
Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI 
https://repository.uaeh.edu.mx/revistas/index.php/icbi/issue/archive

DESDE 2013

Publicación semestral, Vol. 13, No. Especial (2025) 90–98

Pädi
ISSN: 2007-6363

A note on the problem of geodesics curves with fractional derivative of
Atangana–Baleanu

Una nota sobre el problema de las curvas geodésicas con derivada fraccionaria de
Atangana–Baleanu
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Resumen

Este artı́culo presenta algunas propiedades y relaciones que existen entre los operadores fraccionarios en el sentido de Riemann–
Liouville y de Atangana–Baleanu. En particular, se presenta una demostración de la fórmula de integración por partes cuando la
derivada fraccionaria de Atangana–Baleanu es considerada. Como una aplicación de estas propiedades, se analiza el problema
clásico de la determinación de las curvas geodésicas en el plano considerando la derivada fraccionaria de Atangana–Baleanu. La
introducción de la derivada fraccionaria en el funcional que describe el problema de optimización se realiza mediante el método de
fraccionalización. Los resultados obtenidos se comparan con el problema clásico.

Palabras Clave: Operadores fraccionarios, integración por partes, cálculo de variaciones, curvas geodésicas.

Abstract

This paper presents some properties and relations that exist between fractional operators in the sense of Riemann–Liouville
and Atangana–Baleanu. In particular, a proof of the integration by parts formula is presented when the fractional derivative of
Atangana–Baleanu is considered. As an application of these properties, the classical problem of determining geodesic curves in
the plane is analyzed considering the fractional derivative of Atangana–Baleanu. The introduction of the fractional derivative in
the functional describing the optimization problem is performed by means of the fractionalization method. The obtained results are
compared with the classical problem.

Keywords: Fractional operators, integration by parts, calculus of variations, geodesic curves.

1. Introduction

A fractional derivative Dα of order α > 0 is an operator that
generalizes the ordinary derivative in classical calculus. In this
sense, the origin of fractional calculus arose as a problem of
generalizing the notion of derivative Dnx(t) = dn

dtn x(t) when n
is a fraction; see Oldham and Spanier (1974). The possibility
of generalizing the concept of derivative, as well as the concept
of integral, is a problem that has been addressed by different
mathematicians, among whom we can mention Euler, Laplace,
Fourier, Riemann, Liouville, Abel, etc., and therefore, a frac-
tional derivative has different definitions that generally do not
coincide. A classification of some fractional derivatives can be
consulted in Baleanu and Fernandez (2019) and Sales-Teodoro

et al. (2019).

The diversity of such definitions is due to the fact that, in
general, fractional operators have different kernel representa-
tions for different function spaces. This is the reason for using
different methods to define a derivative, as well as an integral,
of fractional order. Among all these methods to calculate a frac-
tional integral, the most used approach is that of the Riemann–
Liouville fractional integral, which is a generalization of the
Cauchy formula for repeated integration of classical calculus;
see Samko et al. (1993). However, in recent years alternative
approaches for derivatives and integrals of fractional order have
been proposed. One of the reasons for these new approaches is
due to avoiding the singularity that is present at the end point of
the integration interval for the Riemann–Liouville integral. In
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R. Temoltzi-Ávila et al. / Publicación semestral, Vol. 13, No. Especial (2025) 90–98 91

this sense, Atangana and Baleanu suggested replacing the ker-
nel of the Riemann–Liouville operator with a function called
the one-parameter Mittag–Leffler function; see Atangana and
Balenu (2016). This approach was also proposed in Caputo and
Fabrizio (2015) for another type of fractional derivative.

It is known that one of the first applications of fractional
calculus is due to the research of Niels Henrik Abel in his study
of one of the classical problems of the calculus of variations:
the generalization of the tautochrone problem, see e.g. Pod-
lubny et al. (2017). However, a formal analysis of a problem of
fractional calculus of variations in non-conservative systems is
presented in Riewe (1996, 1997), and after these investigations,
a series of papers were published in which different applica-
tions of the fractional calculus of variations are studied; see
e.g. Agrawal (2002), Baleanu (2009), Almeida et al. (2012),
Coronel-Escamilla et al. (2016) and Chatibi et al. (2019).

In this paper, we analyze some relations between fractional
operators in the sense of Riemann–Liouville and Atangana–
Baleanu based on the results of Baleanu and Fernandez (2019).
Using these properties, we obtain the integration by parts for-
mula for the fractional derivative of Atangana–Baleanu in order
to obtain the Euler–Lagrange equation that allows solving the
fundamental problem of the calculus of variations with the frac-
tional derivative of Atangana–Baleanu. As an application, we
analyze the classical problem on the determination of geodesic
curves in the plane using the fractional derivative of Atangana–
Baleanu. The results obtained are compared with those shown
in Chatibi et al. (2019).

2. Some properties and relations of the fractional deriva-
tives of Riemann–Liouville and Atangana–Baleanu

We present the preliminaries on the fractional derivatives
of Riemann–Liouville and Atangana–Baleanu and their main
properties that we will use throughout this paper.

Let p ∈ R with 1 ≤ p < ∞, k ∈ N ∪ {∞} and a, b ∈ R
with a < b. Let Ω = (a, b). We denote by Ck(Ω̄) the space of
functions whose k-derivative is continuous in Ω̄, by C0(Ω̄) the
space of continuous functions with compact support on Ω̄, and
by Lp(Ω) the space of functions for which the p-th power of its
absolute value is Lebesgue-integrable on Ω. For each function
x ∈ Lp(Ω), we consider the norm defined in the usual way by:

∥x∥Lp(Ω) =

(∫ b

a
|x(t)|p dt

) 1
p

.

The abbreviation aIt is sometimes used to denote the inte-
gral operator

aIt x(t) =
∫ t

a
x(s) ds,

where the integral is understood in the Lebesgue sense.
We consider the Sobolev space

W1,p(Ω) =
{

x ∈ Lp(Ω) : exists y ∈ Lp(Ω) such that∫ b

a
x(t)

dφ
dt

(t) dt = −
∫ b

a
y(t)φ(t) dt for all φ ∈ C∞0 (Ω̄)

}
,

where C∞0 (Ω̄) = C∞(Ω̄) ∩C0(Ω̄). In particular, we consider the
following notation that is used: H1(Ω) = W1,2(Ω). It is well
known that C1(Ω̄) ⊂ H1(Ω); see e.g. Brezis (2011).

We also recall the following particular case of the well
known Fubini’s Theorem: let f : Ω × Ω → R be a measurable
function, then∫ b

a

∫ s

a
f (s, t) dtds =

∫ b

a

∫ b

t
f (s, t) dsdt, (1)

assuming that one of these integrals is absolutely convergent;
see e.g. Samko et al. (1993).

2.1. Definition and properties of Riemann–Liouville fractional
operators

It is well known that in traditional calculus, the integral of a
function x ∈ C1(Ω̄) can be considered as the inverse operation
of differentiation, that is, it holds

d
dt aIt x(t) = x(t).

According to this reasoning, a traditional approach in fractional
calculus is to first obtain a fractional integral and then, in a
next step, obtain the fractional derivative of a function. This
method is usually used in fractional calculus to obtain, as a par-
ticular case, the integration and differentiation operators in the
Riemann–Liouville sense; see e.g. Ross (1975). We briefly re-
view this approach.

If the operator aIt is applied n-times to x ∈ C(Ω̄), that is, if
we consider the operator defined by aIn

t x(t) = aIt aIn−1
t x(t) for

n ≥ 2, then we get

aIn
t x(t) =

∫ t

a

∫ tn−1

a
· · ·

∫ t1

a
x(t0) dt0dt1 · · · dtn−1.

The use of Cauchy’s repeated integration formula can be used
to reduce the previous expression to a single integral

aIn
t x(t) =

1
(n − 1)!

∫ t

a
(t − s)n−1x(s) ds.

A similar argument can be used to show that

tI
n
bx(t) =

1
(n − 1)!

∫ b

t
(s − t)n−1x(s) ds.

If we introduce the following notation (n−1)! = Γ(n) into these
expressions, where Γ(z) =

∫ ∞
0 sz−1e−s ds is the Gamma func-

tion, then we obtain the following generalizations of fractional
order integrals.

Definition 1 (Miller and Ross, 1993). The left-sided fractional
Riemann–Liouville integral of x ∈ L1(Ω) of fractional order
α ∈ (0, 1) is defined as:

RL
aIαt x(t) =

1
Γ(α)

∫ t

a
(t − s)α−1x(s) ds.

Similarly, the right-sided fractional Riemann–Liouville integral
of x ∈ L1(Ω) of fractional order α ∈ (0, 1) is defined as:

RL
tI
α
b x(t) =

1
Γ(α)

∫ b

t
(s − t)α−1x(s) ds.
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We note that, since α ∈ (0, 1) and x ∈ L1(Ω), the integrals
RL

aIαt x(t) and RL
tI
α
b x(t) given in the Definition 1 exist for almost

all t ∈ Ω.
Sometimes it is required to define RL

aIαt x(t) and RL
tI
α
b x(t)

when α → 0, in that case, we consider the following defini-
tions:

RL
aI0

t x(t) = x(t), (2)
RL

tI
0
bx(t) = x(t). (3)

The motivation for these definitions is due to the following rea-
soning given in Atanacković et al. (2014). If we assume that
x ∈ C1(Ω̄), after integrating by parts, we obtain

RL
aIαt x(t) =

1
Γ(α + 1)

(
x(a)(t − a)α +

∫ t

a
(t − s)α

dx
ds

(s) ds
)
,

so that,

lim
α→0

RL
aIαt x(t) = x(a) +

∫ t

a

dx
ds

(s) ds = x(t).

A similar argument is used to motivate the definition of the
identity RL

tI
0
bx(t) = x(t).

We have assumed in Definition 1 that x ∈ L1(Ω), however,
we can assume more generally that x ∈ Lp(Ω) with p > 1. In
this case the following result is obtained.

Lemma 1. If x ∈ Lp(Ω) with p > 1, then RL
aIαt x ∈ Lp(Ω).

Proof. We choose p > 1 and q > 1 so that 1
p +

1
q = 1 and

observe that∣∣∣RL
aIαt x(t)

∣∣∣ = ∣∣∣∣∣∣ 1
Γ(α)

∫ t

a
(t − s)α−1x(s) ds

∣∣∣∣∣∣
≤

1
Γ(α)

∫ t

a
|t − s|α−1 |x(s)| ds

=
1
Γ(α)

∫ t

a
|t − s|

α−1
q |t − s|

α−1
p |x(s)| ds.

Now, using Hölder’s inequality, see e.g. Bartle (1995), we ob-
serve that∫ t

a
|t − s|

α−1
q |t − s|

α−1
p |x(s)| ds

≤

(∫ t

a

(
|t − s|

α−1
q
)q

ds
) 1

q
(∫ t

a

(
|t − s|

α−1
p |x(s)|

)p
ds

) 1
p

≤
(b − a)

α
q

α
1
q

(∫ t

a
|t − s|α−1|x(s)|p ds

) 1
p

,

where the last inequality is obtained by noting that t− a ≤ b− a
for all t ∈ Ω. It follows that∣∣∣RL

aIαt x(t)
∣∣∣p ≤ (b − a)α(p−1)

Γ(α)pαp−1

∫ t

a
|t − s|α−1|x(s)|p ds.

As a consequence of the previous inequality, we observe that∥∥∥RL
aIαt x

∥∥∥p
Lp(Ω) =

∫ b

a

∣∣∣RL
aIαt x(t)

∣∣∣p dt,

≤
(b − a)α(p−1)

Γ(α)pαp−1

∫ b

a

∫ t

a
|t − s|α−1|x(s)|p dsdt.

On the other hand, using the particular case of Fubini’s Theo-
rem given in (1), we obtain∫ b

a

∫ t

a
|t − s|α−1|x(s)|p dsdt =

∫ b

a

∫ b

t
|t − s|α−1|x(s)|p dtds

=

(∫ b

t
|t − s|α−1 dt

) (∫ b

a
|x(s)|p ds

)
≤

(b − a)α

α

∫ b

a
|x(s)|p ds,

where the validity of the inequality b − s ≤ b − a for all s ∈ (Ω̄)
has been used. Finally, if we consider the above inequality and
take the p-th root, we get

∥∥∥RL
aIαt x

∥∥∥
Lp(Ω) ≤

(b − a)α

αΓ(α)

(∫ b

a
|x(s)|p ds

) 1
p

,

that is, we obtain the inequality:

∥∥∥RL
aIαt x

∥∥∥
Lp(Ω) ≤

(b − a)α

αΓ(α)
∥x∥Lp(Ω), (4)

which shows the desired result.

An alternative method of obtaining the inequality (4) is
shown in Samko et al. (1993). A consequence of Lemma 1
and the properties of the spaces Lp(Ω) with p > 1, is that if
x ∈ L1(Ω), then RL

aIαt x ∈ L1(Ω); see Bartle (1995).
It is known that the left-sided and right-sided fractional

Riemann–Liouville integral satisfy the following semigroup
properties:

RL
aIαt

RL
aIβt x(t) = RL

aIβt
RL

aIαt x(t) = RL
aIα+βt x(t), (5)

RL
tI
α
b

RL
tI
β
bx(t) = RL

tI
β
b

RL
tI
α
b x(t) = RL

tI
α+β
b x(t); (6)

see Miller and Ross (1993). The proof of the first identity in
(5) is obtained from the corresponding definitions. In fact, we
observe that

RL
aIαt

RL
aIβt x(t) =

1
Γ(α)

∫ t

a
(t − s)α−1 1

Γ(β)

∫ s

a
(s − τ)β−1x(τ) dτds

=
1

Γ(α)Γ(β)

∫ t

a

∫ s

a
(t − s)α−1(s − τ)β−1x(τ) dτds

=
1

Γ(α)Γ(β)

∫ t

a
x(τ)

∫ t

τ

(t − s)α−1(s − τ)β−1 dsdτ,

where we have used the particular case of Fubini’s Theorem
given in (1). If we choose s = σ(t − τ) + τ, then we obtain that∫ t

s
(t − s)α−1(s − τ)β−1 ds = (t − τ)α+β−1

∫ 1

0
(1 − σ)α−1σβ−1 dσ

= (t − τ)α+β−1B(α, β),

where B(α, β) =
∫ 1

0 (1 − σ)α−1σβ−1 dσ is the Beta function. On
the other hand, since B(α, β)Γ(α+β) = Γ(α)Γ(β), see e.g. Lebe-
dev (1965), we finally obtain that

RL
aIαt

RL
aIβt x(t) =

1
Γ(α + β)

∫ t

a
(t − τ)α+β−1x(τ) dτ = RL

aIα+βt x(t).
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A similar argument is used to show the second part of the iden-
tity (6) and the identities in (6). In particular, we have

RL
aIαk

t x(t) = RL
aIαt

RL
aIα(k−1)

t x(t), k ∈ N. (7)

The above relation shows that fractional Riemann–Liouville in-
tegrals have a nice composition property, namely, the fractional
Riemann–Liouville integral of a fractional Riemann–Liouville
integral is a fractional Riemann–Liouville integral of a certain
corresponding order.

Now we can introduce the Riemann–Liouville fractional
derivative.

Definition 2 (Miller and Ross, 1993). The left-sided fractional
Riemann–Liouville derivative of x ∈ L1(Ω) is defined as:

RL
aDαt x(t) =

1
Γ(α)

d
dt

∫ t

a
(t − s)α−1x(s) ds.

Analogously, the right-sided fractional Riemann–Liouville
derivative of x ∈ L1(Ω) is defined as:

RL
tD
α
b x(t) =

1
Γ(α)

d
dt

∫ b

t
(t − s)α−1x(s) ds.

The following identity will be used later.

Lemma 2. Let p, q > 1 with 1
p +

1
q = 1. If x ∈ Lp(Ω) and

y ∈ Lq(a, b), then∫ b

a
x(t) RL

aIαt y(t) dt =
∫ b

a
y(t) RL

tI
α
b x(t) dt.

Proof. We first observe that from Hölder’s inequality, see e.g.
Bartle (1995), it follows that x RL

aIαt y and y RL
aIαt x are elements

of L1(Ω). Thus, from the Definition 1 and the particular case of
Fubini’s Theorem given in (1), we obtain∫ b

a
x(t) RL

aIαt y(t) dt =
∫ b

a

∫ t

a

1
Γ(α)

(t − s)α−1x(t)y(s) dsdt

=

∫ b

a

∫ b

t

1
Γ(α)

(t − s)α−1x(t)y(s) dtds

=

∫ b

a
y(s)

1
Γ(α)

∫ b

t
(t − s)α−1x(t) dtds

=

∫ b

a
y(t) RL

tI
α
b x(t) dt,

which shows the desired result.

2.2. Definition and properties of Atangana–Baleanu fractional
operators

In this section we recall some basic notions related to the
Riemann–Liouville and Atangana–Baleanu fractional deriva-
tives. We start with the definition of the Atangana–Baleanu
fractional derivative.

Definition 3 (Atangana and Balenu, 2016). The left-sided
Atangana–Baleanu fractional integral of x ∈ H1(Ω) is defined
by:

AB
aIαt x(t) =

1 − α
B(α)

x(t) +
α

B(α)
RL

aIαt x(t),

where B(x) is a function that satisfies: B(0) = B(1) = 1. Analo-
gously, the right-sided fractional Atangana–Baleanu integral of
x ∈ H1(Ω) is definided by:

AB
tI
α
b x(t) =

1 − α
B(α)

x(t) +
α

B(α)
RL

tI
α
b x(t).

We observe that if x ∈ H1(Ω), then

AB
aI0

t x(t) = lim
α→0

AB
aIαt x(t)

= lim
α→0

1 − α
B(α)

x(t) + lim
α→0

α

B(α)
RL

tI
α
b x(t)

= x(t),

since B(0) = 1 and RL
aI0

t x(t) = x(t), according to the defini-
tion given in (2). In a completely analogous way we have that:
AB

tI
0
bx(t) = x(t).
The following properties of the Atangana–Baleanu frac-

tional integral are valid.

Lemma 3. For each x ∈ H1(Ω) it holds

AB
aIαt

RL
aIβt x(t) = RL

aIβt
AB

aIαt x(t), (8)
AB

tI
α
b

RL
tI
β
bx(t) = RL

tI
β
b

AB
tI
α
b x(t). (9)

Proof. From Definition 3 and the identity (5), we obtain:

AB
aIαt

RL
aIβt x(t) =

1 − α
B(α)

RL
aIβt x(t) +

α

B(α)
RL

aIαt
RL

aIβt x(t)

=
1 − α
B(α)

RL
aIβt x(t) +

α

B(α)
RL

aIβt
RL

aIαt x(t)

= RL
aIβt

(
1 − α
B(α)

x(t) +
α

B(α)
RL

aIαt x(t)
)

= RL
aIβt

AB
aIαt x(t).

A similar argument is used to show the identity in (9).

The following result shows that the semigroup property is
also valid for the Atangana–Baleanu fractional integral.

Lemma 4. For each x ∈ H1(Ω) it holds

AB
aIαt

AB
aIβt x(t) = AB

aIβt
AB

aIαt x(t), (10)
AB

tI
α
b

AB
tI
β
bx(t) = AB

tI
β
b

AB
tI
α
b x(t). (11)

Proof. From the Definition 4 and Lemma 3, we obtain:

AB
aIαt

AB
aIβt x(t) =

1 − α
B(α)

AB
aIβt x(t) +

α

B(α)
RL

aIαt
AB

aIβt x(t).

=
1 − α
B(α)

AB
aIβt x(t) +

α

B(α)
AB

aIβt
RL

aIαt x(t)

= AB
aIβt

[
1 − α
B(α)

x(t) +
α

B(α)
RL

aIαt x(t)
]

= AB
aIβt

AB
aIαt x(t).

A similar argument is used to show the identity in (11).

Lemma 5. For each x, y ∈ H1(Ω) it holds∫ b

a
x(t) AB

aIαt y(t) dt =
∫ b

a
y(t) AB

tI
α
b x(t) dt.
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Proof. Applying the Definition 4 and the Lemma 2, we obtain
the following identities

∫ b

a
x(t) AB

aIαt y(t) dt

=

∫ b

a
x(t)

(
1 − α
B(α)

y(t) +
α

B(α)
RL

aIαt y(t)
)

dt

=
1 − α
B(α)

∫ b

a
x(t)y(t) dt +

α

B(α)

∫ b

a
x(t) RL

aIαt y(t)dt

=
1 − α
B(α)

∫ b

a
x(t)y(t)dt +

α

B(α)

∫ b

a
y(t) RL

tI
α
b x(t)dt

=

∫ b

a
y(t)

(
1 − α
B(α)

x(t) +
α

B(α)
RL

tI
α
b x(t)

)
dt

=

∫ b

a
y(t) AB

tI
α
b x(t) dt,

which shows the desired result.

Next we introduce one of the most important functions of
fractional calculus.

Definition 4 (Gorenflo et al., 2020). The Mittag–Leffler func-
tion of a parameter α ∈ (0, 1) is defined as:

Eα(z) =
+∞∑
k=0

zk

Γ(αk + 1)
, z ∈ C.

We observe that the series that defines the Mittag–Leffler
function Eα(z) converge on the whole complex plane, and such
a function is a natural generalization of the exponential function
with base e, that is, ez = E1(z).

An application of the Mittag–Leffler function is that it forms
the basis of the definition of the Atangana–Baleanu fractional
derivative, which is introduced as follows.

Definition 5 (Atangana and Balenu, 2016). The left-sided frac-
tional Atangana–Baleanu derivative in the Riemann–Liouville
sense of a function x ∈ H1(Ω) is defined as:

ABR
aDαt x(t) =

B(α)
1 − α

d
dt

∫ t

a
x(s)Eα (−µα(t − s)α) ds,

where µα = α
1−α and B(x) is a function that satisfies the iden-

tity: B(0) = B(1) = 1. Analogously, the right-sided fractional
Atangana–Baleanu derivative in the Riemann–Liouville sense
is defined as:

ABR
tD
α
b x(t) = −

B(α)
1 − α

d
dt

∫ b

t
x(s)Eα (−µα(s − t)α) ds.

There are definitions of the left- and right-sided Atangana–
Baleanu fractional derivatives in the sense of Caputo that are
not used here, but which are closely related to the fractional
derivatives introduced in Definition 5, see Atangana and Balenu
(2016). On the other hand, it is sometimes appropriate to have
alternate representations of the left- and right-sided Atangana–
Baleanu fractional derivatives other than those given in Defini-
tion 5. These representations are obtained by considering the

Mittag–Leffler function as a power series. Indeed, from Defini-
tion 4, we alternatively obtain the following identity for the left-
sided fractional Atangana–Baleanu derivative in the Riemann–
Liouville sense; see Baleanu and Fernandez (2018):

ABR
aDαt x(t) =

B(α)
1 − α

d
dt

∫ t

a
x(s)Eα (−µα(t − s)α) ds

=
B(α)
1 − α

d
dt

∫ t

a
x(s)

∞∑
k=0

(−µα)k (t − s)αk

Γ(αk + 1)
ds

=
B(α)
1 − α

∞∑
k=0

(−µα)k

Γ(αk + 1)
d
dt

∫ t

a
x(s)(t − s)αk ds

=
B(α)
1 − α

∞∑
k=0

(−µα)k

Γ(αk + 1)

∫ t

a
x(s)

d
dt

(t − s)αk ds

=
B(α)
1 − α

∞∑
k=0

(−µα)k

Γ(αk)

∫ t

a
x(s)(t − s)αk−1 ds

=
B(α)
1 − α

∞∑
k=0

(−µα)k RL
aIαk

t x(t),

that is, we obtain the following alternative representation for
the left-sided fractional Atangana–Baleanu derivative in terms
of the left-sided fractional Riemann–Liouville integral:

ABR
aDαt x(t) =

B(α)
1 − α

∞∑
k=0

(−µα)k RL
aIαk

t x(t). (12)

A similar expression for the right-sided fractional Atangana–
Baleanu derivative in terms of the right-sided fractional
Riemann–Liouville integral is obtained:

ABR
tD
α
b x(t) =

B(α)
1 − α

∞∑
k=0

(−µα)k RL
tI
αk
b x(t). (13)

We observe that the terms of the series (12) and (13) are
well-defined for almost all t ∈ Ω, since the fractional integrals
in the Rieman–Liouville sense RL

aIαk
t x(t) and RL

tI
αk
b x(t) are well-

defined for almost all t ∈ Ω and k ∈ N, which follows from (7).
Furthermore, it is clear that if ABR

aDαt x(t) and ABR
tD
α
b x(t) exist

for almost all t ∈ Ω, then the series on the right-hand sides of
(12) and (13) are convergent for almost all t ∈ Ω.

The following result shows the relation between the frac-
tional integral and the fractional derivative in the Atangana–
Baleanu sense.

Lemma 6. Let x ∈ H1(Ω) and α ∈ (0, 1), then it holds
ABR

aDαt
AB

aIαt x(t) = AB
aIαt

ABR
aDαt x(t), (14)

ABR
tD
α
b

AB
tI
α
b x(t) = AB

tI
α
b

ABR
tD
α
b x(t). (15)

Proof. In the first part, we apply the identity (12) and Lemma 3

ABR
aDαt

AB
aIαt x(t) =

B(α)
1 − α

∞∑
k=0

(−µα)k RL
aIαk

t
AB

aIαt x(t)

=
B(α)
1 − α

∞∑
k=0

(−µα)k AB
aIαt

RL
aIαk

t x(t)

= AB
aIαt

 B(α)
1 − α

∞∑
k=0

(−µα)k RL
aIαk

t x(t)


= AB

aIαt
ABR

aDαt x(t).

The identity in (17) is obtained analogously.
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An extension of the identities (14) and (15) that is obtained
from (12) and (13) is the following: if ABR

aDαt x(t) and ABR
tD
α
b x(t)

exist for almost all t ∈ Ω, then
ABR

aDαt
AB

aIαt x(t) = AB
aIαt

ABR
aDαt x(t) = x(t), (16)

ABR
tD
α
b

AB
tI
α
b x(t) = AB

tI
α
b

ABR
tD
α
b x(t) = x(t). (17)

In reality, to show the identity (16) it is enough to observe that
for almost all t ∈ Ω:

ABR
aDαt

AB
aIαt x(t)

= ABR
aDαt

(
1 − α
B(α)

x(t) +
α

B(α)
RL

aIαt x(t)
)

=
1 − α
B(α)

ABR
aDαt x(t) +

α

B(α)
ABR

aDαt
RL

aIαt x(t)

=

∞∑
k=0

(−µα)k RL
aIαk

t x(t) −
∞∑

k=0

(−µα)k+1 RL
aIα(k+1)

t x(t)

= RL
aI0

t x(t) +
∞∑

k=0

(−µα)k+1 RL
aIα(k+1)

t x(t)

−

∞∑
k=0

(−µα)k+1 RL
aIα(k+1)

t x(t)

= x(t),

where we have used the identity (2) and the fact that the series∑∞
k=0 (−µα)k+1 RL

aIα(k+1)
t x(t) is convergent for almost all t ∈ Ω

since ABR
aDαt x(t) exists for almos all t ∈ Ω. The identity (17) is

shown analogously.
We conclude this section with the following result that will

be important in Sect. 3: the integration by parts formula.

Lemma 7. For each x, y ∈ H1(Ω) it holds∫ b

a
x(t) ABR

aDαt y(t) dt =
∫ b

a
y(t) ABR

tD
α
b x(t) dt.

Proof. By the identity (12) and the particular case of Fubini’s
Theorem given in (1), we obtain∫ b

a
x(t) ABR

aDαt y(t) dt

=

∫ b

a
x(t)

 B(α)
1 − α

∞∑
k=0

(−µα)k RL
aIαk

t y(t)

 dt

=
B(α)
1 − α

∫ b

a
x(t)

 ∞∑
k=0

(−µα)k

Γ(αk)

∫ t

a
(t − s)αk−1y(s) ds

 dt

=
B(α)
1 − α

∫ b

a

∫ t

a

∞∑
k=0

(−µα)k

Γ(αk)
(t − s)αk−1x(t)y(s) dsdt

=
B(α)
1 − α

∫ b

a

∫ b

s

∞∑
k=0

(−µα)k

Γ(αk)
(t − s)αk−1x(t)y(s) dtds

=
B(α)
1 − α

∫ b

a
y(s)

 ∞∑
k=0

(−µα)k

Γ(αk)

∫ b

s
(t − s)αk−1x(t) dt

 ds

=

∫ b

a
y(s)

 B(α)
1 − α

∞∑
k=0

(−µα)k RL
sI
αk
b x(s)

 ds

=

∫ b

a
y(s) ABR

sD
α
b x(s) ds,

which shows the result.

There are other versions of the integration by parts formula
that are known in the literature, among which we can mention:
Abdeljawad and Baleanu (2017), Abdeljawad et al. (2019) and
Chatibi et al. (2019).

3. The fundamental problem of the calculus of variations
with fractional derivatives

It is known that the calculus of variations is a generalization
of elementary calculus in which the main problem consists of
finding the maximum or minimum values of continuous func-
tionals that are defined in some pre-established space of func-
tions; see e.g. Freguglia and Giaquinta (2016) and Troutman
(1996). A main feature of the calculus of variations is that some
phenomena can be modeled by a functional J : D(Ω) → R

which is described by an integral operator of the form

J[x] =
∫ b

a
L
(
t, x(t), ẋ(t)

)
dt,

where D(Ω) is some set of functions defined a priori and
Ω = (a, b) is an interval such that a < b (the point b may be
known or unknown). The scalar function L : Ω × R2 → R is
called a Lagrange function, and may not depend on each of its
arguments. In this sense, the fundamental problem of classical
calculus of variations consists in finding the extreme values, if
they exist, of the functional J[x] on the set D(Ω), that is, deter-
mining a function x̄(t) ∈ D(Ω) such that

J[x̄] = inf
x(t)∈D(Ω)

J[x].

(Equivalently, we can consider the problem of finding a func-
tion ¯̄x ∈ D(Ω) such that J[ ¯̄x] = supx(t)∈D(Ω) J[x].) It is well
known that one of the tools that allows solving this optimiza-
tion problem is formulated in the following result, known as
Lagrange’s Lemma.

Lemma 8 (Troutman, 1996). If g ∈ C(Ω̄) and∫ b

a
g(t)h(t) dt = 0,

for all h ∈ C(Ω̄) such that h(a) = h(b) = 0, then g(t) ≡ 0 on Ω̄.

In this paper, we consider a generalization of the fundamen-
tal problem of the calculus of variations by considering a func-
tional J : D(Ω)→ R defined by

J[x] =
∫ b

a
L
(
t, x(t), ABR

aDαt x(t)
)

dt, (18)

where

D(Ω) = {x ∈ C1(Ω̄) : x(a) = xa and x(b) = xb},

and where xa, xb ∈ R are constant values. In this case, the
fundamental problem of the calculus of variations consists of
solving the following optimization problem:

inf
x(t)∈D(Ω)

J[x]. (19)
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It is well known that if x̄(t) ∈ D(Ω) allows solving this opti-
mization problem, then the following necessary optimality con-
dition is satisfied:

lim
ϵ→0

J[x̄ + ϵh] − J[x̄]
ϵ

= 0,

where h : Ω → R is a function such that x̄(t) + h(t) ∈ D(Ω),
and as a consequence, such a function satisfies the conditions
h(a) = h(b) = 0; see e.g. Troutman (1996). If this condition
is applied to the functional defined in (18), and Lemma 8 is
applied, then the following chain of equalities is obtained:

lim
ϵ→0

J[x̄ + ϵh] − J[x̄]
ϵ

=

∫ b

a

d
dϵ

L
(
t, x̄(t) + ϵh(t), ABR

aDαt (x̄(t) + ϵh(t))
)∣∣∣∣∣
ϵ=0

dt

=

∫ b

a

(
∂L
∂x

(
t, x̄(t), ABR

aDαt x̄(t)
)
h(t) +

∂L
∂ ABR

aDαt x
(
t, x̄(t), ABR

aDαt x̄(t)
) ABR

aDαt h(t)
)

dt

=

∫ b

a

∂L
∂x

(
t, x̄(t), ABR

aDαt x̄(t)
)
h(t) dt +

∫ b

a

∂L
∂ ABR

aDαt x
(
t, x̄(t), ABR

aDαt x̄(t)
) ABR

aDαt h(t) dt

=

∫ b

a

∂L
∂x

(
t, x̄(t), ABR

aDαt x̄(t)
)
h(t) dt +

∫ b

a

ABR
tD
α
b
∂L

∂ ABR
aDαt x

(
t, x̄(t), ABR

aDαt x̄(t)
)
h(t) dt

=

∫ b

a

(
∂L
∂x

(
t, x̄(t), ABR

aDαt x̄(t)
)
+ ABR

tD
α
b
∂L

∂ ABR
aDαt x

(
t, x̄(t), ABR

aDαt x̄(t)
))

h(t) dt = 0.

Now, according to Lemma 8, if x̄ ∈ D(Ω) solves the op-
timization problem (19), then the following equation, called
Euler–Lagrange, is obtained:

∂L
∂x

(
t, x̄, ABR

aDαt x̄
)
+ ABR

tD
α
b
∂L

∂ ABR
aDαt x

(
t, x̄, ABR

aDαt x̄
)
= 0. (20)

Finally, we consider a classic example of calculus of varia-
tions: the problem of determining geodesic curves in the plane.
To analyze this example, we use the fractionalization method
discussed in Gómez-Aguilar et al. (2014) to introduce frac-
tional derivatives into the functional that models the geodesic
problem. This method consists of introducing a new parameter
σ that represents the components of the time in the fractional
Atanga–Baleanu derivative with a suitable dimensionality, that
is, we assume the following assignment:

d
dt
7→

1
σ1−α

ABR
aDαt , α ∈ (0, 1).

Example 1. We consider the following functional from the
geodesic problem defined by

J[x] =
∫ b

a
L
(
t, x(t), ẋ(t)

)
dt =

∫ b

a

√
1 + ẋ2(t) dt,

with x : Ω → R a differentiable function such that x(a) = xa

and x(b) = xb; see e.g. Troutman (1996). Now, if we apply the
fractionalization method, then there exists a non-zero constant
σ ∈ R such that

dx
dt

(t) =
1
σ1−α

ABR
aDαt x(t), with 0 < α < 1.

Then, we obtain the new functional to minimize:

J[x] =
∫ a

b

√
1 +

(
1
σ1−α

ABR
aDαt x(t)

)2

dt.

Thus, we see that if the functional J admits a minimum at
x̄, then this function satisfies the following reduced form of the

Euler–Lagrange equation (20) which is obtained by observing
that L does not depend on x̄:

ABR
tD
α
b
∂L

∂ ABR
aDαt x

(
t, x̄, ABR

aDαt x̄
)
=

= ABR
tD
α
b


1
σ1−α

ABR
aDαt x̄√

1 +
(

1
σ1−α

ABR
aDαt x̄

)2


=

1
σ1−α

ABR
tD
α
b


ABR

aDαt x̄√
1 +

(
1
σ1−α

ABR
aDαt x̄

)2

 = 0,

which implies that,
ABR

aDαt x̄√
1 +

(
1
σ1−α

ABR
aDαt x̄

)2
= k,

with k ∈ R a constant. From this expression we obtain the
following fractional linear differential equation:

ABR
aDαt x̄ =

kσ1−α

√
σ2(1−α) − k2

.

Now applying AB
aIαt , and taking into consideration the identity

(16), we obtain,

x̄(t) = AB
aIαt

(
kσ1−α

√
σ2(1−α) − k2

)
=

kσ1−α

√
σ2(1−α) − k2

(
1 − α
B(α)

+
α

B(α)
1
Γ(α)

∫ t

a
(t − s)α−1 ds

)
,

that is,

x̄(t) =
k0

B(α)

(
1 − α +

(t − a)α

Γ(α)

)
, (21)

with

k0 =
kσ1−α

√
σ2(1−α) − k2

.

We observe that if we choose k0 such that xa =
1−α
B(α) k0 and xb is

defined by the equality

xb = xa

(
1 +

1
1 − α

(b − a)α

Γ(α)

)
, (22)
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then

x̄(t) = xa

(
1 +

1
1 − α

(t − a)α

Γ(α)

)
. (23)

Since xa and xb are arbitrary, as are the constants a and b,
the relation (22) is not always satisfied, unless it is possible to
choose α ∈ (0, 1) so that this relation is satisfied. In such a case,
it is clear that the inequality xa < xb must hold. On the other
hand, it is observed that if we take the limit α→ 1 in (21), then
it is necessary to choose xa = 0 in order to obtain the geodesic
curve

x̄(t) =
xb

b − a
t −

axb

b − a
.

We recall that in the classical calculus of variations, the
geodesic curve in the plane is described by

x̄(t) =
xb − xa

b − a
t −

axb − bxa

b − a
; (24)

see Troutman (1996). Similar results can be found in Chatibi
et al. (2019).

In Figure 1, we show a comparison between the solutions
(23) obtained with fractional order derivatives and the classi-
cal solution (24) obtained with derivatives of integer order, us-
ing GNU Octave 7.2. As a particular case, we choose a = 0,
b = 5, xa = 1 and xb = 5. We observe that only by choosing
α = 0.5820, we obtain an approximation of the solution that
solves the problem proposed in the calculus of variations with
fractional derivatives, but that such solution does not coincide
with the classical solution obtained in the calculus of variations
with derivatives of integer order, except at the extreme points
(a, xa) and (b, xb).

0 1 2 3 4 5
0

2

4

6

8

10

t

x̄
(t

)

Fractional solutions vs classical solution

α = 0.3000

α = 0.5000

α = 0.5820

α = 0.7000

Classical solution

Figure 1: Comparison between fractional solutions and classical solutions ob-
tained in the Example 1.

4. Conclusions

In this paper, we have presented the relations that exist be-
tween fractional operators in the sense of Riemann–Liouville
and Atangana–Baleanu. We have also presented a variational
problem that depends on the Atangana–Baleanu derivative: the
problem on the determination of geodesic curves in the plane.

We have established the necessary optimality conditions for the
fundamental problem of the of fractional calculus of variations.
Finally, it would be interesting to extend this work and study
the problem on the determination of geodesic curves defined on
surfaces of revolution.
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