
Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI 
https://repository.uaeh.edu.mx/revistas/index.php/icbi/issue/archive

DESDE 2013

Publicación semestral, Vol. 13, No. Especial (2025) 32–41

Pädi
ISSN: 2007-6363

Symmetric texture-zero mass matrices with positive eigenvalues
Matrices simétricas de masa del tipo texturas con eigenvalores positivos
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Abstract

Within the context of the texture-zeros mechanism for fermionic mass matrices, we provide necessary and sufficient conditions
for the characteristic polynomial coefficients such that it has real, simple and positive roots. We translate these conditions in terms
of invariants from congruent matrices. Then, all symmetric texture-zero matrices are counted and classified. We apply the result
from the first part to analyze the three, two and one zero texture matrices in a systematic way. Finally, we solve analytically the
VCKM mixing matrix for the four zero sets; we also analyze the |VCKM | for a particular case of four zeros, four zero-perturbed and
three zero sets.

Keywords: Textures, VCKM matrix, parallel structure, non parallel structure.

Resumen

En el contexto del mecanismo de texturas con ceros para las matrices de masa fermiónicas, proporcionamos condiciones nece-
sarias y suficientes sobre los coeficientes del polinomio caracterı́stico tal que tenga raı́ces reales, simples y positivas. Traducimos
estas condiciones en términos de invariantes de matrices congruentes. Entonces, todas las matrices simétricas de texturas con ceros
son contadas y clasificadas. Aplicamos el resultado de la primera parte para analizar de manera sistemática las matrices de texturas
con uno, dos y tres ceros. Finalmente encontramos analı́ticamente la matriz de mezcla VCKM para los conjuntos de cuatro ceros;
también analizamos la |VCKM | para un caso particular de cuatro ceros, cuatro de ceros perturbados y tres de ceros.

Palabras Clave: Texturas, matriz VCKM , estructura paralela, estructura no paralela.

1. Introduction

In the Standard Model (SM) with S U(2) × U(1) as the
gauge group of electroweak interactions (Weinberg (1967)),
the masses of quarks and charged leptons are contained in the
Yukawa Sector. After Spontaneous Symmetry Breaking (SSB),
the mass matrix is defined as:

M f =
v
√

2
Y f , ( f = u, d, l),

where v is the vacuum expectation value of the Higgs field and
Y f are the 3 × 3 Yukawa matrices, without loss of generality,
we can consider them as Hermitian. The physical masses of the
particles are closely related to mass matrix eigenvalues M f , so,
as a starting point, both must be real numbers. Mathematically
speaking, a Hermitian mass matrix always guarantees that the
eigenvalues are real, i.e., positive, negative or zero. To have a

correct identification between eigenvalues and physical masses,
the physical masses mi are defined as the absolute values of the
mass matrices eigenvalues mi = |λi|. The following cases exist:

Positive eigenvalues.
We have a straight identification. Physical particle masses are
mass matrices eigenvalues.

Negative eigenvalues.
In this case we have, λi = −mi, and negative sign can be re-
moved with an extra rotation.

Within the SM context, the mass matrix is unknown, the
only trail of the quarks mass matrices is the VCKM matrix, which
is built by the product of left matrices that diagonalize the u and
d-quark mass matrix (Kobayashi and Maskawa (1973)).

In 1977 Harald Fritzsch proposed a phenomenological
study of mass matrices (Fritzsch (1977a)), the so-called texture-
zeros mechanism 1, that consists of looking for the simplest
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pattern of mass matrices, which can result in a self-consistent
way and it reproduces the VCKM parameters obtained experi-
mentally.

The aim of the paper is to establish a context where zero
texture matrices have positive and different eigenvalues, that is,
there is a natural relationship between physical particle masses
and mass matrices eigenvalues. From all possible texture-
zero structures (hermitian, non-hermitian as triangular matrices
(Haussling and Scheck (1998), Kuo et al. (1999))), as our first
proposal, we restrict our study to symmetric matrices, in order
to simplify calculations and to explore if this idea can be reli-
able in the texture formalism.

Mathematically speaking, a symmetric texture matrix al-
ways guarantees real eigenvalues. However, any symmetric ma-
trix does not fulfill the positivity condition for the eigenvalues.
Moreover, a positive definite matrix has real and positive eigen-
values that are not necessarily different.

The organization of this paper is as follows. In Sec. II,
we show analytically how the mass matrices appears in the SM
context. In Sec. III, we find necessary and sufficient con-
ditions on the characteristic polynomial coefficients such that
their roots are real, simple and positive quantities. These con-
ditions are rewritten in terms of the invariants of the congruent
matrices, i.e., trace, determinant and trace of the power ma-
trix. In Sec. IV, we develop a simple notation that counts and
classifies the texture-zero matrices, and we show that all sym-
metric matrices of 3×3 can be grouped into one-zero, two-zero
and three-zero texture, in order to complete the counting of the
matrix without zeros is included. In Sec. V, we apply systemat-
ically, the results of Sec. III to all matrices of the Sec. IV, and
we show what kind of texture matrices have real, different and
positive eigenvalues. Finally, in Sec. VI, we derive analytical
expressions for all the Vckm elements arising from the four-zero
sets, then by choosing a particular case of a four-zero set, we
compute the VCKM matrix, and we perturb this case in order to
improve the expressions for the VCKM elements, finally, we took
this case to the three-zero sets.

2. Preliminaries

In the Yukawa sector of the SM, the mass terms for quarks
and charged leptons can be expressed as

ūLMuuR + d̄LMddR + l̄LMllR, (1)

where uL(R), dL(R) and lL(R) are the left(right)-handed quark and
charged leptons fields for the u-sector (u, c, t), d-sector (d, s, b)
and charged leptons (e, µ, τ) respectively. Mu, Md and Ml are
the mass matrices. Expressing the above equation in terms of
the physical fields, one diagonalizes the mass matrices by uni-
tary transformations

M̄u = U†u Mu Uu = Diag [λu, λc, λt] ,
M̄d = U†d Md Ud = Diag [λd, λs, λb] , (2)

M̄l = U†l Ml Ul = Diag
[
λe, λµ, λτ

]
,

where U f ( f = u, d, l) are in general complex unitary matri-
ces. The quantities λu, λd, . . . etc. denote the eigenvalues of the
mass matrices, i.e., the physical quark masses are m f = |λ f |

Re-expressing Eq. (1) in terms of physical fermion fields
( f ′) as

ū′M̄uu′ + d̄′M̄dd′ + l̄′M̄ll′, (3)

where f̄ ′ = f̄ U f and f ′ = U†f f , ( f ′ = u′, d′, l′).
Eq.(2) implies that M̄ f and M f , ( f = u, d, l) are congruent
matrices, the relation of congruence is an equivalence relation,
which implies a space partition into cosets. Any two elements
that belong in the same coset have the following invariants: de-
terminant, trace, trace of the power matrix, characteristic poly-
nomial and their eigenvalues.2 (Friedberg et al. (2006)).
Considering M f as a 3 × 3 symmetric matrix with real coeffi-
cients, M̄ f is built as a diagonal matrix where its elements are
the eigenvalues of M f , these eigenvalues are found as the roots
of its characteristic polynomial. In the following section, we
give conditions on the coefficients of the characteristic polyno-
mial from M f , i.e., on the M f elements, such that this polyno-
mial has three real, positive and simple roots.

3. Main Theorem

As was mentioned before, the physical quark masses are
defined as the positive eigenvalues of the mass matrix, from a
mathematical point of view, to obtain the eigenvalues it is nec-
essary to compute the characteristic equation and its positive
roots are the quark masses. In this section we present the con-
ditions over the characteristic polynomial coefficients such that
the polynomial characteristic roots are real, positive and dif-
ferent. We translate these conditions in terms of invariants of
congruent matrices as trace and determinant of the mass ma-
trix.

Theorem 1. The polynomial of degree 3, p(λ) = λ3 + a2λ
2 +

a1λ + a0, has three different, real and positive roots if and only
if the following conditions over its coefficients a0, a1 a2 hold.

1. a0, a2 < 0 < a1.

2. 3a1 < a2
2.

3. If λ4 =
−a2 +

√
a2

2 − 3a1

3
and λ5 =

−a2 −

√
a2

2 − 3a1

3
,

then p(λ4) < 0 and p(λ5) > 0.

Proof. See Appendix.
We observe that in the condition 3, λ4 and λ5 are the roots

of the first derivative of p(λ), and therefore the condition 2 im-
plies that λ4 and λ5 are real numbers, in other words, p(λ) has
two critical points, this fact joins to the condition 1 implies that
0 < λ5 < λ4.

The condition 3 (p(λ4) < 0 and p(λ5) > 0), means that the
maximum value is positive, and the minimum value is nega-
tive, and therefore p(λ) has three real and different roots. This
condition can be replaced by

−2(a2
2 − 3a1)3/2 < 2a3

2 − 9a1a2 + 27a0 < 2(a2
2 − 3a1)3/2, (4)

2In this work, we will denote the product (TrA)(TrA) as Tr2A. In the general case (TrA)n = TrnA for n positive integer.
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the first inequality is obtained by solving p(λ5) > 0 and the sec-
ond one is obtained by solving p(λ4) < 0. The condition (4)
can be rewritten as

|2a3
2 − 9a1a2 + 27a0| < 2(a2

2 − 3a1)3/2. (5)

It is convenient to rewrite the theorem 1 in terms of the invari-
ants of congruent matrices. This creates directly a link between
the matrix elements and its eigenvalues, which facilitates sub-
sequent computations and applications. To implement this fact,
first we write the coefficients of its characteristic polynomial
p(λ) in terms of its trace (TrM), trace of the square matrix
(TrM2) and its determinant (det M) in the following form:

p(λ) = λ3 − TrMλ2 +
1
2

[
Tr2M − TrM2

]
λ − det M. (6)

Now we are ready to present the main theorem of this sec-
tion

Theorem 2. A real, symmetric matrix M has real, positive and
different eigenvalues if and only if the following three condi-
tions hold.

1. (a) det M > 0,
(b) TrM > 0,
(c) TrM2 < Tr2M.

2. Tr2M < 3TrM2.
3.

∣∣∣TrM(5Tr2M − 9TrM2) − 54 det M
∣∣∣ <

√
2(3TrM2 −

Tr2M)3/2.

The theorem 2 will be applied to texture-zero matrices.

4. Texture-zero

A texture-zero matrix is a 3 × 3 matrix with zeros in some
entries, the way to count them is the following: a zero in the
main diagonal add as 1, while zero off main diagonal add as
1/2. We need to sum all zeros for both mass matrices u-quarks
and d-quarks. For example, given Mu and Md as

Mu =

∗ 0 ∗

0 ∗ ∗

∗ ∗ 0

 , Md =

∗ 0 ∗

0 ∗ 0
∗ 0 0

 . (7)

For Mu we have one zero in the main diagonal, we add (+1)
and 2 zeros off main diagonal that add 1(= 1/2 + 1/2), then Mu

has a two-zero texture structure. Considering now Md we have
a three-zero texture structure (1 + 2). Then, this set of matrices
is said to have a five-zero texture structure.

We say: a parallel structure for Mu and Md mass matrices
means that if Mu has zeros in some places, then Md has zeros in
the same position than Mu. Non-parallel structure is when Mu

and Md not have the same parallel structure.

4.1. Notation
We start writing a symmetric matrix M in the form:

M =

 E D F
D C B
F B A

 . (8)

This matrix is well determined by specifying six capital letters
(A, B,C,D, E, F) and their corresponding positions, then we in-
troduce the following notation:

• M(x) is a matrix with a zero in the capital letter x,
(x = A, B,C,D, E, F).

• M(x, y) is a matrix with zeros in the capital letters x and
y, (x, y = A, B, C, D, E, F; x , y).

• M(x, y, z) is a matrix with zeros in the capital letters x, y
and z, (x, y, z = A, B,C,D, E, F; x , y , z).

For example, a matrix with a zero in position F is:

M(F) =

 E D 0
D C B
0 B A

 , (9)

a matrix with zeros in the positions C and D is,

M(C,D) =

 E 0 F
0 0 B
F B A

 , (10)

finally, a matrix with zeros in the positions C, D and F is,

M(C,D, F) =

 E 0 0
0 0 B
0 B A

 . (11)

Using this notation, we are able to list all possible textures.
One-zero texture structure.
We have 6 different matrices, which are:
M(A), M(C), M(E), M(B), M(D), M(F).
Two-zero texture structure.
In this case, we have 15 possibilities, which are:

M(A, E), M(A,C), M(C, E),
M(A, B), M(A,D), M(A, F),
M(B,C), M(C,D), M(C, F),
M(B, E), M(D, E), M(E, F),
M(B, F), M(B,D), M(D, F).

Three-zero texture structure.
For this case, there are 20 different matrices, which are:

M(A, B,C), M(A,C, F), M(A,C,D),
M(A, B, E), M(A, E, F), M(A,D, E),
M(B,C, E), M(C, E, F), M(C,D, E),
M(A, B, F), M(A, B,D), M(A,D, F),
M(B,C, F), M(B,C,D), M(C,D, F),
M(B, E, F), M(B,D, E), M(D, E, F),
M(A,C, E), M(B,D, F).
Now we are ready to analyze which kinds of textures have

three different and positive eigenvalues, applying in each case
one of the theorems presented in previous sections.

5. Combined analysis

The aim of this section is give to quark mass matrices the struc-
ture of zero textures and find which of these structures have real,
positive and different eigenvalues. To start the analysis sys-
tematically, we need to implement another sub-classification,
which depends on whether the matrix has or not zeros in the
main diagonal, doing this, first we analyze the three-zeros tex-
tures, after this, we study the two-zero textures and finally the
1-zeros textures.
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5.1. Three-zero analysis

According to the sub-classification given above, the tree-zero
textures present the following cases:

1. Without zeros in the main diagonal, there is one case
M(B,D, F).

2. With one zero in the main diagonal exist 9 cases:
M(A, B, F), M(A, B,D), M(A,D, F), M(B,C, F),
M(B,C,D), M(C,D, F), M(B, E, F), M(B,D, E),
M(D, E, F).

3. With two zeros in the main diagonal there are 9
cases: M(A, B,C), M(A,C, F), M(A,C,D), M(A, B, E),
M(A, E, F), M(A,D, E), M(B,C, E), M(C, E, F),
M(C,D, E).

4. With three zeros in the main diagonal we have only 1 case
(M(A,C, E)).

We obtain a total of 20 different possibilities. We only
present the analysis of the following three cases.

• Applying the Theorem 2 (1b) the trivial M(A,C, E) case
is ruled out3

• Now, we analyze the Fritzsch six-zero texture given by
M(C, E, F) (Fritzsch (1977b)). Applying again the Theo-
rem 2 (1b) we must have TrM(C, E, F) = A > 0, from the
condition (1a) det M(C, E, F) = −D2A < 0 that is a con-
tradiction, because of that, this six-zero texture is ruled
out under this context.

• Next, we analyze the following texture M(A,D, F).
The condition (1b) of the Theorem 2 we have that
TrM(A,D, F) = C + E > 0 and from (1a)
det M(A,D, F) = −EB2 > 0, ⇔ E < 0 ⇒ C > 0 ⇒
EC < 0. The condition (1c) of the Theorem 2 implies
that 0 < E2 + C2 + 2B2 < E2 + C2 + 2EC ⇒ 0 < EC
and we have a contradiction and this texture is also ruled
out.

We have analyzed the other 17 cases, and we found that the
only case that is not excluded is M(B,D, F), obviously being
A, B and C the eigenvalues (A , C , E > 0).

5.2. Two-zero analysis

These kind of textures have the following cases:

1. Without zeros in the main diagonal there are 3 cases:
M(B, F), M(B,D), M(D, F).

2. With one zero in the main diagonal exist 9 cases:
M(A, B), M(A,D), M(A, F), M(B,C), M(C,D), M(C, F),
M(B, E), M(D, E), M(E, F)

3. With two zeros in the main diagonal there are 3 cases:
M(A, E), M(A,C), M(C, E).

We present the analysis of some more representative cases:

• We start with the matrix M(C, E). If we compute
Tr2M(C, E), TrM(C, E)2 and we apply the condition (1c)
of the Theorem 2, we obtain:

2(D2 + F2 + B2) + A2 < A2, (12)

that is a contradiction. We have found that M(A, E) and
M(A,C) are ruled out too.

• The second example is the Fritzsch four-zero texture
given by M(E, F) (Fritzsch and zhong Xing (2003)).
From the Theorem 2 follows that the condition (1a)
det M(E, F) = −AD2 > 0 implies A < 0, and of
the condition (1b) TrM(E, F) = C + A > 0 we have
that C > 0 and then AC < 0. Now we compute
Tr2M(C, E), TrM(C, E)2 and using the condition (1c) of
the Theorem 2, we obtain:

2(D2 + B2) +C2 + A2 < C2 + A2 + 2AC, (13)

then AC > 0, that is a contradiction.

We have analyzed the eight cases M(A, B), M(A,D),
M(A, F), M(B,C), M(C,D), M(C, F), M(B, E), M(D, E) and
we found that are ruled out.

The cases that are in agreement with the condition (1) of
the Theorem 2 are M(B, F), M(B,D) and M(D, F); this means
that it exist a range of values of (B, F), (B,D) and (D, F) where
these textures have real, positive and different eigenvalues.

5.3. One-zero analysis
Here we only have two cases,

1. Without zeros in the main diagonal, three different possi-
bilities are M(B), M(D) and M(F).

2. With one zero in the main diagonal, there are also three
different possibilities: M(A), M(C) and M(E).

We only present the analysis of M(A). The condition
(1b) produces E + C > 0, the condition (1a) implies that
2BDF − B2E − F2C > 0 and the condition (1c) gives 2(B2 +

D2 + F2)+ E2 +C2 < E2 +C2 + 2EC, the last three inequalities
are equivalent with

E +C > 0, (14)
2BDF > B2E + F2C, (15)

0 < B2 + D2 + F2 < EC, (16)

from Eq. (14) and (16) we have that E > 0 and C > 0, therefore

−2BF
√

EC < B2E + F2C, (17)
2BF
√

EC < B2E + F2C, (18)

now if BF > 0, the inequalities (16, 18, 15) produce the fol-
lowing chain of inequalities

2BF
√

B2 + D2 + F2 < 2BF
√

EC < B2E + F2C < 2BDF,

and then √
B2 + D2 + F2 < D,

that is a contradiction. If BF < 0 we use Eq.(17). We have
analyzed the other 2 cases M(C), M(E) and we found that are
ruled out.

3In this work, we are looking for textures with positive and different eigenvalues. Therefore, textures with two equal eigenvalues or one of them negative, we
say that they are ruled out.
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The cases that are in agreement with the condition (1) of the
Theorem 2 are M(B), M(D) and M(F).

Summing up this section, the zero texture mass matrices
that have real, positive and different eigenvalues are:

M(B, F), M(B, D), M(D, F), M(B), M(D) and M(F).

Our results are in agreement with (Branco et al. (2000)),
where the authors using Weak Basic Transformations, they have
shown that any symmetric texture with (1,1) zero entry has at
least one negative eigenvalue.

6. VCKM Properties

Another important quantity that any quark mass matrices
need to satisfy is reproduces the experimental values of the
VCKM . For this reason, in this section we analyze the VCKM phe-
nomenology, in the first part and considering a set of four zeros
for mass matrices, we note the presence of zeros in the VCKM

that depend on if we have a parallel and non-parallel structures
in the quark mass matrices, in the second part, we choose a par-
ticular non-parallel case and compute the VCKM matrix. In order
to fit this VCKM matrix with the experimental VCKM matrix we
introduce a perturbation analysis. Finally, we present a set of
three zeros where the VCKM fits numerically.

6.1. VCKM from 4-zero texture set

In the previous sections, it was shown that
M(B, F), M(B,D) and M(D, F) are matrices with simple,
real and different eigenvalues. When the mass matrix of
u-type quarks and the mass matrix of and d-type quarks
both have a parallel structure (e.g. Mu = Mu(Bu, Fu) and
Md = Md(Bd, Fd)), one direct implication is that the VCKM

has the same texture structure as the mass matrices (VCKM =

VCKM(BCKM , FCKM)) and we cannot reproduce the experimen-
tal values of the VCKM elements because of that, all these three
cases are ruled out.

Now, if the mass matrix of u-type quarks and the mass ma-
trix of and d-type quarks have not a parallel structure, all nine
cases were analyzed and always we find one zero element (off
main diagonal) in the VCKM matrix. We present the case where
the best fit of the VCKM is found, this is because we can obtain
analytic expressions as well as a lot of information about the
mass matrices. For this, we choose the mass matrix M(D, F)
texture for u-type quarks, and the matrix M(B, F) texture for
d-type quarks. Then we have that

Mu =

 mu 0 0
0 Cu B
0 B Au

 , Md =

 Ed D 0
D Cd 0
0 0 mb

 . (19)

From the appendix (B.5) and (B.6), the above matrices take the
form:

Mu =


mu 0 0

0 µct +

√
δ2tc − B2 B

0 B µct −

√
δ2tc − B2

 , (20)

Md =


µds +

√
δ2sd − D2 D 0

D µds −

√
δ2sd − D2 0

0 0 mb

 , (21)

where µqi q j =
mqi + mq j

2
and δqi q j =

mqi − mq j

2
(with mqi >

mq j, i, j = 1, 2, 3 and q = u, d). The quantities µqi q j and
δqi q j have a interesting physical meaning, the first one is the
average mass, and for the second one, we can be rewriting as
2δqi q j +mq j = mqi, then 2δqi q j is the quantity that distinguishes
the masses, i.e. the particles mqi and mq j are different because
their mass are different and the factor of difference is 2δqi q j.
The matrices that diagonalize the mass matrices are

Uu =

 1 0 0
0 cos β sin β
0 − sin β cos β

 , Ud =

 cosα sinα 0
− sinα cosα 0

0 0 1

 ,
(22)

where sinα = D√
D2+(yd−md)2

and sin β = B√
B2+(yu−mc)2

.

Now we computing the VCKM = UT
u Ud matrix

VCKM =

 cosα sinα 0
− cos β sinα cos β cosα − sin β
− sin β sinα sin β cosα cos β

 . (23)

Setting:

sinα = Vus = λ, sin β = −Vcb = −Aλ2, (24)

where λ is the Wolfenstein parameter and A is a real number of
order one.

The VCKM matrix takes the form:

VCKM =


1 − λ

2

2 λ 0
−λ 1 − λ

2

2 Aλ2

Aλ3 −Aλ2 1

 + O(λ4). (25)

With this election of texture structure of the mass matrices
of quarks, we can reproduce (in Wolfenstein parametrization)
eight VCKM parameters, and the Vub element is zero. Now, with
this information, we can know explicitly each element of the
mass matrices, from Eq.(24) we have that

sinα =
D√

D2 + (yd − md)2
= Vus, (26)

sin β =
B√

B2 + (yu − mc)2
= −Vcb, (27)

the solutions for D and B are:

D0 = ±2δsdVus

√
1 − V2

us ≈ ±2δsdVus, (28)

B0 = ±2δtcVcb

√
1 − V2

cb ≈ ±2δtcVcb, (29)

and the mass matrices are:

Mu =

mu 0 0
0 mc + 2δtcV2

cb ±2δtcVcb

0 ±2δtcVcb mt − 2δtcV2
cb

 , (30)

Md =

md + 2δsdV2
us ±2δsdVus 0

±2δsdVus ms − 2δsdV2
us 0

0 0 mb

 . (31)
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Finally the mass matrices can be written as:

Mu = M̄u + 2δtc V2
cb ∆Mu ± 2δtc Vcb δMu, (32)

Md = M̄d + 2δsd V2
us ∆Md ± 2δsd Vus δMd, (33)

where the matrices ∆Mu, ∆Md, δMu and δMd are given by:

∆Mu =

0 0 0
0 1 0
0 0 −1

 , ∆Md =

1 0 0
0 −1 0
0 0 0

 ,
δMu =

0 0 0
0 0 1
0 1 0

 , δMd =

0 1 0
1 0 0
0 0 0

 . (34)

We observe that the mass matrices have three contributions;
the first one (M̄) comes from a diagonal matrix, where its ele-
ments correspond to mass quarks, the second contribution (∆M)
is a correction of diagonal entries, and it is characterized by the
square of Vus and Vcb elements respectively. The last contri-
bution (δM) is off-diagonal correction characterized by a lineal
contribution of Vus and Vcb. Note that: off diagonal contribution
is bigger than the diagonal ones.

From Eq.(23) we can see that, we get one zero in Vub ele-
ment, the experimental value for this element is 0.00351+0.00015

−0.00014
(Olive et al. (2014)), this invite us to apply perturbation theory
to 4-zero texture in order to get a better numerical approxima-
tion for this VCKM element.

6.1.1. Perturbative analysis of four-zero texture set
As was mentioned in the previous section, when we con-

sider a four-zero texture set as a structure of mass matrices of
quarks, the presence of zeros in the VCKM matrix is unavoid-
able, the aim of this part of the paper is use perturbation theory
to remove these zeros and get small quantities.

We consider that quark mass matrices can be divided into
two parts:

Mq = Mq(2T ) + ϵNq, (35)

where Mq(2T ) is a two-zero texture, Nq is known as perturba-
tion matrix and ϵq a small parameter (See appendix for more
details). The new contributions to VCKM matrix comes from an
antisymmetric matrix Xq.

In the example presented before, where Mu = Mu(Du, Fu)
and Md = Md(Bd, Fd) are the structures for the quark mass ma-
trices, one can reproduce eight experimental values of VCKM

elements and one get that the Vub element is zero. To remove
this zero, first we consider a perturbation on Mu = Mu(Du, Fu)
and keeping Md = Md(Bd, Fd) unchanged, after that, we will
interchange the roles.

We consider that, M′u mass matrix differs a small quantity 4

ϵ from Mu in the positions (1, 2), (2, 1), (1, 3) and (3, 1).

M′u =

 mu ϵ au ϵ bu

ϵ au Cu B
ϵ bu B Au

 , (36)

where ϵ is a real parameter in the interval 0 ≤ ϵ ≤ 1 and au,
bu are new free parameters with mass units. M′u matrix can be
written in the form

M′u = Mu(Du, Fu) + ϵ Nu, (37)

where Mu(Du, Fu) matrix is given in (30) and the perturbation
matrix Nu is given by

Nu =

 0 au bu

au 0 0
bu 0 0

 . (38)

Following the analysis given in the appendix and applying right
perturbation at first order in ϵ, we find

Ou = Uu(1 + ϵXu), (39)

where the Uu matrix is given in Eq.(22) and Xu matrix is:

Xu =

 0 x1u x2u

−x1u 0 x3u

−x2u −x3u 0

 , (40)

and its elements are: x1u =
au cos β
mc − mu

−
bu sin β
mc − mu

, x2u =

au sin β
mt − mu

+
bu cos β
mt − mu

, and x3u = 0.

The new V ′CKM matrix takes the following form:

V ′CKM = OT
u Ud, (41)

= (1 − ϵXu)UT
u Ud, (42)

= (1 − ϵXu)VCKM . (43)

After some algebra, using Eq.(27) and Eq.(40), we get that, the
new element V ′ub has the form:

V ′ub =

 V2
cb

mc − mu
−

1 − V2
cb

mt − mu

 ϵbu

−

(
1

mc − mu
+

1
mt − mu

)
Vcb

√
1 − V2

cb ϵau. (44)

The biggest contribution comes from:

V ′ub =

V2
cb

mc
−

1
mt

 ϵbu −

(
Vcb

mc

)
ϵau. (45)

We have a non-zero element, which its magnitude depends on
Vcb, mc, mt and perturbation parameters ϵbu and ϵau. The nu-
merical contribution from coefficient of term ϵbu goes like 10−6,
while the numerical contribution from coefficient of term ϵau

goes like 10−5. The smallest numerical element of Mu(Du, Fu)
matrix is mu, then we consider that, the maximum value of per-
turbation parameters ϵbu and ϵau is mu/10. We scanned all al-
lowed range of ϵ au and ϵ bu parameters, and we get that the
best numerical absolute value is 8 × 10−6. The absolute values
of new V ′CKM elements are:

|V ′CKM | =

 0.9753 0.2208 8 × 10−6

0.2206 0.9745 0.039
0.0086 0.0380 0.9992

 . (46)

The values of the mass matrix parameters of M′u were: |ϵ au| =

|ϵ bu| = 0.2 ∼ |mu |

10 ≪,mu = 2.3, |Au| = 172739, |Cu| =

4 |ϵ au | ∼ |ϵ bu | ≪ mu, |Cu |, |Bu | and |Au |.
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1531.2, |D| = 6697.47, all quantities in MeV. The numerical
values that corresponding to second order in ϵ are O(10−8) or
less. For left and left-right perturbations (See Appendix), the
numerical values were the same order.

Now we consider that M′d mass matrix differs a small quan-
tity 5 ϵ ad, ϵ bd from Md in the positions (1, 3), (3, 1), (3, 2) and
(2, 3).

M′d =

 Ed D0 ϵ ad

D0 Cd ϵ bd

ϵ ad ϵ bd mb

 , (47)

M′d matrix can be written in the form

M′d = Md(Bd, Fd) + ϵ Nd,

where Md(Bd, Fd) matrix is given in Eq.(30) and Nd matrix is
given by

Nd =

 0 0 ad

0 0 bd

ad bd 0

 . (48)

Applying right perturbation at first order in ϵ, we find

Od = Ud(1 + ϵXd), (49)

where the matrix Xd is:

Xd =

 0 x1d x2d

−x1d 0 x3d

−x2d −x3d 0

 , (50)

and its elements are x1d = 0, x2d =
ad cosα
mb − md

−
bd sinα
mb − md

and

x3d =
ad sinα
mb − ms

+
bd cosα
mb − ms

.

The new V ′CKM matrix takes the following form:

V ′CKM = VT
u Od, (51)

= VT
u Vd(1 + ϵXd), (52)

= VCKM(1 + ϵXd). (53)

After some algebra, using Eq.(26) and Eq.(50), we get that the
biggest contribution to new element V ′ub has the form:

V ′ub = Vus

ms

m2
b

 ϵbd +

(
1

mb

)
ϵad. (54)

We have a non-zero element, which its magnitude depends on
Vus, ms, mb and perturbation parameters ϵ ad and ϵ bd. The nu-
merical contribution from the coefficient of term bd goes like
10−6, while the numerical contribution from coefficient of term
ad goes like 10−4. The smallest numerical element from matrix
Md(Bd, Fd) is Ed, then we consider that the maximum value of
perturbation parameters ϵ ad and ϵ bd is Ed/10. We scanned all
allowed range of ϵ ad and ϵ bd parameters, and we get that, the
best numerical absolute value is 2 × 10−4. The absolute values
of the new V ′CKM elements are:

|VCKM | =

 0.9742 0.2253 0.0002
0.2251 0.9734 0.0406
0.0089 0.0396 0.9991

 . (55)

The values of the parameters were: |ϵ ad | = |ϵ bd | = 0.9 ∼ |Ed |

10 ≪

|Ed | = 9.37, |Cd | = 90.42, |D| = 20.32, mb = 4180, all quan-
tities in MeV. The numerical values that correspond to second
order in ϵ are O(10−8) or less. For left and left-right perturba-
tions, the numerical values were the same order of magnitude.

Also, we have numerically analyzed all possibilities to get
a perturbation on both mass matrices without get better numer-
ically values in the VCKM matrix.

From the analysis of this section, we conclude that four-
zero texture set in the normal and perturbed cases are ruled out,
because they can not reproduce the experimental values of the
VCKM matrix.

6.2. VCKM from three-zero texture set

The next case of structure is a three-zero texture set, which
is born when one type of quarks has as mass matrix M(B, F),
M(B,D) or M(D, F) and the other type of quarks has mass ma-
trix M(B), M(D) or M(F). We have, in total, 18 possible com-
binations.

From the analysis presented before, we can point out two
issues:

• We can introduce a Vub element different from zero, set-
ting appropriately, the values (1,3) and (3,1) in Md ma-
trix. From (54), we can note a lineal dependence between
Vub and the perturbation, ϵad and if |ϵad | ∼ Ed we obtain
the numerical value of Vub very close that the experimen-
tal one. Then we will consider that Fd is the same order
as Ed.

• The quark mass matrix can be split in two parts, a diag-
onal part plus off-diagonal contributions, which both of
them are in power series of Vus and Vcb elements.

Considering the above statements, we take M(D, F) as a 2-
zero structure for u-type quarks, i.e it has the form given in (32)
and the matrix that diagonalize it is (22). For d-quarks, we take
M(B) as 1-zero structure given by

Md =

 Ed Dd Fd

Dd Cd 0
Fd 0 Ad

 , (56)

where each element is parameterized as:

main diagonal elements
Ad = mb + x V3

us,
Cd = ms − 2δsdV2

us + y V3
us,

Ed = md + 2δsdV2
us + z V3

us

off diagonal elements
Dd = +2δsdVus,
Fd = md + 2δsdV2

us,

where (x, y, z) are variables to find. Now as Md is congruent
with Diag [md, ms, mb] we can write the following equations:

Tr Md = md + ms + mb,

det Md = md ms mb, (57)
1
2

[
Tr2Md − TrM2

d

]
= md ms + md mb + ms mb,

5 |ϵ ad | ∼ |ϵ bd | ≪ |Ed |, |Cd |, |D|, mb
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this set of equations has six solutions for (x, y, z), and we
choose the solution that Ed < Cd < Ad is hold, i.e. the nu-
merical values for (x, y, z) are (1.84199, x+ z, −1.84417), then
numerically the matrix Md results:

Md =

 9.42827 19.802896 9.380186
19.802896 90.1575 0
9.380186 0 4180.21

 , (58)

and the numerical absolute values of VCKM elements are:

|Vckm| =

 0.974118 0.226027 0.00224906
0.225925 0.973273 0.0412108

0.00712578 0.0406523 0.999148

 , (59)

that is in agreement with the experimental value of VCKM ma-
trix.

This is a good example that shows that three-zero texture
sets are viable candidates to model the quark mass matrices.

7. Conclusions

In this article, assuming that, by definition, the physical
mass of quarks and charged leptons are the positive eigenval-
ues of the mass matrices. We found the necessary and sufficient
conditions over the characteristic polynomial coefficients from
any symmetric 3 × 3 matrix, so that it has real, simple and pos-
itive roots. We apply this formalism to analyze the symmetric
texture-zero quark matrices, from all set of matrices, only the
following structures M(B, F), M(B,D), M(D, F), M(B), M(D)
and M(F) are in agree with this condition. In the texture-zero
formalism, the matrices have variable coefficients, the condi-
tions 2 and 3 impose restrictions over these coefficients, this
means that, we need to find the complete domain of the coeffi-
cients in both mass matrices, u-type quarks and d-type quarks,
in order to approximate the experimental values of the VCKM

matrix, we develop analytically the case of four zero sets, and
we show the set that gives the best approximation to the VCKM

matrix and always a zero element in the theoretical VCKM ma-
trix is found, to remove this zero, we implement a perturbation
method, and we analyze the four zero texture set, even with
these results the four-zero texture sets cannot reproduce the ex-
perimental value of Vub. The quark mass matrix can be split into
two parts, a diagonal part plus off-diagonal contributions, which
both of them are in power series of VCKM elements, statement
that is valid for three and four zero texture sets. With an ex-
ample, we show that three-zero texture sets are viable to model
the quark mass matrices, and this structure is minimal, which
means that they have real, positive and different eigenvalues,
and also it reproduces the experimental values of the VCKM ma-
trix.
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Appendix A. Proof Theorem

In this appendix, we proof the theorem 1. For this we need
the following statement:

Lemma 1. The polynomial of second degree p(λ) = λ2 + a1λ+
a0 has two real, simple and positive roots if and only if the fol-
lowing condition holds:

a1 < 0 < a0 <
a2

1

4
. (A.1)

Proof. Follows from a simple computation.
Now we remember and proof the theorem 1.

Theorem 1 The polynomial of degree 3, p(λ) = λ3 + a2λ
2 +

a1λ + a0 has three different, real and positive roots if and only
if the following conditions over its coefficients a0, a1 a2 hold.

1. a0, a2 < 0 < a1.

2. 3a1 < a2
2.

3. If λ4 =
−a2 +

√
a2

2 − 3a1

3
and λ5 =

−a2 −

√
a2

2 − 3a1

3
,

then p(λ4) < 0 and p(λ5) > 0.

Proof. If there exist three different λi ∈ IR+, (i = 1, 2, 3)
such that p(λ) = (λ − λ1)(λ − λ2)(λ − λ3) = λ3 − (λ1 + λ2 +

λ3)λ2 + (λ1λ2 + λ1λ3 + λ2λ3)λ − λ1λ2λ3, then by equality of
polynomials, we obtain:

• a2 = −(λ1 + λ2 + λ3) < 0,

• a0 = −λ1λ2λ3 < 0,

• a1 = λ1λ2 + λ1λ3 + λ2λ3 > 0,

and the condition 1 hold.
Without loss of generality, we suppose that 0 < λ1 <

λ2 < λ3
6, if we have a polynomial of degree 3 with three

real, simple roots, then there exists two critical points, they are
roots of the first derivative, i.e., the condition 2 holds. Now
if the roots of the polynomial are positive then the critical
points are positive too and the follow chain of inequalities hold
λ1 < λ5 < λ2 < λ4 < λ3. From the coefficient of λ3 is 1,
we have that limλ→∞ p(λ) = ∞ and limλ→−∞ p(λ) = −∞, then
for points less than λ1 the polynomial is negative, we applied
the Rolle theorem to the roots λ1 and λ2, therefore the polyno-
mial has a maximum value between λ1 and λ2, and therefore
p(λ5) > 0. Similarly, for points greater than λ3 the polynomial
is positive, and we applied the Rolle theorem to the roots λ2
and λ3, and the polynomial has a minimum, this value is nega-
tive i.e. p(λ4) < 0.

Conversely, we have that p(λ) = λ3 + a2λ
2 + a1λ + a0 such

that the conditions 1, 2 and 3 hold. The conditions 1,2 join to
lemma 1 implies that p′(λ) has two real, simple and positive
roots given by :

λ4 =
−a2 +

√
a2

2 − 3a1

3
, λ5 =

−a2 −

√
a2

2 − 3a1

3
. (A.2)

6In this work, a chain of inequalities a < b < c < . . . , the first inequality is a < b, the second one is b < c and so on.
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First we observe that 0 < λ5 < λ4, now computing p′′(λ4) =

2
√

a2
2 − 3a1 > 0, this implies in λ4 we have a minimum,

whereas p′′(λ5) = −2
√

a2
2 − 3a1 < 0 and then in λ5 we have

a maximum. We repeatedly applied the Intermediate Value the-
orem. From 1, we have that p(0) = a0 < 0 and from 3 it follows
that p(λ5) > 0, then we have a positive root. The condition 3,
p(λ4) < 0 and p(λ5) > 0, guarantee that exits a second root
between λ5 and λ4, finally due to the coefficient to λ3 is positive
p(λ) we have that limλ→∞ p(λ) = ∞ and this implies p(λ4) < 0,
then p(λ) intersects the horizontal axis one more time in the
third root.

Appendix B. Two-zero textures

In the above sections, we show that the matrices
M(B, F), M(B,D) and M(D, F) can have three positive, real
and different eigenvalues, these matrices are diagonal by blocks
( one block 1 × 1 and the other one 2 × 2). They can be diago-
nalized by matrices that are also diagonal by blocks.

Pay attention only in the 2 × 2 block. The mass matrix can
be rewritten as:

M2×2 =

(
y K
K x

)
, (K = B,D, F). (B.1)

This matrix has to be congruent with

M̄2×2 =

(
mi 0
0 m j

)
, (i, j) = (1, 2), (2, 3), (1, 3). (B.2)

This implies the following relations among their elements:

x + y = mi + m j, (B.3)
xy − K2 = mi m j, (B.4)

the solutions for x and y are:

x(K) = µi j ±

√
δ2i j − K2, (B.5)

y(K) = µi j ∓

√
δ2i j − K2, (B.6)

where µi j =
mi + m j

2
, if mi > m j, δi j =

mi − m j

2
and the param-

eter K has to satisfy |K| ≤ δi j.
The matrix that diagonalize the matrix M2×2 always can be

set as: (
cos θ sin θ
− sin θ cos θ

)
, (B.7)

where: sin θ =
K√

K2 + (y − mi)2
and θ ∈ [0, π/4].

Appendix C. Perturbation Theory

In this appendix, we applied perturbation theory to texture
formalism 7.

We start dividing the complete mass matrix in two parts

M = M0 + ϵN, (C.1)

where M0 and N are known mass matrices and ϵ is a small pa-
rameter. We look for a O matrix that diagonalize the M matrix
in the following way:

OT MO = M̄, (C.2)

where M̄ is a diagonal matrix.
We have three different versions of the perturbation method

according to the way that O matrix is proposed, namely:

1. Right Perturbation, when the O matrix takes the form

O = O0(1 + ϵX). (C.3)

2. Left Perturbation, when the matrix O takes the form

O = (1 + ϵX) O0. (C.4)

3. Left-Right Perturbation, when the matrix O takes the
form

O = (1 + ϵX) O0 (1 + ϵX). (C.5)

Where the O0 matrix diagonalizes the M0 matrix
(OT

0 M0 O0 = M̄) and the X matrix is determined in this pro-
cess.

From the orthogonality condition of the O matrix, it is found
that X is an antisymmetric matrix XT = −X and Y + YT = X2

for all cases.
Notation: We are considering Ā = OT

0 A O0 for any matrix
A.

Appendix C.1. Right perturbation

Substituting the form the O matrix (Eq. C.3) into (Eq.C.2):

[O0(1 + ϵX)]T M [O0(1 + ϵX)] = M̄. (C.6)

After some algebra, one gets, at first order in the ϵ parameter,
that the X matrix has to satisfy:

N̄ = [X, M̄]. (C.7)

At second order in ϵ, the Y matrix has to satisfy:

N̄ X + X N̄ = [Y + YT , M̄]. (C.8)

Appendix C.2. Left perturbation

Substituting the form the O matrix (Eq. C.4) into (Eq.C.2):

[(1 + ϵX)O0]T M [(1 + ϵX)O0] = M̄. (C.9)

After some algebra, one gets, at first order in the ϵ parameter,
that the X̄ matrix has to satisfy:

N̄ = [X̄, M̄]. (C.10)

At second order in ϵ, the Ȳ matrix has to satisfy:

N̄ X̄ + X̄ N̄ = [Ȳ + ȲT , M̄]. (C.11)

7The first work in this direction was (Fritzsch et al. (2011)) and it applies non-hermitian perturbations to the 6-zero texture
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Appendix C.3. Left-Right perturbation
Substituting the form the O matrix (Eq. C.5) into (Eq.C.2):

[(1 + ϵX)O0(1 + ϵX)]T M [(1 + ϵX)O0(1 + ϵX)] = M̄. (C.12)

After some algebra, one gets, at first order in the ϵ parameter,
that the X̄ matrix has to satisfy:

N̄ = [X + X̄, M̄]. (C.13)
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