

Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149-160

 ISSN: 2007-6363

 *Autor para la correspondencia: cgarciah@uaemex.mx

Correo electrónico: cgarciah@uaemex.mx (Cozobi García-Herrera), shomarey90@gmail.com (Ossmar González González), lcmendezg@uaemex.mx (Laura Cecilia Méndez

Guevara)

Historial del manuscrito: recibido el 24/10/2024, última versión-revisada recibida el 02/05/2025, aceptado el 07/10/2025,

en línea (postprint) desde el 10/10/2025, publicado el 05/01/2026. DOI: https://doi.org/10.29057/icbi.v13i26.14025

C. García-Herrera a,⁎, O. González-González a, L. C. Méndez-Guevara a

a Ingeniería en Computación, Centro Universitario UAEM Valle de Teotihuacán, Universidad Autónoma del Estado de México, Santo Domingo Aztacameca,

México, México.

Resumen

El presente documento tiene como objetivo determinar el rendimiento de un clúster homogéneo configurado como servidor Web.

Se describen los pasos de instalación del sistema operativo, la verificación de los servicios implementados, la configuración de

las directivas de distribución de carga y del directorio de intercambio utilizado para el envío de archivos dentro del arreglo.

Asimismo, se analizan los métodos de reenvío y, finalmente, el rendimiento del sistema mediante parámetros definidos por el

usuario. Para evaluar dicho rendimiento se establecen métricas como el módulo de procesamiento más eficiente, el número

máximo de usuarios concurrentes, el menor tiempo de respuesta por solicitud y la configuración óptima del sistema.

Palabras Clave: Clúster, servidor, nodo, métricas, rendimiento.

Abstract

This paper aims to determine the performance of a homogeneous cluster configured as a Web server. It describes the steps for

installing the operating system, verifying the services implemented, configuring load distribution policies, and setting up the

swap directory used for file transfer within the cluster. In addition, forwarding methods are analyzed, and the system’s

performance is evaluated based on user-defined parameters. Metrics such as the most efficient processing module, the maximum

number of concurrent users, the shortest response time per request, and the optimal system configuration are considered.

Keywords: Cluster, server, node, metrics, performance.

1. Introducción

El presente trabajo tiene como objetivo describir la

configuración de un clúster orientado a la distribución de carga

en solicitudes Web entrantes, así como la determinación de su

rendimiento. El sistema implementado distribuye dichas

solicitudes entre tres nodos del arreglo; cada nodo procesa una

parte de las peticiones y devuelve las respuestas al nodo

maestro, encargado de enviarlas finalmente al cliente. Para

ello, se utiliza el sistema operativo Rocks, versión 7, cuya

instalación y configuración son descritas paso a paso en este

estudio.

Una vez completada la instalación en el nodo maestro, se

verificó el correcto funcionamiento de los servicios Web,

DHCP (Dynamic Host Configuration Protocol), SSH (Secure

Shell) y Ganglia, los cuales resultan esenciales para la

instalación en los nodos esclavos. Finalizada esta etapa, se

procede a la administración general del clúster.

Asimismo, se introduce el sistema de monitoreo Ganglia,

con el propósito de comprender las métricas empleadas por

este software.

Posteriormente, se detalla el modo de operación del

servidor Web, con énfasis en la función de la carpeta export,

utilizada en el reenvío de datos desde el nodo maestro hacia los

nodos esclavos. Se explica también la forma en que el clúster

ejecuta esta tarea y se describe la distribución de carga, ya sea

de manera programada o mediante la intervención de un

administrador.

Seguidamente, se analizan los métodos de reenvío

proporcionados por la herramienta servidor virtual de Linux y

se aborda la instalación y configuración del administrador de

carga conocido como servidor virtual de protocolo de Internet,

empleado en la primera prueba de rendimiento.

Finalmente, se presentan las pruebas de carga controladas,

configuradas por el usuario a través de parámetros como la

duración de la prueba, el número de usuarios concurrentes o la

emulación de un entorno de Internet. Dichas pruebas permiten

determinar el rendimiento del sistema bajo diferentes

condiciones de operación.

2. Marco teórico

Análisis del rendimiento de un servidor rocks para servicios Web

Analysis of the performance of a rocks server for Web services

https://orcid.org/0000-0001-5777-1365
https://orcid.org/0009-0000-2872-4965
https://orcid.org/0000-0002-4190-7157

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 150

Para comprender la construcción de un clúster es

necesario definir sus características fundamentales, sus

elementos constitutivos y su clasificación. Un clúster

computacional puede entenderse como la interconexión de

múltiples equipos mediante una red de alta velocidad, que

permite sumar sus recursos individuales y conformar una

supercomputadora. En términos generales, un clúster es

un conjunto de computadoras que combina múltiples

procesadores con el propósito de ofrecer soluciones

eficientes en tiempo y costo (CIMAT, 2023).

Los principales elementos de un clúster son el

hardware (componentes físicos) y el software

(principalmente el sistema operativo). Este último

constituye el programa esencial que permite la interacción

entre la máquina y el usuario, coordinando la gestión de

memoria, archivos y la comunicación entre hardware y

aplicaciones (Garza, 2017).

Existen sistemas operativos orientados al uso

doméstico, educativo o de oficina, así como sistemas

especializados en servidores, diseñados para habilitar

servicios en Internet.

El proyecto Rocks surgió con el objetivo de simplificar

la implementación y administración de clústeres. Sus

esfuerzos se orientaron hacia la facilidad de instalación,

gestión, actualización y escalabilidad, con la finalidad de

acercar el poder computacional de los clústeres a un

amplio sector de la comunidad científica (Rocks, 2018).

En cuanto a la naturaleza de su construcción, los

clústeres se clasifican en:

● Homogéneos: integrados por equipos con la misma

arquitectura y recursos similares, lo que garantiza

uniformidad en su desempeño.

● Heterogéneos: conformados por equipos que difieren

en aspectos como arquitectura, sistema operativo,

capacidad de procesamiento o tiempos de acceso.

El clúster desarrollado en este proyecto es de tipo

homogéneo, ya que todos los nodos comparten las mismas

características de hardware y utilizan un sistema operativo

común.De acuerdo con su función, los clústeres pueden

clasificarse en tres categorías principales (Martínez,

2009):

Clústeres de alta disponibilidad (High Availability):

diseñados para garantizar la continuidad del servicio. No

buscan maximizar el poder de cálculo, sino asegurar que,

en caso de falla de un nodo, otros asuman sus tareas de

manera rápida y transparente (González, 2016).

Clústeres de alto rendimiento (High Performance

Computing): empleados en aplicaciones con cálculos

intensivos, como simulaciones científicas o modelos

meteorológicos. Buscan sustituir a las supercomputadoras

tradicionales con alternativas más económicas (González

& Rodríguez, 2008).

Clústeres de balanceo de carga (Load Balancing):

orientados a dividir el trabajo entre los nodos disponibles,

reduciendo errores y aumentando la capacidad de

atención. Una aplicación común es el servidor Web

(Martínez, 2009).

El balanceo de carga consiste en dividir un problema

en un número fijo de procesos distribuidos entre las

máquinas disponibles, sin considerar las diferencias de

procesador o velocidad. En este contexto, el clúster

propuesto en el presente estudio se clasifica como clúster

homogéneo de balanceo de carga, diseñado para funcionar

como servidor Web y evaluar tanto la distribución de las

solicitudes entrantes como el comportamiento general del

sistema.

3. Desarrollo

Una vez definidos los aspectos básicos del clúster a

implementar, se describe a continuación el proceso de

instalación, configuración y administración del sistema,

así como el análisis de su rendimiento frente a solicitudes

Web.

3.1 Introducción a Rocks Clúster

Rocks es una distribución de Linux orientada a la

implementación de clústeres, inicialmente basada en RedHat y

actualmente en CentOS. Desde el año 2000, el grupo Rocks ha

trabajado en simplificar la instalación, administración,

actualización y escalabilidad de estas infraestructuras, con el

fin de hacerlas accesibles a una amplia comunidad científica

(Rocks, 2018).

3.2 Requerimientos iniciales

 La instalación del sistema operativo en los nodos requiere

la topología mostrada en la Figura 1.

Figura 1. Conexión física del clúster.

La comunicación entre el nodo maestro y los nodos esclavos

se realiza mediante una red privada, en la que cada dispositivo

recibe una dirección IP asignada a través del protocolo DHCP.

El nodo maestro dispone de dos interfaces de red: una dedicada

a la distribución de trabajos internos y otra para la conexión

pública a Internet.

En la Tabla 1 se presentan las características del hardware

empleado para la construcción del clúster, compuesto por tres

equipos HP con procesadores Intel Core i3 de cuatro núcleos,

4 GB de memoria RAM y discos duros de entre 120 y 320 GB.

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 151

Tabla 1. Características del hardware.

Equipos Características

HP RP 5800 Procesador Intel Core i3 con 4
núcleos
Memoria RAM 4 Gb
Disco duro 320 Gb
Cuenta con gabinete metálico

HP 8100 SFF Procesador Intel Core i3 con 4
núcleos
Memoria RAM 4 Gb
Disco duro 320 Gb
Cuenta con gabinete metálico

HP 8100 SFF Procesador Intel Core i3 con 4
núcleos
Memoria RAM 4 Gb
Disco duro 120 Gb
Cuenta con gabinete metálico

3.3 Ganglia (Monitor del sistema)

Antes de iniciar los trabajos en el clúster, es fundamental

comprender cómo se monitorean sus recursos, ya que este

proceso permite evaluar el funcionamiento general del sistema.

Para este fin, se integra Ganglia dentro de la instalación, el cual

incluye tres aplicaciones internas que facilitan el monitoreo

(Massie, Li, Nicholes, & Vuksan, 2012).

Ganglia es un sistema distribuido, de código abierto y

escalable, diseñado para entornos de cómputo de alto

rendimiento. Su interfaz principal muestra gráficas generales

de carga por hora para todos los nodos conectados. En la Figura

2 se observa la vista en cuadrícula de los clústeres

monitoreados; en este proyecto únicamente aparece tlaloc, el

único nodo activo. Las gráficas resumen la carga horaria del

sistema, el volumen de datos transmitidos y recibidos, el

porcentaje de uso de CPU y memoria, así como el estado de

los nodos (activos o inactivos).

Figura 2. Portal principal de Ganglia.

3.4 El servidor Web Apache

El sistema operativo Rocks 7 incorpora el servidor Web

Apache dentro de los componentes preinstalados en el clúster.

Uno de los parámetros clave es el módulo de procesos

múltiples (MPM), el cual puede configurarse en tres

modalidades: prefork, worker y event. Estos módulos

determinan la manera en que Apache procesa las solicitudes

entrantes. Por defecto, el sistema utiliza prefork, con valores

preestablecidos que permiten responder peticiones aun sin

configuración adicional. La función esencial de los MPM

consiste en aceptar las solicitudes del cliente y resolverlas

mediante distintos procesos o hilos, aplicando un enfoque de

tipo divide y vencerás (Apache, 2020).

El módulo Prefork implementa un servidor sin subprocesos,

de modo que cada solicitud es atendida por un único proceso.

Este aislamiento resulta adecuado para sitios Web que

requieren evitar subprocesamiento por incompatibilidad de

bibliotecas, además de que garantiza que un error en una

solicitud no afecte a las demás (Apache, 2020).

El módulo Worker aplica un modelo híbrido, basado en

procesos e hilos, lo que permite atender un gran número de

solicitudes utilizando menos recursos que prefork. Aun así,

mantiene estabilidad al conservar múltiples procesos activos

para responder de forma simultánea (Apache, 2020).

El módulo Event se basa en Worker y optimiza la gestión

de conexiones persistentes cliente-servidor. Una vez

completada la primera solicitud, el cliente puede mantener la

conexión abierta para enviar nuevas peticiones sin generar la

sobrecarga de abrir procesos adicionales. Sin embargo, este

esquema requiere mantener procesos e hilos en espera, incluso

cuando el cliente no envía datos, lo cual representa un consumo

innecesario. Para solucionarlo, event utiliza un hilo dedicado

que monitorea las conexiones y las cierra automáticamente

cuando quedan inactivas (Apache, 2020).

La elección del módulo depende de las exigencias del

servicio que se desee ofrecer. Las principales directivas de

configuración de los MPM son las siguientes (Apache, 2020):

● StartServers: número de procesos creados al iniciar el

servicio.

● MinSpareServers y MaxSpareServers: exclusivas de

prefork; ajustan dinámicamente la cantidad de

procesos disponibles en función de la carga.

● MaxClients: número máximo de procesos o

conexiones simultáneas; su valor predeterminado es

150, aunque puede configurarse hasta 256 en prefork.

● MaxRequestsPerChild: número máximo de

solicitudes que atiende un proceso antes de finalizar;

su valor por defecto es 4200 en prefork y 0 en worker.

● MinSpareThreads y MaxSpareThreads: exclusivas de

worker, regulan la cantidad mínima y máxima de

hilos disponibles.

● ThreadsPerChild: también de worker, establece el

número de hilos por proceso hijo, el valor

predeterminado es 25.

La Tabla 2 resume las directrices principales asociadas a

cada módulo de procesamiento múltiple (prefork, worker y

event).

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 152

Estos parámetros se configuran en el archivo httpd.conf,

localizado en el nodo maestro, y deben replicarse en todos los

nodos esclavos del clúster para garantizar un comportamiento

uniforme del sistema.

Tabla 2. Directrices para cada módulo de procesamiento múltiple.

Prefork Worker Event

StartServers 10 StartServers 5 StartServers 3

MinSpareServers 5 MaxClients 350 MinSpareThreads 75

MaxSpareServers 25 MinSpareThreads 25 MaxSpareThreads 150

ServerLimit 256 MaxSpareThreads 75 ThreadsPerchild 75

MaxClients 256 ThreadsPerchild 25 MaxRequestPerchild 21000

MaxRequestPerchild 4200 MaxRequestPerchid 0 MaxRequestWorkers 150

La configuración mostrada en la Figura 3 corresponde al

archivo httpd.conf en el nodo maestro, en el cual se empleó el

módulo prefork con sus valores predeterminados. Este archivo

debe replicarse en todos los nodos esclavos para mantener la

coherencia en la gestión de solicitudes.

Figura 3. Configuración del archivo httpd.conf en el nodo maestro.

En cuanto al almacenamiento compartido, la carpeta

/export, ubicada en el directorio raíz del nodo maestro, permite

distribuir archivos hacia los nodos esclavos. Dentro de esta

carpeta, el subdirectorio /export/apps contiene los elementos

destinados a compartirse en el clúster. En los nodos esclavos,

esta estructura se replica como /share/apps, lo que asegura la

disponibilidad de los mismos archivos en todo el sistema.

Como parte de la validación, se compartió la carpeta

holatlaloc, utilizada en las pruebas de distribución.

3.5 Distribución de carga para peticiones Web

Una de las principales ventajas de instalar un sistema

operativo orientado a clúster es la inclusión de herramientas

preconfiguradas que facilitan tanto la gestión del sistema como

la ejecución de tareas distribuidas entre múltiples procesadores

(Ríos, 2010). En este sentido, Rocks 7 está diseñado para

admitir cualquier tipo de tarea distribuida, siempre que esté

programada para ejecutarse en paralelo, además de administrar

y asignar de manera eficiente la carga de trabajo entre los

distintos nodos.

Entre las herramientas más relevantes se encuentran LVS

(Linux Virtual Server) e IPVSADM (IP Virtual Server

Admin). LVS permite distribuir solicitudes de servicios como

Web, FTP, DNS, VoIP o correo electrónico entre los diferentes

procesadores. Esta herramienta, integrada en el kernel de

Linux a partir de la versión 2.6.x, asegura una correcta

distribución de carga.

Por su parte, IPVS proporciona la capa de administración

necesaria para configurar los parámetros de LVS y gestionar el

tráfico entrante. En la arquitectura implementada, el nodo

maestro se encarga de recibir las solicitudes Web, distribuirlas

a los nodos esclavos para su procesamiento y, finalmente,

recopilar y enviar las respuestas de regreso a los clientes. La

herramienta IPVSADM, instalada y configurada

exclusivamente en el nodo maestro, cumple el papel de

administrador central del flujo de solicitudes y de la

interacción entre los diferentes elementos del clúster (Server,

1998).

3.6 Configuración del administrador IPVSADM

La herramienta IPVSADM permite configurar diferentes

algoritmos de distribución de carga, los cuales determinan

cómo se asignan las solicitudes a los nodos del clúster

(RedHat, 2020a):

● rr (Round-Robin): distribuye las solicitudes de

manera equitativa entre los nodos, sin considerar su

capacidad o carga actual.

● wrr (Weighted Round-Robin): asigna un mayor

número de solicitudes a los nodos con mayor peso

configurado, mientras que los nodos con pesos

menores reciben proporcionalmente menos tareas.

● lc (Least-Connection): dirige las solicitudes a los

nodos con menor número de conexiones activas.

● wlc (Weighted Least-Connection, valor por defecto):

distribuye las solicitudes en función de la relación

entre el peso asignado a cada nodo y el número de

conexiones activas.

● lblc (Locality-Based Least-Connection Scheduling):

procura que las solicitudes recurrentes sean atendidas

por el mismo nodo, siempre que la carga lo permita.

● dh (Destination Hash Scheduling): diseñado para

servidores proxy-cache; asigna las solicitudes

basándose en una tabla hash estática de direcciones IP

de destino.

● sh (Source Hash Scheduling): distribuye las

solicitudes de acuerdo con una tabla hash estática

construida a partir de las direcciones IP de origen.

Para validar el funcionamiento del clúster y observar la

aplicación de estos algoritmos, se diseñó una prueba de

distribución. En ella, la carpeta holatlaloc incluyó un archivo

index que identifica cada nodo esclavo por su nombre. De esta

manera, al enviar solicitudes al clúster, se pudo verificar qué

nodo respondía a cada petición, confirmando así la correcta

distribución de la carga en función del algoritmo seleccionado.

4. Resultados

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 153

Para evaluar el rendimiento del servidor Web configurado

en el clúster, se enviaron diferentes peticiones de manera

aleatoria con el propósito de medir la capacidad de respuesta

del sistema. Para ello se empleó el software Siege, una

herramienta que permite configurar parámetros como el

número de usuarios concurrentes, la duración de las pruebas,

la simulación de un entorno en Internet y el tiempo de espera

entre solicitudes.

Siege es un programa de evaluación comparativa y

pruebas de carga diseñado para someter a los servidores Web

a condiciones de alta demanda. Su objetivo es permitir a los

desarrolladores medir el desempeño del código bajo presión y

analizar la resistencia de los sistemas frente a diferentes niveles

de carga (Siege Home, 2012).

La herramienta posibilita la conexión simultánea de un

número configurable de clientes simulados, quienes generan

solicitudes aleatorias al servidor, colocando al sistema “bajo

presión” para observar su comportamiento. Siege cuenta con

tres modos principales de operación:

a) Regresión

b) Simulación de Internet

c) Fuerza bruta

Para ejecutar las pruebas de manera aleatoria y simultánea,

fue necesario crear el archivo urls.txt, el cual contiene las

direcciones de los sitios Web disponibles en el clúster. Este

archivo, ubicado en la carpeta home del equipo cliente,

permitió automatizar el envío de solicitudes al arreglo, como

se ilustra en la Figura 4.
Figura 4. Archivos siegerc y urls.txt.

La Figura 5 presenta la lista de carpetas y direcciones URL

correspondientes a los diferentes sitios Web de prueba

empleados en el proyecto. Cada sitio fue implementado en el

clúster con el propósito de evaluar la distribución de carga y la

capacidad de respuesta del sistema:

● camp: 192.168.0.13/camp

● barbershop: 192.168.0.13/barbershop

● viaje: 192.168.0.13/viaje

● Restaurante: 192.168.0.13/restaurante

● chapultepec: 192.168.0.13/chapu

● holatlaloc: 192.168.0.13/holatlaloc

Figura 5. Configuración del archivo urls.txt

El software Siege genera, al finalizar cada prueba, un

conjunto de indicadores que permiten evaluar el rendimiento

del clúster (Siege Home, 2012). Estos parámetros son los

siguientes:

● Transactions: número total de visitas simuladas al

servidor.

● Availability: porcentaje de solicitudes atendidas

correctamente por el clúster.

● Elapsed time: duración total de la prueba, expresada

en segundos.

● Data transferred: volumen de datos intercambiados

entre el cliente y el clúster durante la prueba.

● Response time: tiempo promedio de respuesta por

solicitud.

● Transaction rate: tasa de transferencia de solicitudes

por segundo.

● Throughput: cantidad promedio de bytes transferidos

por segundo desde el servidor a los clientes

simulados.

● Concurrency: número medio de conexiones

simultáneas mantenidas durante la prueba.

● Successful transactions: total de transacciones en las

que el servidor respondió con códigos inferiores a

400, incluyendo redirecciones.

● Failed transactions: número de solicitudes fallidas.

● Longest transaction: tiempo de resolución de la

solicitud más lenta.

● Shortest transaction: tiempo de resolución de la

solicitud más rápida.

4.1 Pruebas con Siege

El objetivo de las pruebas realizadas en el clúster fue

identificar los parámetros óptimos para la distribución de

solicitudes Web entrantes. Para ello se modificaron diversas

variables, entre las que se destacan:

● El módulo de procesamiento de Apache.

● El número de usuarios concurrentes por prueba.

● La duración de las pruebas (para simular escenarios

de carga continua).

● La simulación de entornos en Internet.

● El tiempo de espera por conexión.

● La generación de peticiones sin tiempos de retardo,

con el fin de incrementar la carga sobre el sistema.

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 154

Con estas variaciones se buscó determinar:

● El número máximo de usuarios concurrentes

soportados por el clúster.

● El comportamiento de los diferentes módulos de

procesamiento.

● El desempeño de los distintos algoritmos de

ordenamiento.

● El tiempo de respuesta mínimo alcanzado.

● Los fallos y cuellos de botella presentes en el sistema.

● El porcentaje de éxito en el procesamiento de

solicitudes (con un rango esperado de entre 98 % y

100 %).

● La configuración ideal para garantizar un

funcionamiento eficiente del sistema.

Las pruebas, de carácter no estandarizado, fueron

diseñadas para identificar el límite de usuarios concurrentes

que el clúster puede soportar antes de presentar fallos en el

procesamiento de solicitudes generadas por Siege. Para ello, se

modificó en cada ensayo el número máximo de clientes

permitidos por nodo a través de las directivas del módulo de

procesamiento en el archivo httpd.conf.

La primera prueba se llevó a cabo con la configuración

predeterminada de Apache: un máximo de 150 usuarios por

nodo, sin modificaciones adicionales en las directivas del

módulo de procesamiento. Dado que el clúster está

conformado por tres nodos, la capacidad teórica inicial fue de

450 usuarios concurrentes. En todos los casos, la distribución

de carga se realizó utilizando el algoritmo de ordenamiento

Round-Robin.

1. Prueba: 1 Minuto de prueba con 450 usuarios

concurrentes al sitio “holatlaloc”.

Los resultados de la primera prueba mostraron que el

clúster soportó correctamente los 450 usuarios concurrentes

previstos en la configuración predeterminada, sin registrar

errores en las solicitudes procesadas. El parámetro Failed

transactions se mantuvo en 0 durante toda la ejecución,

confirmando la estabilidad del sistema bajo esta carga.

En esta prueba no se realizaron modificaciones en las

directivas del módulo de procesamiento de Apache, ya que el

objetivo fue verificar si el límite teórico de usuarios

concurrentes definido por defecto podía sostenerse en la

práctica sin afectar la comunicación entre el cliente y el clúster.

Figura 6. Resultados de la prueba 1.

2. Prueba: 1 Minuto de prueba con 768 usuarios

concurrentes, módulo de procesamiento Prefork al sitio

holatlaloc”.

En la segunda prueba se empleó el módulo de

procesamiento Prefork, configurando sus directivas conforme

a la Tabla 2. La directiva MaxClients se ajustó al valor máximo

permitido de 256 usuarios por nodo, lo que corresponde a una

capacidad teórica de 768 usuarios concurrentes en el clúster.

Los resultados confirmaron que esta carga fue aceptada

satisfactoriamente: el parámetro Failed transactions se

mantuvo en 0 durante toda la ejecución, lo que indica que no

se registraron errores en el procesamiento de solicitudes bajo

esta configuración.
Figura 7. Resultados de la prueba 2.

3. Prueba: 1 Minuto de prueba con 1050 usuarios

concurrentes al sitio “holatlaloc”, con el módulo de

procesamiento Worker.

En la tercera prueba se reemplazó el módulo de

procesamiento Prefork por Worker, lo que permitió aumentar

la directiva MaxClients a 350 usuarios por nodo. Con esta

configuración, la capacidad teórica del clúster ascendió a 1050

usuarios concurrentes.

Sin embargo, al iniciar la prueba se registró una serie de

errores que llevaron a su interrupción, evidenciando que el

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 155

clúster no pudo sostener tal cantidad de conexiones

simultáneas. Este resultado permite delimitar la capacidad real

del sistema, mostrando que el arreglo no es capaz de

proporcionar servicio estable a un número tan elevado de

usuarios.

Figura 8. Resultados de la prueba 3.

3.1 Prueba: 1 Minuto de prueba con 1010, 1020 y 1030

usuarios concurrentes al sitio holatlaloc.

Con el fin de delimitar con mayor precisión la capacidad

del clúster bajo el módulo Worker, se realizaron tres pruebas

adicionales con valores ligeramente inferiores al límite teórico,

manteniendo siempre más de 1000 usuarios concurrentes.

En particular, la prueba con 1010 usuarios concurrentes

resultó satisfactoria: no se registraron errores aparentes en el

envío ni en el procesamiento de solicitudes, lo que indica que

esta cifra se encuentra dentro del rango de estabilidad del

sistema.

Figura 9. Resultados de la prueba con 1010 usuarios.

 En la prueba con 1020 usuarios concurrentes se registraron

errores en el parámetro Failed transactions, aunque el proceso

no se interrumpió, dado que Siege permite hasta 1024 fallos

antes de abortar la ejecución (Siege Home, 2012). En total, se

generaron 195 solicitudes denegadas, mientras que el resto de

la prueba concluyó de manera correcta.

A partir de este resultado se determina que, con cargas

iguales o superiores a 1020 usuarios concurrentes, el clúster

comienza a mostrar errores en la atención de solicitudes, lo que

marca un límite práctico de su capacidad bajo esta

configuración.

Figura 10. Resultados de la prueba con 1020 usuarios.

Como era previsible, la prueba con 1030 usuarios

concurrentes abortó debido a que el clúster no logró sostener

dicha carga. Esto confirma que el sistema no es capaz de operar

de manera estable con un número tan elevado de conexiones

simultáneas.

En consecuencia, se determina que la capacidad óptima del

clúster bajo el módulo Worker se encuentra en un rango de

1010 a 1015 usuarios concurrentes, margen en el cual el

sistema mantiene estabilidad y un procesamiento correcto de

las solicitudes.

Figura 11. Resultados de la prueba con 1030 usuarios.

A partir de este punto, los resultados se presentan sin incluir

las imágenes correspondientes con el fin de reducir la

extensión del documento.

La siguiente prueba se llevó a cabo empleando el módulo

de procesamiento Event. Este módulo no dispone de una

directiva equivalente a MaxClients; por lo tanto, para la

evaluación se adoptó como referencia el número máximo de

clientes soportados previamente con el módulo Worker.

Dado que Event constituye una modificación orientada a

mejorar el rendimiento de Worker, el propósito de la prueba

fue analizar cuántos usuarios concurrentes podía soportar el

clúster bajo esta configuración y comparar su comportamiento

respecto al módulo anterior (Apache, 2020).

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 156

4. Prueba: 1 Minuto de prueba con 1010 y 1020 usuarios

concurrentes al sitio holatlaloc.

La prueba con el módulo Event mostró un comportamiento

similar al obtenido con Worker. En ambos casos, el clúster

soportó entre 1010 y 1015 usuarios concurrentes sin presentar

fallos críticos. Con 1010 usuarios, el número de errores en el

parámetro Failed transactions fue menor en Event, que registró

aproximadamente 70 errores menos que Worker.

En la prueba con 1020 usuarios concurrentes, el módulo

Event no mostró mejoras respecto a Worker: la ejecución

terminó en aborto tras superar el límite de 1024 solicitudes

rechazadas. Así, puede concluirse que la capacidad práctica de

ambos módulos es comparable, aunque ambos se mantienen

por debajo de la capacidad teórica de 1050 usuarios. En

contraste, el módulo Prefork sí logró alcanzar en la práctica el

máximo calculado de 768 usuarios concurrentes.

La selección del módulo de procesamiento depende en gran

medida del tipo de aplicación o sitio Web alojado en el clúster.

Prefork, módulo predeterminado de Apache, rara vez

requiere modificaciones y resulta adecuado para aplicaciones

Web dinámicas que utilizan bibliotecas externas, ya que ofrece

mayor compatibilidad.

Worker y Event presentan limitaciones al no estar

adaptados para trabajar con todas las bibliotecas externas. Este

aspecto se evidenció en el presente proyecto al utilizar Ganglia,

herramienta de monitoreo dinámico que emplea librerías en

PHP. En este caso, los módulos Worker y Event provocaron

errores en la interfaz gráfica e incluso caídas totales del

sistema, mientras que Prefork aseguró un funcionamiento

estable.

En consecuencia, Prefork es el único módulo plenamente

adaptado para aplicaciones que dependen de bibliotecas

externas, aunque los tres módulos fueron funcionales para las

pruebas realizadas, dado que los sitios Web de ejemplo no

requerían este tipo de compatibilidad.

Con base en los resultados anteriores, se planificaron

nuevas pruebas para determinar qué módulo ofrece el mayor

rendimiento y menor probabilidad de fallos. Estas

evaluaciones se realizaron con la máxima cantidad de usuarios

concurrentes soportada en pruebas previas, sometiendo al

sistema a condiciones de carga constante. Además, se ajustó la

duración de las pruebas y se habilitó la opción de simulación

de entorno en Internet, con el fin de aproximarse al

comportamiento real de solicitudes de usuarios.

Las pruebas se aplicaron a los cinco sitios Web de ejemplo

implementados en el proyecto.

5. Prueba: 768 usuarios concurrentes, 10 minutos y módulo

Prefork; 1010 usuarios concurrentes, 10 minutos y módulo

Worker y 1010 usuarios concurrentes, 10 minutos y

módulo Event.

En la quinta prueba se sometió al clúster a una carga

constante durante un tiempo mayor que en ensayos previos,

con el fin de observar la estabilidad del sistema bajo

condiciones prolongadas. El objetivo fue identificar posibles

errores y analizar la capacidad de cada módulo de

procesamiento en estas circunstancias, observando lo

siguientes:

● Prefork: alcanzó un 100 % de efectividad, procesando

77,368 solicitudes sin rechazos. El tiempo promedio

de respuesta individual fue de 5.59 segundos,

mientras que el tiempo total para completar la prueba

fue de 599.63 segundos, con una tasa de

procesamiento de 130.71 solicitudes por segundo.

● Worker: al aumentar el número de usuarios

concurrentes de 768 a 1010, procesó un total de

83,637 solicitudes, es decir, 6,269 más que Prefork.

No obstante, se registraron 161 solicitudes fallidas,

con un porcentaje de éxito del 99.81 %.

● Event: procesó 68,295 solicitudes, cifra inferior a la

alcanzada por Worker. Se contabilizaron 159 fallos,

con una efectividad del 99.77 %. Su principal ventaja

radicó en el tiempo de respuesta individual,

aproximadamente un segundo más bajo en

comparación con Prefork y Worker.

De lo anterior se puede destacar que el módulo más estable

es Prefork, ya que logra niveles similares de solicitudes

satisfactorias respecto a Worker y Event, pero con una menor

configuración de usuarios concurrentes, lo que evita la

saturación del sistema. Su principal desventaja es la

imposibilidad de soportar un número mayor de usuarios en

comparación con los otros módulos.

Por su parte, Worker y Event muestran mayor capacidad

teórica, pero presentan más errores en pruebas prolongadas y,

además, carecen de compatibilidad con bibliotecas externas.

Esta limitación afecta el correcto funcionamiento de

aplicaciones Web dinámicas, como Ganglia, cuya interfaz

gráfica experimentó errores e incluso caídas al ejecutarse con

estos módulos.

Aunque los tres módulos alcanzan niveles de efectividad

entre el 99 % y 100 %, la estabilidad y compatibilidad de

Prefork lo convierten en la opción más adecuada para

continuar con las siguientes pruebas.

Con el módulo Prefork configurado en el clúster, se

planteó incrementar el tiempo de prueba y modificar el

algoritmo de distribución de carga con el objetivo de

identificar cuál permite procesar un mayor número de

solicitudes satisfactorias.

Dado que no todos los algoritmos de IPVSADM son

compatibles con el método de reenvío NAT, se seleccionaron

únicamente los siguientes (RedHat, 2020b):

● Round-Robin

● Round-Robin Weighted

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 157

● Least-Connection

● Weighted Least-Connection

Los dos últimos algoritmos ponderados (Round-Robin

Weighted y Weighted Least-Connection) permiten asignar

mayor carga a nodos con mayor capacidad, lo que resulta

especialmente útil en clústeres heterogéneos. En este proyecto,

aunque se trata de un clúster homogéneo, se configuró con

mayor peso en los nodos esclavos para reducir la carga del

nodo maestro, encargado de recibir y redistribuir todas las

solicitudes entrantes. Las siguientes pruebas se aplicaron

nuevamente a los cinco sitios Web de ejemplo implementados

en el proyecto.

6. Prueba: 768 usuarios concurrentes, 30 minutos de

prueba, modelos de procesamiento Prefork y módulo de

ordenamiento Round-Robin y 768 usuarios concurrentes,

30 minutos de prueba, modelos de procesamiento Prefork

y módulo de ordenamiento Least-Connection.

La prueba con el algoritmo de ordenamiento Round-Robin

mostró un aumento en el número de solicitudes procesadas

correctamente, resultado atribuido al mayor tiempo de

ejecución en comparación con pruebas previas. Se registraron

únicamente 7 errores, con una tasa de 125.42 transacciones por

segundo. Sin embargo, el resultado más relevante fue el tiempo

de respuesta promedio, que alcanzó 6.01 segundos, valor

considerablemente alto para los estándares de servicio Web.

Con el algoritmo Least-Connection, se obtuvo una ligera

reducción en el tiempo de respuesta —en el orden de

milisegundos—, aunque no lo suficiente para representar una

mejora significativa. En esta prueba se contabilizaron 223,352

solicitudes satisfactorias, es decir, 3,570 más que con Round-

Robin, junto con 10 solicitudes fallidas.

Ambos algoritmos incrementaron el número total de

solicitudes procesadas debido a la mayor duración de la

prueba, lo que permitió observar el comportamiento del

sistema bajo cargas más elevadas. El algoritmo Least-

Connection se mostró más eficiente en la distribución de

solicitudes, aunque los tiempos de respuesta continuaron

siendo elevados.

Este aspecto resulta crítico, ya que el tiempo de respuesta

recomendado para servidores Web es de 200 milisegundos a

fin de garantizar un posicionamiento adecuado en motores de

búsqueda (Google, 2020).

En contraste, los resultados obtenidos en estas pruebas

(valores superiores a 6 segundos) son considerablemente

mayores, lo que revela la existencia de cuellos de botella en el

sistema.

Las pruebas siguientes se enfocarán en reducir el tiempo de

respuesta mediante la modificación del número de usuarios

concurrentes, la elección del algoritmo de distribución más

eficiente y la optimización de los sitios Web de prueba.

6.2 Prueba: 768 usuarios concurrentes, 30 minutos de

prueba, modelos de procesamiento Prefork módulo de

ordenamiento Round-Robin-Weighted y módulo de

ordenamiento Weigthed-Least-Connection, ambos con una

petición para el nodo maestro por cada cinco a los nodos

esclavos.

En la prueba con el algoritmo Round-Robin Weighted, el

nodo maestro recibió una solicitud por cada cinco enviadas a

los nodos esclavos, lo que redujo parcialmente la carga sobre

él. Sin embargo, no se obtuvo una mejora significativa en el

tiempo de respuesta, que permaneció por encima de los 6

segundos. El número de solicitudes satisfactorias fue de

221,894, valor similar al registrado en la prueba con Round-

Robin.

La prueba con Weighted Least-Connection proporcionó

resultados cercanos a los obtenidos con Least-Connection,

aunque en este caso el nodo maestro recibió una menor

proporción de solicitudes. A pesar de ello, el tiempo de

respuesta no mejoró debido al elevado número de usuarios

concurrentes, lo cual generó retardos en el sistema. En total, se

registraron 223,202 solicitudes satisfactorias y 0 errores

(Nuñez, 2014).

Los resultados evidencian que en las pruebas iniciales los

tiempos de respuesta eran menores porque se utilizaba la

carpeta holatlaloc, que no contenía un sitio Web completo. Al

aumentar la complejidad de los sitios de prueba (imágenes,

videos, sonido, etc.), se incrementa la latencia, definida como

el tiempo que tarda en transmitirse un paquete dentro de la red

(INC, 2020).

En escenarios de alta concurrencia, la transferencia de

múltiples recursos Web por conexiones simultáneas provoca

una saturación en el canal de comunicación entre el cliente y

el clúster, lo que incrementa los tiempos de respuesta.

Para evidenciar el cuello de botella, se realizó una prueba

con 768 usuarios concurrentes durante la descarga de recursos

Web. En este escenario, el nodo maestro distribuye las

solicitudes entre los nodos esclavos, los cuales procesan la

información y devuelven las respuestas al maestro.

Posteriormente, este envía al cliente los archivos que

componen los sitios Web.

La limitación principal se encuentra en el ancho de banda

del nodo maestro, cuya tarjeta de red alcanza un máximo de

100 Mbps. Esta capacidad resultó insuficiente para atender

simultáneamente todas las solicitudes, generando retrasos en la

salida de información y confirmando la existencia de un cuello

de botella en la comunicación.

Una estrategia para mejorar el tiempo de respuesta del

clúster consiste en reducir el número de usuarios concurrentes

y, en consecuencia, disminuir el volumen de datos transmitidos

en el canal de comunicación. Esta medida mitiga la saturación

y evita que los cuellos de botella limiten el rendimiento y la

escalabilidad del sistema (Oracle, 2009).

Con este propósito, se diseñó una nueva prueba con 384

usuarios concurrentes durante 10 minutos en los cinco sitios

Web de ejemplo, con el fin de analizar si la reducción de carga

se traduce en una mejora significativa en los tiempos de

respuesta.

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 158

7. Prueba: 384 usuarios concurrentes, 10 minutos de

prueba, modelos de procesamiento Prefork módulo de

ordenamiento Round-Robin.

La prueba 7 se llevó a cabo con la mitad de los usuarios

concurrentes soportados por el clúster. Los resultados

mostraron una reducción significativa en el tiempo promedio

de respuesta individual, que pasó a 3.74 segundos. En

comparación, la prueba 5, realizada con parámetros similares,

pero con mayor concurrencia, registró un tiempo de 5.59

segundos por solicitud. Esto representa una mejora de 1.85

segundos en el tiempo de entrega de respuestas.

Con base en estos hallazgos, se planteó una prueba

adicional utilizando 384 usuarios concurrentes durante un

periodo de 30 minutos, con el fin de evaluar la estabilidad del

sistema bajo una carga intermedia sostenida en el tiempo.

7.1 Prueba 384 usuarios concurrentes, 30 minutos de

prueba, modelos de procesamiento Prefork y módulo de

ordenamiento Round-Robin.

En la prueba 7.1 se incrementó el tiempo de duración del

ensayo con el objetivo de analizar si el tiempo de respuesta se

mantenía por debajo de los 3 segundos. El propósito fue

confirmar que la reducción de usuarios concurrentes, aun con

cargas prolongadas, contribuye a minimizar el cuello de botella

y mantiene la estabilidad del sistema. Los resultados

evidencian que el clúster es capaz de soportar la cantidad

máxima de usuarios concurrentes definida para esta prueba sin

comprometer el procesamiento, aunque se registró un

incremento en la carga de la red asociado a dicho nivel de

concurrencia.

Adicionalmente, se evaluó el efecto de la optimización

del contenido de los sitios Web en el tiempo de respuesta. En

este proyecto, tres de los sitios de ejemplo incluyen recursos

como imágenes y videos, cuyo peso puede incrementar la

latencia. La minimización de estos archivos constituye una

estrategia para reducir el tiempo de descarga por parte del

cliente (Axarnet, 2020).

Como parte del experimento, se planteó eliminar el video

de 24 MB incluido en el sitio Barbershop, con el fin de

observar si esta optimización se reflejaba en una mejora en los

tiempos de respuesta. La prueba se aplicó a los cinco sitios

Web de ejemplo implementados en el proyecto.

7.2 Prueba: 384 usuarios concurrentes, 10 minutos de

prueba, modelos de procesamiento Prefork módulo de

ordenamiento Round-Robin.

La prueba 7.2 mostró una disminución de un segundo en el

tiempo de respuesta respecto a la prueba 7.1. Sin embargo, esta

reducción no es suficiente para concluir que el video del sitio

Barbershop fuera el único factor responsable del retardo

observado.

En este proyecto se integraron tres sitios Web de ejemplo

con contenido multimedia (imágenes y videos), lo que permite

simular un entorno más cercano al comportamiento real de un

sitio Web moderno y medir el impacto de estos recursos en la

latencia. Como punto de comparación, se empleó el sitio viaje,

cuya estructura es básica y compuesta únicamente por texto,

con el fin de observar el tiempo de respuesta que ofrece el

clúster en condiciones mínimas de carga de recursos.

7.3 Prueba: 384 usuarios concurrentes, 10 minutos de

prueba, modelos de procesamiento Prefork, módulo de

ordenamiento Round-Robin, y prueba al sitio “viaje”.

La prueba 7.3 mostró una reducción significativa en el tiempo

de respuesta, alcanzando un promedio de 0.97 segundos por

solicitud individual (Google, 2020). Este resultado confirma que

el peso de los archivos multimedia en los sitios Web de ejemplo

constituye un factor determinante en los retardos observados. En

efecto, los sitios que incluyen videos e imágenes presentan

tiempos de resolución más altos que aquellos compuestos

únicamente por texto.

El diseño experimental contempló el uso de sitios

enriquecidos con contenido multimedia para evaluar el

rendimiento real del clúster, considerando tanto sus capacidades

como sus limitaciones. A fin de mejorar los tiempos de respuesta,

se planteó reducir el peso de los recursos multimedia en los cinco

sitios Web. Para ello, se emplearon versiones optimizadas de cada

sitio, reemplazadas dentro del clúster mediante la carpeta

compartida /export.

La siguiente prueba (7.4) se llevó a cabo sobre estos cinco

sitios Web en su versión optimizada, con el propósito de analizar

la mejora alcanzada en los tiempos de respuesta.

7.4 Prueba: 384 usuarios concurrentes, 10 minutos de

prueba, modelos de procesamiento Prefork y el módulo de

ordenamiento Round-Robín.

La prueba evidenció una mejora en el tiempo de respuesta

promedio, que se redujo a 2.10 segundos, frente a los 2.95

segundos registrados en la prueba 7.2. Esta disminución

permitió incrementar la cantidad de transacciones entre el

clúster y los clientes, lo que se tradujo en un mayor número de

solicitudes atendidas satisfactoriamente dentro del mismo

intervalo de prueba.

La optimización de los cinco sitios Web generó un

aumento de 32,914 solicitudes satisfactorias adicionales

respecto a la prueba 7.2, bajo condiciones similares de tiempo

de prueba y usuarios concurrentes. Asimismo, se observó que

al disminuir el número de usuarios concurrentes es posible

obtener tiempos de respuesta aún más reducidos.

Para confirmar lo antes dicho, se planteó una nueva

prueba con 200 usuarios concurrentes, cuyo propósito fue

analizar el impacto directo de la concurrencia reducida sobre

los tiempos de respuesta del clúster.

7.5 Prueba: 200 usuarios concurrentes, 10 minutos de

prueba, modelos de procesamiento Prefork y el módulo de

ordenamiento Round-Robin.

Los resultados mostraron una reducción adicional de un

segundo en el tiempo de respuesta respecto a la prueba 7.4. Esto

confirma que, al disminuir el número de usuarios concurrentes, el

canal de comunicación presenta menor saturación, lo que facilita

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 159

que un mayor número de solicitudes se resuelva de manera

correcta. Sin embargo, esta mejora implica un sacrificio en la

capacidad máxima de usuarios concurrentes que el sistema puede

atender de forma simultánea.

Con base en estos resultados, se planteó analizar el desempeño

de los algoritmos de ordenamiento restantes bajo condiciones de

menor concurrencia. Para ello, se configuraron nuevas pruebas

con 200 usuarios concurrentes, con el objetivo de mantener los

tiempos de respuesta por debajo de los 2 segundos y evaluar si

este parámetro puede reducirse aún más mediante la elección de

un algoritmo de distribución más eficiente.

7.6 Prueba: 200 usuarios concurrentes, 10 minutos de

prueba, modelos de procesamiento Prefork con el módulo

de ordenamiento Round-Robin-Weighted.

La prueba mostró resultados muy similares a los de la

prueba 7.5, a pesar de que el algoritmo Round-Robin Weighted

distribuye la carga asignando una menor proporción de

solicitudes al nodo maestro (una por cada cinco entregadas a

los nodos esclavos).

En este escenario, el tiempo de respuesta se redujo apenas

1 milisegundo, mientras que el número de solicitudes

satisfactorias aumentó en 1,000 transacciones adicionales

respecto a la prueba anterior.

7.7 Prueba: 200 usuarios concurrentes, 10 minutos de

prueba, modelos de procesamiento Prefork y el módulo de

ordenamiento Least-Connection.

La prueba 7.7, realizada con el algoritmo de ordenamiento

Least-Connection, mostró un tiempo de respuesta

prácticamente equivalente al de las pruebas 7.5 y 7.6, con una

mejora marginal de 3 milisegundos. La principal diferencia

radicó en el mayor número de transacciones enviadas, lo que

permitió procesar y resolver un volumen superior de

solicitudes de manera satisfactoria. Cabe destacar que durante

esta prueba no se registraron errores.

7.8 Prueba: 200 usuarios concurrentes, 10 minutos de

prueba, modelos de procesamiento Prefork y el módulo de

ordenamiento Weigthed-Least-Connection.

Esta última prueba, realizada con el algoritmo de

ordenamiento Weighted Least-Connection, proporcionó

resultados muy similares a los obtenidos en la prueba 7.6. En

ambos casos se asignó el mismo valor de importancia al nodo

maestro, el cual recibió una solicitud por cada cinco asignadas

a los nodos esclavos.

El análisis de las pruebas 7.5 a 7.8 mostró valores de

rendimiento similares en cuanto a tiempos de respuesta y

solicitudes satisfactorias. Sin embargo, el algoritmo Least-

Connection se destacó por procesar una mayor cantidad de

transacciones y reducir ligeramente el tiempo de respuesta por

solicitud individual. En consecuencia, este algoritmo fue

seleccionado para configurarse en el proyecto como opción

preferente de distribución de carga.

La evaluación integral de todas las pruebas permitió

establecer los parámetros de operación más adecuados para el

clúster. Se determinó que la capacidad máxima práctica es de

768 usuarios concurrentes, aunque este nivel provoca un cuello

de botella en el canal de comunicación, lo que retrasa la entrega

de respuestas al cliente. Para mitigar esta limitación, se optó

por reducir el número de usuarios concurrentes, lo que permitió

mantener los tiempos de respuesta por debajo de los 2

segundos.

Asimismo, la optimización del peso de los archivos

multimedia que conforman los sitios Web de prueba mejoró

notablemente el rendimiento, alcanzando un tiempo mínimo de

1.09 segundos por respuesta individual, el mejor registrado en

el proyecto.

En cuanto a los módulos de procesamiento de Apache, se

concluyó que Prefork es el más adecuado para este proyecto.

Aunque Worker y Event admiten un mayor número de usuarios

concurrentes, presentan desventajas críticas:

● Incompatibilidad con bibliotecas externas, lo que

afecta aplicaciones Web dependientes de estas (como

Ganglia).

● Mayor probabilidad de generar cuellos de botella al

elevar la concurrencia permitida.

Por el contrario, Prefork ofrece plena compatibilidad con

bibliotecas externas y asegura un funcionamiento estable, aun

cuando el número máximo de usuarios concurrentes es más

reducido (Apache, 2020).

5. Conclusiones

El presente trabajo permitió la construcción y

configuración de un clúster de tres nodos empleando el sistema

operativo Rocks. Para su implementación se utilizaron

protocolos y herramientas clave como DHCP para el

direccionamiento, SSH para las conexiones seguras y Ganglia

para el monitoreo de recursos.

Las pruebas realizadas permitieron analizar el desempeño

del clúster bajo distintos escenarios, identificando los

parámetros que influyen en su rendimiento:

Capacidad de usuarios concurrentes:

● El clúster alcanzó un máximo teórico de 768 usuarios

concurrentes con Prefork, sin presentar errores.

● Los módulos Worker y Event permitieron configurar

hasta 1050 usuarios teóricos, aunque en la práctica la

capacidad se limitó a 1010–1020 usuarios,

presentando fallos cuando se excedió esta cifra.

Estabilidad de los módulos de procesamiento:

● Prefork resultó el módulo más estable, con un

rendimiento sostenido incluso en pruebas

prolongadas de hasta 30 minutos.

● Worker y Event mostraron mayor concurrencia, pero

errores en pruebas extendidas y limitaciones de

compatibilidad con bibliotecas externas como

Ganglia.

 C. García-Herrera et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 149–160 160

Algoritmos de ordenamiento (IPVSADM):

● Se evaluaron los algoritmos Round-Robin, Round-

Robin Weighted, Least-Connection y Weighted

Least-Connection.

● El algoritmo Least-Connection destacó por ofrecer la

mayor cantidad de solicitudes satisfactorias y un

tiempo de respuesta ligeramente menor, por lo que

fue seleccionado como el más eficiente para este

proyecto.

Cuello de botella y tiempo de respuesta:

● Se identificó un cuello de botella en el canal de

comunicación del nodo maestro, vinculado a la

saturación de la velocidad del canal (100 Mbps).

● La reducción del número de usuarios concurrentes y

la optimización del contenido multimedia de los sitios

Web permitieron mejorar el tiempo de respuesta hasta

1.09 segundos por solicitud, el mejor resultado del

estudio.

En síntesis, el clúster configurado con Prefork como

módulo de procesamiento y el algoritmo Least-Connection

como esquema de distribución ofrece la mejor relación entre

estabilidad, compatibilidad y eficiencia. Si bien la

concurrencia máxima práctica se sitúa en 768 usuarios, las

estrategias de optimización aplicadas demostraron que es

posible mantener tiempos de respuesta competitivos y mitigar

los efectos de los cuellos de botella, asegurando un

rendimiento confiable para aplicaciones Web.

Referencias

Apache. (2020). Apache HTTP Server Project. Apache

Software Foundation. https://httpd.apache.org/

Axarnet. (2020, 24 de febrero). Reducir el tiempo de

respuesta del servidor. Axarnet.

https://axarnet.es/blog/reducir-tiempo-respuesta-

servidor?dt=1614621127478

CIMAT. (2023). Proyecto Clúster El Insurgente. Centro de

Investigación en Matemáticas.

https://hpc.cimat.mx/proyectos/Insurgente

Garza, L. (2017). Proyecto de servidor Web en clúster con

alta disponibilidad y distribución de carga: Herramienta de

virtualización KVM [Tesis de maestría, Universidad

Politécnica de Valencia].

González, B. (2016). Clúster de alta disponibilidad sobre

plataformas GNU/Linux (VERITAS) [Tesis de maestría,

Universitat Oberta de Catalunya].

González, R., & Rodríguez, S. (2008). Diseño e

implementación de un clúster tipo Beowulf para el

desarrollo de cómputo científico avanzado. Instituto

Politécnico Nacional.

Google. (2020, 17 de diciembre). PageSpeed Tools.

https://developers.google.com/speed/docs/insights/Server?

hl=es-419

Inc. (2020, 15 de febrero). Qué es la latencia y cómo se puede

mejorar. Inc Hosting.

https://www.inchosting.pe/blog/sitio-Web/que-es-la-

latencia-y-como-se-puede-mejorar

Massie, M., Li, B., Nicholes, B., & Vuksan, V. (2012).

Monitoring with Ganglia. O’Reilly Media.

Martínez, F. (2009). Creación y validación de un clúster de

computación científica basado en Rocks [Tesis de

maestría, Universidad Carlos III de Madrid].

Mesa, M. (2008). Método para el manejo del balanceo de

carga en sistemas de cómputo distribuido de alto

desempeño [Tesis de maestría, Universidad Nacional de

Colombia].

Nuñez, J. L. (2014). Alternativas para la escalabilidad de

aplicaciones en plataformas Web de alta concurrencia.

Interfases, (7), 45–58.

Oracle. (2009). Identificación rápida de cuellos de botella:

Una mejor manera de realizar pruebas de carga. Oracle

Corporation.

RedHat. (2020a, 5 de julio). Sinopsis de la suite para clúster.

Red Hat. https://access.redhat.com/documentation/es-

es/red_hat_enterprise_linux/5/html-

single/cluster_suite_overview/index

RedHat. (2020b, 25 de julio). Virtual Server Administration.

Red Hat. https://access.redhat.com/documentation/es-

es/red_hat_enterprise_linux/5/html-

single/virtual_server_administration/index

Ríos, I. V. (2010). Instalación y configuración de un clúster

de alto rendimiento [Tesis de maestría, Universidad Carlos

III de Madrid].

Rocksclusters. (2018, 13 de mayo). Rocksclusters website.

http://www.rocksclusters.org

Server, L. V. (1998, 10 de julio). Servidor virtual a través de

NAT. Linux Virtual Server.

http://www.linuxvirtualserver.org/VS-NAT.html

Siege Home. (2012). Joe Dog Software: Siege.

https://www.joedog.org/siege-home/

