most
challenging to implement, but so are the benefits.
On the one hand, there is better energy efficiency be-
cause the RW rotates at a lower speed since the gen-
erated torque is divided among the four. On the other
hand, there is also superior redundancy because it offers
the ability to continue operating in case one RWA fails,
although a higher energy cost. Despite this, the 4-PYR
remains as one of the favorites RWA.
An illustration can be seen in part e) of figure 3.

6. Six Reaction Wheels in Cubic (6-C)
It is a fully-redundant RWA, similar to 3-O, in which
there are two RWs for each axis of inertia, although one
for each direction.
An illustration can be seen in part f) of figure 3.

This classification performs really well at the time of giving
name to diverse RWA as an early approach. However, it is not
universally valid, as it is studied in next section.

The last part of this section is about a mathematical repre-
sentation for arrays, known as the RWA Matrix.

3.4. The RWA Matrix

The RWA Matrix is a convenient and compact mathemati-
cal representation for storing information about an RWA (Ismail
and Varatharajoo, 2010), specifically their number and distribu-
tion.

This is accomplished by a matrix expression, AR ∈ R
n×3,

where n implies the number of RWs, and whose arguments rep-
resent their vector components.

AR is also defined as a matrix composed of n unit vectors
of the n wheels of the RWA. For a better illustration, see the
equation (2) and its expansion in equation (3), which in both
cases. ω̂n ∈ R

3×1 represents the angular velocity vector of the
nth wheel RWA reaction.

AR =
[
ω̂1 ω̂2 . . . ω̂n−1 ω̂n

]
(2)

AR =

ω̂1x ω̂2x . . . ω̂n−1x ω̂nx

ω̂1y ω̂2y . . . ω̂n−1y ω̂ny

ω̂1z ω̂2z . . . ω̂n−1z ω̂nz

 (3)

The RWA Matrix is very useful at the time to calculate the
influence of torque generated by every RW in the array to the
satellite or aircraft. In next section, the central issue of this
work is explored and a solution is offered as well.

4. The Nomenclature’s Problem

The problem with the previous classification is that RW lo-
cation in a RWA is unknown. For example, in 2-P, it is clear
that two RW composes the 2-P array and that they should be in
perpendicular position and must be coincident with two axes.
However, it is not clear in which axes they are coincident. It is
open to free interpretation if the RW are located over x̂ and ŷ,
or ŷ and ẑ; or even maybe in −x̂ and −ŷ.

In other RWA, such 3-O, the problem is not so obvious,
since the three RWs are necessarily coincident with the prin-
cipal axes, which reduces to an identification problem (i.e. to
know which RW is which one). The same problem occurs for
6-C, and similarly for 4-PYR. However, for higher order cases,
the problem increases.

For example, in 4-TR it is known that there would be four
RWs, but not if the wheel A is collinear with the x̂, ŷ or ẑ axis,
which is further complicated in 4-TI array.

Also, there is the possibility of having an additional sub-
type of array, named as incongruent, assigned to those RWA
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that do not fully coincide with the axis because of the existence
of a tilt angle. This can be seen in figure 4 from the study in
(Ismail and Varatharajoo, 2010), where the array cases from 2
to 11 were wrongly handled as similar to those which – in the
opposite –, fully coincide with the axis; from now denominated
as congruent.

For the so-called incongruent cases, it is evident that the
system proposed in the previous section is not completely ade-
quate, so this represent a new nomenclature’s challenge.

In summary, the three above problems are resumed and
identified as:

1. Identification. The capability to know exactly which
(not where) RW is in any RWA.

2. Position. The capability to determine in which axis a
certain RW is on; considering the tilt angle of inclination
and direction.

3. Congruence. The property of RWA whose distribution
is consistent due to variations in tilt angle.

In the next section, a solution is explored.

5. Proposal Creation

Several properties and characteristics of the RWA has been
listed. It is clear now that the RWA are sets of reaction wheels,
which are very useful for diverse applications with focus in
aerospace industry. The absence of an standard nomenclature in
literature to name certain RWA composed of n reaction wheels
is worrying, since may lead into confusions and misinterpreta-
tions, especially when working with a big number of wheels.

Figure 4: Some incongruent RWA. (Ismail and Varatharajoo, 2010)

Figure 3: Types of Reaction Wheel Arrays: a) 2-P, b) 3-O, c) 4-TR, d) 4-TI, e) 4-PYR, f) 6-C.
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Despite there is the RWA Matrix as a tool for calculating the
total torque generation of the RW, at this moment is not useful
for such purpose.

With all of these statements, the proposal consists on adopt
and use the RWA Matrix as a basis for the nomenclature, which
can be adapted to truly meet the goal to provide an easier and
absolutely clear interpretation of RWA, solving the three prob-
lem resumed in the end of previous section.

To do so, five rules are proposed as follows.

5.1. Rules for Nomenclature Proposal

These steps receive a short name and a related description.
All the steps are consecutives.

1. Identification.
The RWs are named starting from the axis in which they
are located.

(a) First, all RWs coincident with the principal axes are
considered, in the order given by x̂, ŷ and ẑ.

(b) Secondly, in positive sense: +x̂, +ŷ and + ẑ; in that
order.

(c) And finally, those RW in the negative sense (−x̂, −ŷ
and − ẑ), in the same sequence as previously.

The intention is that they occupy a clearly identifiable
place within the RWA Matrix, and the allocation of places
within it is not arbitrary, as commonly occurred in litera-
ture.

2. Denomination.
A proper name is assigned to each of the RWs, which is
given in alphabetical order, denoted by Latin letters (i.e.
a, b, c...). The purpose of this is to have a reliable way
to name them in which there is absolutely no confusion
when referring to a specific RW.
In the RWA Matrix, the order is given by a consecutive
structure. This means the first RW is called a, the second
one is b, and so on, until letter z; just like in equation (4).

AR =
[
a b c · · · z

]
(4)

Further cases of a RWA containing RW beyond the letter
z are not contemplated, since RWAs with more than 26
RW are, unlike, probable.
It is important to remember that, according to the defi-
nition in subsection 3.4 and more specifically in equation
(2), the RWA Matrix contains the angular velocity vectors
of every RW in the array. Therefore, the letters in equa-
tion (4) are substituted by vectors with the corresponding
notation, as established in equation (5).

AR =
[
ωa ωb ωc · · · ωz

]
(5)

3. Unitary
In previous works, such as (Ismail and Varatharajoo,
2010), non-unit vectors have been used in the RWA ma-
trix. This may lead to a misinterpretation of the vector
direction.
Because of this, the use of exclusively unit vectors is
recommended, since these are the minimum and most

compact expression to represent the position and distri-
bution of the RWA according to a reference frame. In
consequence to this statement, the previous equation (5)
is transformed into the equation (6).

AR =
[
ω̂a ω̂b ω̂c · · · ω̂z

]
(6)

Until now, the result is pretty much similar to the RWA
Matrix. However, two rules more are needed in order to
correctly satisfy the problem.

4. Subscripts and Superscripts.
With the elements up to now, there are sufficiency condi-
tions to clearly identify an RWA. Nevertheless, it is pos-
sible to propose an improvement.
In the event that it is required to quickly visualize an ar-
rangement by its RWA Matrix without stopping to review
the vector components, what may be done is to take ad-
vantage of the space available in the subscripts and su-
perscripts, placing the RW number first; while for the
second, the RWA to which they belong.
For example, see equation (7). It is clear now that it’s a
3-O array by just looking the matrix and without having
to analyse the vectorial components.

AR =

1 0 0
0 1 0
0 0 1


O

3

(7)

5. Notation for incongruents.
The incongruent cases are – as discused before – spe-
cial, since they resemble the congruent ones in distribu-
tion, but despite the similarities they are not identical and
should not be treated as such.
For this reason, to distinguish them from the rest, the no-
tation of a tilde (˜) will be used whenever it refers to one
of them.
For example, the 2-P array, in which there is an RW with
a certain degree of inclination, will be called 2-P̃. This
should be enough to quickly recognize that this is not ex-
actly the same RWA, despite of sharing a same basis.

As a manner of illustration for the application of these rules,
the next examples are provided.

5.2. Examples for Nomenclature Proposal

Twelve scenarios are proposed, the first six for congruent
RWAs and the rest for incongruent. Every case has its RWA
Matrix along with a figure for better comprehension of the pro-
posal’s rules.

Congruents
Case 1: 2-P

In this case, the RW are located in the x̂ and ŷ axes. The
RWA Matrix is expressed in equation (8), and its illustration in
figure 5.

AP
2 =

1 0
0 1
0 0


P

2

(8)
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Figure 5: Case 1 illustration.

Case 2: Alternative 2-P

For this case, let us suppose that one RW is located in −x̂
and the other in ẑ. The RWA Matrix is found in equation (9),
and the illustration in figure 6.

AP
2 =
[
ω̂a ω̂b

]O
3

0 −1
0 0
1 0


P

2

(9)

Figure 6: Case 2 illustration.

Case 3: Non-conventional 3-O

In this case, a different three orthogonal RWA is selected.
The RWA Matrix is in equation (10) and illustration in figure 7.

AO
3 =
[
ω̂a ω̂b ω̂c

]O
3
=

1 0 0
0 −1 0
0 0 −1


O

3

(10)

Figure 7: Case 3 illustration.

Case 4: 6-C
This case offers a RW in all three axes and positive and neg-

ative directions as well. It’s excellent to show the effectiveness
of this proposal. The RWA Matrix is found in equation (11) and
illustrated in figure 8.

AC
6 =
[
ω̂a ω̂b ω̂c ω̂d ω̂e ω̂ f

]C
6

AC
6 =

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1


C

6

(11)

Figure 8: Case 4 illustration.

Incongruent
For these special cases, four scenarios are proposed, all of

them with a tilt angle (β ∈ R) in one or more RW.

Case 5: 2-P̃
In this case, there are two RW in perpendicular, but one on

them is tilted between ŷ and −ẑ; as described in equation (12)
and visualized in figure 9.

AP̃
2 =
[
ω̂a ω̂b

]P̃
2
=

1 0
0 sin (β)
0 − cos (β)


P̃

2

(12)
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Figure 9: Case 5 illustration.

Case 6: 3-Õ

For this case, a classic 3 RW in Orthogonal, there is one RW
that has a tilt angle ŷ and −ẑ. The RWA Matrix is expressed in
equation (13) and illustrated in figure 10.

AÕ
3 =
[
ω̂a ω̂b ω̂c

]Õ
3
=

1 0 0
0 sin (β) 0
0 − cos (β) 1


Õ

3

(13)

Figure 10: Case 6 illustration.

Case 7: 4- ˜PYR

In this last case, it is about a Pyramidal set but with two
different tilt angle. Also, one of the RW has null inclination (is
collineal with −ŷ). The RWA is described in equation (14) and
illustrated in figure 11.

A ˜PYR
4 =

sin (β1) 0 −1 0
0 sin (β2) 0 − sin (β2)

cos (β1) cos (β2) 0 cos (β2)


˜PYR

4

(14)

Figure 11: Case 7 illustration.

With this last scenario, the illustration of how this proposal
works is considered finished. Some final comments and recom-
mendations may be find in next and final section.
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Conclusions

The current proposal offers a clear, simple, optimized and
unambiguous representation in the way the reaction wheels and
their arrays are identified. It has allowed to name different RWA
in a unique way, avoiding misinterpretations about where are
the RW inside the array; and even more, providing a name to
them (a, b, c...), which is unrepeatable and compact as well. It
should be remarked the fact that, for the very first time in his-
tory of RWA, an ordered sequence for assign an identification
was offered.

These key factors are very important at the moment of
working with several actuators, i.e. in case 4, where there are
six or more RW in one single array.

The benefits of this proposal are evident at the time of work-
ing from the most simple RWA to those more sophisticated.

Having such a reliable method is important since reaction
wheels are favorite actuators and will continue to be used for
aerospace science and technology development either by aca-
demic and industry sectors. Because of this, it’s time to adopt a
unique manner to denominate the diverse RWA that are possible
to find in all the state-of-art.

Also, it is important to clarify that, although this method is
applicable for reaction wheels, in principle, it is all compatible
with other actuators or their assemblies, like magnetic dampers
(Rodrı́guez-Torres et al., 2022), or in the rocket control systems
(Gómez-León et al., 2023).
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For example, in the use of the so-called magnetorquers;
where one or more electromagnetic coils are used for attitude
control through interaction with the Earth’s magnetic field; or
even innovative actuators such spherical reaction wheel (Dae-
Kwan et al., 2014).

The applicability remains as a pending topic for research
and possible future work.

In the end, is crucial to remember that is only one proposal.
It is possible that in the incoming time another method may
appear, with even more benefits for the RWA nomenclature.
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