® DESDE 2013 b
’ https://repository.uaeh.edu.mx/revistas/index.php/icbi/issue/archive
Pédi Boletin Cientifico de Ciencias Bdsicas e Ingenierias del ICBI [)I
Universidad Autdnoma dal Estado de Hidalgo
ISSN: 2007-6363
Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160

Analisis del rendimiento de un servidor rocks para servicios Web
Analvsis of the performance of a rocks server for Web services

C. Garcia-Herrera'='®*, O. Gonzalez-Gonzalez =3, L. C. Méndez-Guevara =2

2 Ingenieria en Computacion, Centro Universitario UAEM Valle de Teotihuacan, Universidad Autdnoma del Estado de México, Santo Domingo Aztacameca,
México, México.

Resumen

El presente documento tiene como objetivo determinar el rendimiento de un cluster homogéneo configurado como servidor Web.
Se describen los pasos de instalacion del sistema operativo, la verificacion de los servicios implementados, la configuracién de
las directivas de distribucion de carga y del directorio de intercambio utilizado para el envio de archivos dentro del arreglo.
Asimismo, se analizan los métodos de reenvio y, finalmente, el rendimiento del sistema mediante pardmetros definidos por el
usuario. Para evaluar dicho rendimiento se establecen métricas como el modulo de procesamiento mas eficiente, el nimero
méaximo de usuarios concurrentes, el menor tiempo de respuesta por solicitud y la configuracién 6ptima del sistema.

Palabras Clave: Cluster, servidor, nodo, métricas, rendimiento.
Abstract

This paper aims to determine the performance of a homogeneous cluster configured as a Web server. It describes the steps for
installing the operating system, verifying the services implemented, configuring load distribution policies, and setting up the
swap directory used for file transfer within the cluster. In addition, forwarding methods are analyzed, and the system’s
performance is evaluated based on user-defined parameters. Metrics such as the most efficient processing module, the maximum
number of concurrent users, the shortest response time per request, and the optimal system configuration are considered.

Keywords: Cluster, server, node, metrics, performance.
1. Introduccién Posteriormente, se detalla el modo de operaciéon del
servidor Web, con énfasis en la funcion de la carpeta export,

El presente trabajo tiene como objetivo describir la utilizadaen el reenvio de datos desde el nodo maestro hacia los

configuracion de un cluster orientado a la distribucion de carga
en solicitudes Web entrantes, asi como la determinacion de su
rendimiento. El sistema implementado distribuye dichas
solicitudes entre tres nodos del arreglo; cada nodo procesa una
parte de las peticiones y devuelve las respuestas al nodo
maestro, encargado de enviarlas finalmente al cliente. Para
ello, se utiliza el sistema operativo Rocks, versién 7, cuya
instalacion y configuracion son descritas paso a paso en este
estudio.

Una vez completada la instalacion en el nodo maestro, se
verificd el correcto funcionamiento de los servicios Web,
DHCP (Dynamic Host Configuration Protocol), SSH (Secure
Shell) y Ganglia, los cuales resultan esenciales para la
instalacion en los nodos esclavos. Finalizada esta etapa, se
procede a la administracion general del clister.

Asimismo, se introduce el sistema de monitoreo Ganglia,
con el proposito de comprender las métricas empleadas por
este software.

*Autor para la correspondencia: cgarciah@uaemex.mx

nodos esclavos. Se explica también la forma en que el claster
ejecuta esta tarea y se describe la distribucién de carga, ya sea
de manera programada o mediante la intervencién de un
administrador.

Seguidamente, se analizan los métodos de reenvio
proporcionados por la herramienta servidor virtual de Linux y
se aborda la instalacion y configuracion del administrador de
carga conocido como servidor virtual de protocolo de Internet,
empleado en la primera prueba de rendimiento.

Finalmente, se presentan las pruebas de carga controladas,
configuradas por el usuario a través de pardmetros como la
duracion de la prueba, el nimero de usuarios concurrentes o la
emulacion de un entorno de Internet. Dichas pruebas permiten
determinar el rendimiento del sistema bajo diferentes
condiciones de operacion.

2. Marco teérico

Correo electrénico: cgarciah@uaemex.mx (Cozobi Garcia-Herrera), shomarey90@gmail.com (Ossmar Gonzélez Gonzalez), lcmendezg@uaemex.mx (Laura Cecilia Méndez

Guevara)

Historial del manuscrito: recibido el 24/10/2024, ultima version-revisada recibida el 02/05/2025, aceptado el 07/10/2025,
DOI: https://doi.org/10.29057/icbi.v13i26.14025

en linea (postprint) desde el 10/10/2025, publicado el 05/01/2026.

S 0¢o

https://orcid.org/0000-0001-5777-1365
https://orcid.org/0009-0000-2872-4965
https://orcid.org/0000-0002-4190-7157

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 150

Para comprender la construccion de un cldster es
necesario definir sus caracteristicas fundamentales, sus
elementos constitutivos y su clasificacién. Un cluster
computacional puede entenderse como la interconexion de
multiples equipos mediante una red de alta velocidad, que
permite sumar sus recursos individuales y conformar una
supercomputadora. En términos generales, un clister es
un conjunto de computadoras que combina multiples
procesadores con el propdsito de ofrecer soluciones
eficientes en tiempo y costo (CIMAT, 2023).

Los principales elementos de un claster son el
hardware (componentes fisicos) y el software
(principalmente el sistema operativo). Este Gltimo
constituye el programa esencial que permite la interaccién
entre la maquina y el usuario, coordinando la gestion de
memoria, archivos y la comunicacion entre hardware y
aplicaciones (Garza, 2017).

Existen sistemas operativos orientados al uso
doméstico, educativo o de oficina, asi como sistemas
especializados en servidores, disefiados para habilitar
servicios en Internet.

El proyecto Rocks surgi6 con el objetivo de simplificar
la implementacion y administracion de clisteres. Sus
esfuerzos se orientaron hacia la facilidad de instalacion,
gestion, actualizacion y escalabilidad, con la finalidad de
acercar el poder computacional de los clUsteres a un
amplio sector de la comunidad cientifica (Rocks, 2018).

En cuanto a la naturaleza de su construccion, los
clisteres se clasifican en:

e Homogéneos: integrados por equipos con la misma
arquitectura y recursos similares, lo que garantiza
uniformidad en su desempefio.

e Heterogéneos: conformados por equipos que difieren
en aspectos como arquitectura, sistema operativo,
capacidad de procesamiento o tiempos de acceso.

El claster desarrollado en este proyecto es de tipo
homogéneo, ya que todos los nodos comparten las mismas
caracteristicas de hardware y utilizan un sistema operativo
comun.De acuerdo con su funcioén, los clisteres pueden
clasificarse en tres categorias principales (Martinez,
2009):

Clusteres de alta disponibilidad (High Availability):
disefiados para garantizar la continuidad del servicio. No
buscan maximizar el poder de calculo, sino asegurar que,
en caso de falla de un nodo, otros asuman sus tareas de
manera rapida y transparente (Gonzalez, 2016).

Clusteres de alto rendimiento (High Performance
Computing): empleados en aplicaciones con calculos
intensivos, como simulaciones cientificas o modelos
meteorolégicos. Buscan sustituir a las supercomputadoras
tradicionales con alternativas mas econémicas (Gonzalez
& Rodriguez, 2008).

Clasteres de balanceo de carga (Load Balancing):
orientados a dividir el trabajo entre los nodos disponibles,
reduciendo errores y aumentando la capacidad de
atencién. Una aplicacion comin es el servidor Web
(Martinez, 2009).

El balanceo de carga consiste en dividir un problema
en un numero fijo de procesos distribuidos entre las
maquinas disponibles, sin considerar las diferencias de
procesador o velocidad. En este contexto, el clister
propuesto en el presente estudio se clasifica como claster
homogéneo de balanceo de carga, disefiado para funcionar
como servidor Web y evaluar tanto la distribucién de las
solicitudes entrantes como el comportamiento general del
sistema.

3. Desarrollo

Una vez definidos los aspectos bésicos del clister a
implementar, se describe a continuacion el proceso de
instalacion, configuracion y administracion del sistema,
asi como el andlisis de su rendimiento frente a solicitudes
Web.

3.1 Introduccién a Rocks Cluster

Rocks es una distribucién de Linux orientada a la
implementacion de cldsteres, inicialmente basada en RedHat y
actualmente en CentOS. Desde el afio 2000, el grupo Rocks ha
trabajado en simplificar la instalacion, administracién,
actualizacion y escalabilidad de estas infraestructuras, con el
fin de hacerlas accesibles a una amplia comunidad cientifica
(Rocks, 2018).

3.2 Requerimientos iniciales

La instalacion del sistema operativo en los nodos requiere
la topologia mostrada en la Figura 1.

Red publica Red privada

Provedor de intemet (ISP) Nodo maestro

Nodos esclavos

Figura 1. Conexion fisica del cluster.

La comunicacién entre el nodo maestro y los nodos esclavos
se realiza mediante una red privada, en la que cada dispositivo
recibe una direccidn IP asignada a través del protocolo DHCP.
El nodo maestro dispone de dos interfaces de red: una dedicada
a la distribucion de trabajos internos y otra para la conexion
publica a Internet.

En la Tabla 1 se presentan las caracteristicas del hardware
empleado para la construccion del claster, compuesto por tres
equipos HP con procesadores Intel Core i3 de cuatro ndcleos,
4 GB de memoria RAM vy discos duros de entre 120 y 320 GB.

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 151

Tabla 1. Caracteristicas del hardware.

Caracteristicas
Procesador Intel Core i3 con 4
nucleos
Memoria RAM 4 Gb
Disco duro 320 Gb
Cuenta con gabinete metalico
Procesador Intel Core i3 con 4
nucleos
Memoria RAM 4 Gb
Disco duro 320 Gb
Cuenta con gabinete metalico
Procesador Intel Core i3 con 4
nucleos
Memoria RAM 4 Gb
Disco duro 120 Gb
Cuenta con gabinete metalico

Equipos
HP RP 5800

HP 8100 SFF

HP 8100 SFF

3.3 Ganglia (Monitor del sistema)

Antes de iniciar los trabajos en el cluster, es fundamental
comprender cOmo se monitorean sus recursos, ya que este
proceso permite evaluar el funcionamiento general del sistema.
Para este fin, se integra Ganglia dentro de la instalacion, el cual
incluye tres aplicaciones internas que facilitan el monitoreo
(Massie, Li, Nicholes, & Vuksan, 2012).

Ganglia es un sistema distribuido, de codigo abierto y
escalable, disefiado para entornos de coémputo de alto
rendimiento. Su interfaz principal muestra graficas generales
de carga por hora para todos los nodos conectados. En la Figura
2 se observa la vista en cuadricula de los clisteres
monitoreados; en este proyecto Unicamente aparece tlaloc, el
Unico nodo activo. Las graficas resumen la carga horaria del
sistema, el volumen de datos transmitidos y recibidos, el
porcentaje de uso de CPU y memoria, asi como el estado de
los nodos (activos o inactivos).

= Cluster Ganglla Report [l

e G R 1 T, 18 Ot 199 15:LT- 16 3008

e s . i 121 j

Figura 2. Portal principal de Ganglia.

3.4 El servidor Web Apache

El sistema operativo Rocks 7 incorpora el servidor Web
Apache dentro de los componentes preinstalados en el cluster.

Uno de los parametros clave es el mdédulo de procesos
multiples (MPM), el cual puede configurarse en tres
modalidades: prefork, worker y event. Estos modulos
determinan la manera en que Apache procesa las solicitudes
entrantes. Por defecto, el sistema utiliza prefork, con valores
preestablecidos que permiten responder peticiones aun sin
configuracién adicional. La funcion esencial de los MPM
consiste en aceptar las solicitudes del cliente y resolverlas
mediante distintos procesos o hilos, aplicando un enfoque de
tipo divide y venceras (Apache, 2020).

El médulo Prefork implementa un servidor sin subprocesos,
de modo que cada solicitud es atendida por un Unico proceso.
Este aislamiento resulta adecuado para sitios Web que
requieren evitar subprocesamiento por incompatibilidad de
bibliotecas, ademas de que garantiza que un error en una
solicitud no afecte a las deméas (Apache, 2020).

El mddulo Worker aplica un modelo hibrido, basado en
procesos e hilos, lo que permite atender un gran nimero de
solicitudes utilizando menos recursos que prefork. Aun asi,
mantiene estabilidad al conservar multiples procesos activos
para responder de forma simultanea (Apache, 2020).

El médulo Event se basa en Worker y optimiza la gestion
de conexiones persistentes cliente-servidor. Una vez
completada la primera solicitud, el cliente puede mantener la
conexién abierta para enviar nuevas peticiones sin generar la
sobrecarga de abrir procesos adicionales. Sin embargo, este
esquema requiere mantener procesos e hilos en espera, incluso
cuando el cliente no envia datos, lo cual representa un consumo
innecesario. Para solucionarlo, event utiliza un hilo dedicado
gue monitorea las conexiones y las cierra automéaticamente
cuando quedan inactivas (Apache, 2020).

La eleccion del modulo depende de las exigencias del
servicio que se desee ofrecer. Las principales directivas de
configuracién de los MPM son las siguientes (Apache, 2020):

e StartServers: nimero de procesos creados al iniciar el
servicio.

e MinSpareServers y MaxSpareServers: exclusivas de
prefork; ajustan dindmicamente la cantidad de
procesos disponibles en funcion de la carga.

e MaxClients: nUimero méaximo de procesos o
conexiones simultaneas; su valor predeterminado es
150, aunque puede configurarse hasta 256 en prefork.

e MaxRequestsPerChild: nimero méaximo de
solicitudes que atiende un proceso antes de finalizar;
su valor por defecto es 4200 en prefork y 0 en worker.

e MinSpareThreads y MaxSpareThreads: exclusivas de
worker, regulan la cantidad minima y maxima de
hilos disponibles.

e ThreadsPerChild: también de worker, establece el
namero de hilos por proceso hijo, el valor
predeterminado es 25.

La Tabla 2 resume las directrices principales asociadas a
cada mddulo de procesamiento mdaltiple (prefork, worker y
event).

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 152

Estos parametros se configuran en el archivo httpd.conf,
localizado en el nodo maestro, y deben replicarse en todos los
nodos esclavos del cllster para garantizar un comportamiento
uniforme del sistema.

Tabla 2. Directrices para cada modulo de procesamiento maltiple.

Prefork Worker Event

StartServers 10 StartServers 5 StartServers 3
MaxClients 350
MinSpareThreads 25
MaxSpareThreads 75

ThreadsPerchild 25

MinSpareServers 5 MinSpareThreads 75
MaxSpareThreads 150

ThreadsPerchild 75

MaxSpareServers 25
ServerLimit 256
MaxClients 256

MaxRequestPerchild 4200

MaxRequestPerchild 21000

MaxRequestPerchid 0 MaxRequestWorkers 150

La configuracién mostrada en la Figura 3 corresponde al
archivo httpd.conf en el nodo maestro, en el cual se empled el
modulo prefork con sus valores predeterminados. Este archivo
debe replicarse en todos los nodos esclavos para mantener la
coherencia en la gestion de solicitudes.

httpd.conf - Visual Studie Code [Superuser] - o x

File Edit Selection View Go Run Terminal Help

httpd.conf

Figura 3. Configuracion del archivo httpd.conf en el nodo maestro.

En cuanto al almacenamiento compartido, la carpeta
/export, ubicada en el directorio raiz del nodo maestro, permite
distribuir archivos hacia los nodos esclavos. Dentro de esta
carpeta, el subdirectorio /export/apps contiene los elementos
destinados a compartirse en el clister. En los nodos esclavos,
esta estructura se replica como /share/apps, lo que asegura la
disponibilidad de los mismos archivos en todo el sistema.
Como parte de la validacién, se comparti6 la carpeta
holatlaloc, utilizada en las pruebas de distribucion.

3.5 Distribucion de carga para peticiones Web

Una de las principales ventajas de instalar un sistema
operativo orientado a clister es la inclusion de herramientas
preconfiguradas que facilitan tanto la gestion del sistema como
la ejecucidn de tareas distribuidas entre multiples procesadores
(Rios, 2010). En este sentido, Rocks 7 esti disefiado para
admitir cualquier tipo de tarea distribuida, siempre que esté
programada para ejecutarse en paralelo, ademas de administrar
y asignar de manera eficiente la carga de trabajo entre los
distintos nodos.

Entre las herramientas mas relevantes se encuentran LVS
(Linux Virtual Server) e IPVSADM (IP Virtual Server
Admin). LVS permite distribuir solicitudes de servicios como
Web, FTP, DNS, VolP o correo electronico entre los diferentes
procesadores. Esta herramienta, integrada en el kernel de
Linux a partir de la version 2.6.x, asegura una correcta
distribucion de carga.

Por su parte, IPVS proporciona la capa de administracion
necesaria para configurar los pardmetros de LVS y gestionar el
trafico entrante. En la arquitectura implementada, el nodo
maestro se encarga de recibir las solicitudes Web, distribuirlas
a los nodos esclavos para su procesamiento y, finalmente,
recopilar y enviar las respuestas de regreso a los clientes. La
herramienta IPVSADM, instalada vy configurada
exclusivamente en el nodo maestro, cumple el papel de
administrador central del flujo de solicitudes y de la
interaccion entre los diferentes elementos del clister (Server,
1998).

3.6 Configuracién del administrador IPVSADM

La herramienta IPVSADM permite configurar diferentes
algoritmos de distribucion de carga, los cuales determinan
como se asignan las solicitudes a los nodos del clister
(RedHat, 2020a):

e 1 (Round-Robin): distribuye las solicitudes de
manera equitativa entre los nodos, sin considerar su
capacidad o carga actual.

e wrr (Weighted Round-Robin): asigna un mayor
nimero de solicitudes a los nodos con mayor peso
configurado, mientras que los nodos con pesos
menores reciben proporcionalmente menos tareas.

e Ic (Least-Connection): dirige las solicitudes a los
nodos con menor ndmero de conexiones activas.

e wlc (Weighted Least-Connection, valor por defecto):
distribuye las solicitudes en funcion de la relacién
entre el peso asignado a cada nodo y el nimero de
conexiones activas.

e |blc (Locality-Based Least-Connection Scheduling):
procura que las solicitudes recurrentes sean atendidas
por el mismo nodo, siempre que la carga lo permita.

e dh (Destination Hash Scheduling): disefiado para
servidores proxy-cache; asigna las solicitudes
basandose en una tabla hash estatica de direcciones IP
de destino.

e sh (Source Hash Scheduling): distribuye las
solicitudes de acuerdo con una tabla hash estatica
construida a partir de las direcciones IP de origen.

Para validar el funcionamiento del cldster y observar la
aplicacion de estos algoritmos, se disefio una prueba de
distribucion. En ella, la carpeta holatlaloc incluyé un archivo
index que identifica cada nodo esclavo por su nombre. De esta
manera, al enviar solicitudes al cluster, se pudo verificar qué
nodo respondia a cada peticion, confirmando asi la correcta
distribucion de la carga en funcion del algoritmo seleccionado.

4. Resultados

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 153

Para evaluar el rendimiento del servidor Web configurado
en el cluster, se enviaron diferentes peticiones de manera
aleatoria con el proposito de medir la capacidad de respuesta
del sistema. Para ello se emple6 el software Siege, una
herramienta que permite configurar parametros como el
nimero de usuarios concurrentes, la duracion de las pruebas,
la simulacion de un entorno en Internet y el tiempo de espera
entre solicitudes.

Siege es un programa de evaluacion comparativa y
pruebas de carga disefiado para someter a los servidores Web
a condiciones de alta demanda. Su objetivo es permitir a los
desarrolladores medir el desempefio del cddigo bajo presion y
analizar la resistencia de los sistemas frente a diferentes niveles
de carga (Siege Home, 2012).

La herramienta posibilita la conexion simultanea de un
namero configurable de clientes simulados, quienes generan
solicitudes aleatorias al servidor, colocando al sistema “bajo
presion” para observar su comportamiento. Siege cuenta con
tres modos principales de operacién:

a) Regresién
b) Simulacién de Internet
¢) Fuerzabruta

Para ejecutar las pruebas de manera aleatoria y simultanea,
fue necesario crear el archivo urls.txt, el cual contiene las
direcciones de los sitios Web disponibles en el cllster. Este
archivo, ubicado en la carpeta home del equipo cliente,
permitié automatizar el envio de solicitudes al arreglo, como

se ilustra en la Figura 4.
Figura 4. Archivos siegerc y urls.txt.

La Figura 5 presenta la lista de carpetas y direcciones URL
correspondientes a los diferentes sitios Web de prueba
empleados en el proyecto. Cada sitio fue implementado en el
claster con el propésito de evaluar la distribucion de carga y la
capacidad de respuesta del sistema:

camp: 192.168.0.13/camp
barbershop: 192.168.0.13/barbershop
viaje: 192.168.0.13/viaje
Restaurante: 192.168.0.13/restaurante
chapultepec: 192.168.0.13/chapu
holatlaloc: 192.168.0.13/holatlaloc

Figura 5. Configuracion del archivo urls.txt

El software Siege genera, al finalizar cada prueba, un
conjunto de indicadores que permiten evaluar el rendimiento
del cluster (Siege Home, 2012). Estos parametros son los
siguientes:

e Transactions: nimero total de visitas simuladas al
servidor.

e Availability: porcentaje de solicitudes atendidas
correctamente por el clister.

e Elapsed time: duracidn total de la prueba, expresada
en segundos.

e Data transferred: volumen de datos intercambiados
entre el cliente y el cluster durante la prueba.

e Response time: tiempo promedio de respuesta por
solicitud.

e Transaction rate: tasa de transferencia de solicitudes
por segundo.

e Throughput: cantidad promedio de bytes transferidos
por segundo desde el servidor a los clientes
simulados.

e Concurrency: numero medio de conexiones
simultaneas mantenidas durante la prueba.

e Successful transactions: total de transacciones en las
que el servidor respondid con cédigos inferiores a
400, incluyendo redirecciones.

e Failed transactions: nimero de solicitudes fallidas.

e Longest transaction: tiempo de resolucién de la
solicitud mas lenta.

e Shortest transaction: tiempo de resolucion de la
solicitud mas rapida.

......

......

4.1 Pruebas con Siege

El objetivo de las pruebas realizadas en el cluster fue
identificar los pardmetros Optimos para la distribucién de
solicitudes Web entrantes. Para ello se modificaron diversas
variables, entre las que se destacan:

e El modulo de procesamiento de Apache.

e El nimero de usuarios concurrentes por prueba.

e La duracion de las pruebas (para simular escenarios
de carga continua).

e Lasimulacion de entornos en Internet.

El tiempo de espera por conexién.

e La generacién de peticiones sin tiempos de retardo,
con el fin de incrementar la carga sobre el sistema.

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 154

Con estas variaciones se buscé determinar:

e FEl nimero méximo de usuarios concurrentes
soportados por el cluster.

e El comportamiento de los diferentes modulos de
procesamiento.

e FEl desempefio de
ordenamiento.

e El tiempo de respuesta minimo alcanzado.

e Losfallosy cuellos de botella presentes en el sistema.

e El porcentaje de éxito en el procesamiento de
solicitudes (con un rango esperado de entre 98 % y
100 %).

e La configuracion ideal para
funcionamiento eficiente del sistema.

los distintos algoritmos de

garantizar un

Las pruebas, de caracter no estandarizado, fueron
disefiadas para identificar el limite de usuarios concurrentes
que el clister puede soportar antes de presentar fallos en el
procesamiento de solicitudes generadas por Siege. Para ello, se
modificod en cada ensayo el nimero maximo de clientes
permitidos por nodo a través de las directivas del médulo de
procesamiento en el archivo httpd.conf.

La primera prueba se llevé a cabo con la configuracion
predeterminada de Apache: un maximo de 150 usuarios por
nodo, sin modificaciones adicionales en las directivas del
moédulo de procesamiento. Dado que el clister esta
conformado por tres nodos, la capacidad tedrica inicial fue de
450 usuarios concurrentes. En todos los casos, la distribucién
de carga se realizd utilizando el algoritmo de ordenamiento
Round-Robin.

1. Prueba: 1 Minuto de prueba con 450 usuarios
concurrentes al sitio “holatlaloc”.

Los resultados de la primera prueba mostraron que el
cluster soportd correctamente los 450 usuarios concurrentes
previstos en la configuracion predeterminada, sin registrar
errores en las solicitudes procesadas. El parametro Failed
transactions se mantuvo en 0 durante toda la ejecucidn,
confirmando la estabilidad del sistema bajo esta carga.

En esta prueba no se realizaron modificaciones en las
directivas del médulo de procesamiento de Apache, ya que el
objetivo fue verificar si el limite tedrico de usuarios
concurrentes definido por defecto podia sostenerse en la
practica sin afectar la comunicacién entre el cliente y el clUster.

Figura 6. Resultados de la prueba 1.

2. Prueba: 1 Minuto de prueba con 768 usuarios
concurrentes, médulo de procesamiento Prefork al sitio
holatlaloc”.

En la segunda prueba se empled el modulo de
procesamiento Prefork, configurando sus directivas conforme
ala Tabla 2. La directiva MaxClients se ajusté al valor maximo
permitido de 256 usuarios por nodo, lo que corresponde a una
capacidad tedrica de 768 usuarios concurrentes en el clUster.

Los resultados confirmaron que esta carga fue aceptada
satisfactoriamente: el pardmetro Failed transactions se

mantuvo en 0 durante toda la ejecucion, lo que indica que no
se registraron errores en el procesamiento de solicitudes bajo

esta configuracion.
Figura 7. Resultados de la prueba 2.

3. Prueba: 1 Minuto de prueba con 1050 usuarios
concurrentes al sitio “holatlaloc”, con el médulo de
procesamiento Worker.

En la tercera prueba se reemplazé el modulo de
procesamiento Prefork por Worker, lo que permitié aumentar
la directiva MaxClients a 350 usuarios por nodo. Con esta
configuracidn, la capacidad teorica del clister ascendié a 1050
usuarios concurrentes.

Sin embargo, al iniciar la prueba se registré una serie de
errores que llevaron a su interrupcién, evidenciando que el

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 155

claster no pudo sostener tal cantidad de conexiones
simultaneas. Este resultado permite delimitar la capacidad real
del sistema, mostrando que el arreglo no es capaz de
proporcionar servicio estable a un nimero tan elevado de
usuarios.

Figura 8. Resultados de la prueba 3.

3.1 Prueba: 1 Minuto de prueba con 1010, 1020 y 1030
usuarios concurrentes al sitio holatlaloc.

Con el fin de delimitar con mayor precision la capacidad
del cluster bajo el modulo Worker, se realizaron tres pruebas
adicionales con valores ligeramente inferiores al limite teérico,
manteniendo siempre mas de 1000 usuarios concurrentes.

En particular, la prueba con 1010 usuarios concurrentes
resultd satisfactoria: no se registraron errores aparentes en el
envio ni en el procesamiento de solicitudes, lo que indica que
esta cifra se encuentra dentro del rango de estabilidad del
sistema.

Figura 9. Resultados de la prueba con 1010 usuarios.

En la prueba con 1020 usuarios concurrentes se registraron
errores en el pardmetro Failed transactions, aunque el proceso
no se interrumpid, dado que Siege permite hasta 1024 fallos
antes de abortar la ejecucion (Siege Home, 2012). En total, se
generaron 195 solicitudes denegadas, mientras que el resto de
la prueba concluy6 de manera correcta.

A partir de este resultado se determina que, con cargas
iguales o superiores a 1020 usuarios concurrentes, el clister
comienza a mostrar errores en la atencion de solicitudes, lo que
marca un limite practico de su capacidad bajo esta
configuracion.

Figura 10. Resultados de la prueba con 1020 usuarios.

Como era previsible, la prueba con 1030 usuarios
concurrentes abort6 debido a que el clister no logré sostener
dicha carga. Esto confirma que el sistema no es capaz de operar
de manera estable con un nimero tan elevado de conexiones
simultaneas.

En consecuencia, se determina que la capacidad 6ptima del
cluster bajo el médulo Worker se encuentra en un rango de
1010 a 1015 usuarios concurrentes, margen en el cual el
sistema mantiene estabilidad y un procesamiento correcto de
las solicitudes.

Figura 11. Resultados de la prueba con 1030 usuarios.

A partir de este punto, los resultados se presentan sin incluir
las imagenes correspondientes con el fin de reducir la
extension del documento.

La siguiente prueba se llevé a cabo empleando el médulo
de procesamiento Event. Este mddulo no dispone de una
directiva equivalente a MaxClients; por lo tanto, para la
evaluacion se adoptd como referencia el nimero maximo de
clientes soportados previamente con el modulo Worker.

Dado que Event constituye una modificacion orientada a
mejorar el rendimiento de Worker, el proposito de la prueba
fue analizar cuéntos usuarios concurrentes podia soportar el
cluster bajo esta configuracion y comparar su comportamiento
respecto al médulo anterior (Apache, 2020).

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 156

4. Prueba: 1 Minuto de prueba con 1010 y 1020 usuarios
concurrentes al sitio holatlaloc.

La prueba con el mddulo Event mostré un comportamiento
similar al obtenido con Worker. En ambos casos, el clister
soporté entre 1010 y 1015 usuarios concurrentes sin presentar
fallos criticos. Con 1010 usuarios, el nimero de errores en el
parametro Failed transactions fue menor en Event, que registro
aproximadamente 70 errores menos que Worker.

En la prueba con 1020 usuarios concurrentes, el médulo
Event no mostr6 mejoras respecto a Worker: la ejecucion
termind en aborto tras superar el limite de 1024 solicitudes
rechazadas. Asi, puede concluirse que la capacidad préctica de
ambos modulos es comparable, aunque ambos se mantienen
por debajo de la capacidad tedrica de 1050 usuarios. En
contraste, el mddulo Prefork si logr6 alcanzar en la practica el
méaximo calculado de 768 usuarios concurrentes.

La seleccién del médulo de procesamiento depende en gran
medida del tipo de aplicacién o sitio Web alojado en el clUster.

Prefork, modulo predeterminado de Apache, rara vez
requiere modificaciones y resulta adecuado para aplicaciones
Web dindmicas que utilizan bibliotecas externas, ya que ofrece
mayor compatibilidad.

Worker y Event presentan limitaciones al no estar
adaptados para trabajar con todas las bibliotecas externas. Este
aspecto se evidencio en el presente proyecto al utilizar Ganglia,
herramienta de monitoreo dinamico que emplea librerias en
PHP. En este caso, los mddulos Worker y Event provocaron
errores en la interfaz grafica e incluso caidas totales del
sistema, mientras que Prefork asegur6 un funcionamiento
estable.

En consecuencia, Prefork es el Gnico mddulo plenamente
adaptado para aplicaciones que dependen de bibliotecas
externas, aunque los tres médulos fueron funcionales para las
pruebas realizadas, dado que los sitios Web de ejemplo no
requerian este tipo de compatibilidad.

Con base en los resultados anteriores, se planificaron
nuevas pruebas para determinar qué mddulo ofrece el mayor
rendimiento y menor probabilidad de fallos. Estas
evaluaciones se realizaron con la maxima cantidad de usuarios
concurrentes soportada en pruebas previas, sometiendo al
sistema a condiciones de carga constante. Ademas, se ajusto la
duracién de las pruebas y se habilit6 la opcion de simulacion
de entorno en Internet, con el fin de aproximarse al
comportamiento real de solicitudes de usuarios.

Las pruebas se aplicaron a los cinco sitios Web de ejemplo
implementados en el proyecto.

5. Prueba: 768 usuarios concurrentes, 10 minutos y modulo
Prefork; 1010 usuarios concurrentes, 10 minutos y médulo

Worker y 1010 usuarios concurrentes, 10 minutos y
maddulo Event.

En la quinta prueba se someti6 al clister a una carga
constante durante un tiempo mayor que en ensayos previos,
con el fin de observar la estabilidad del sistema bajo
condiciones prolongadas. El objetivo fue identificar posibles
errores y analizar la capacidad de cada modulo de
procesamiento en estas circunstancias, observando lo
siguientes:

e Prefork: alcanzo6 un 100 % de efectividad, procesando
77,368 solicitudes sin rechazos. El tiempo promedio
de respuesta individual fue de 5.59 segundos,
mientras que el tiempo total para completar la prueba
fue de 599.63 segundos, con una tasa de
procesamiento de 130.71 solicitudes por segundo.

e Worker: al aumentar el nUmero de usuarios
concurrentes de 768 a 1010, procesé un total de
83,637 solicitudes, es decir, 6,269 més que Prefork.
No obstante, se registraron 161 solicitudes fallidas,
con un porcentaje de éxito del 99.81 %.

e Event: proceso 68,295 solicitudes, cifra inferior a la
alcanzada por Worker. Se contabilizaron 159 fallos,
con una efectividad del 99.77 %. Su principal ventaja
radico en el tiempo de respuesta individual,
aproximadamente un segundo mas bajo en
comparacion con Prefork y Worker.

De lo anterior se puede destacar que el médulo mas estable
es Prefork, ya que logra niveles similares de solicitudes
satisfactorias respecto a Worker y Event, pero con una menor
configuracion de usuarios concurrentes, lo que evita la
saturacion del sistema. Su principal desventaja es la
imposibilidad de soportar un nimero mayor de usuarios en
comparacion con los otros médulos.

Por su parte, Worker y Event muestran mayor capacidad
tedrica, pero presentan mas errores en pruebas prolongadas y,
ademas, carecen de compatibilidad con bibliotecas externas.
Esta limitacién afecta el correcto funcionamiento de
aplicaciones Web dinamicas, como Ganglia, cuya interfaz
gréfica experimentd errores e incluso caidas al ejecutarse con
estos modulos.

Aungue los tres modulos alcanzan niveles de efectividad
entre el 99 % y 100 %, la estabilidad y compatibilidad de
Prefork lo convierten en la opcibn méas adecuada para
continuar con las siguientes pruebas.

Con el modulo Prefork configurado en el clister, se
plante6 incrementar el tiempo de prueba y modificar el
algoritmo de distribucién de carga con el objetivo de
identificar cudl permite procesar un mayor nimero de
solicitudes satisfactorias.

Dado que no todos los algoritmos de IPVSADM son
compatibles con el método de reenvio NAT, se seleccionaron
Unicamente los siguientes (RedHat, 2020b):

e Round-Robin
e Round-Robin Weighted

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 157

e Least-Connection

e Weighted Least-Connection

Los dos ultimos algoritmos ponderados (Round-Robin
Weighted y Weighted Least-Connection) permiten asignar
mayor carga a nodos con mayor capacidad, lo que resulta
especialmente Gtil en clUsteres heterogéneos. En este proyecto,
aunque se trata de un clister homogéneo, se configuré con
mayor peso en los nodos esclavos para reducir la carga del
nodo maestro, encargado de recibir y redistribuir todas las
solicitudes entrantes. Las siguientes pruebas se aplicaron
nuevamente a los cinco sitios Web de ejemplo implementados
en el proyecto.

6. Prueba: 768 usuarios concurrentes, 30 minutos de
prueba, modelos de procesamiento Prefork y médulo de
ordenamiento Round-Robin y 768 usuarios concurrentes,
30 minutos de prueba, modelos de procesamiento Prefork
y modulo de ordenamiento Least-Connection.

La prueba con el algoritmo de ordenamiento Round-Robin
mostré un aumento en el nimero de solicitudes procesadas
correctamente, resultado atribuido al mayor tiempo de
ejecucion en comparacion con pruebas previas. Se registraron
Gnicamente 7 errores, con una tasa de 125.42 transacciones por
segundo. Sin embargo, el resultado més relevante fue el tiempo
de respuesta promedio, que alcanzé 6.01 segundos, valor
considerablemente alto para los estandares de servicio Web.

Con el algoritmo Least-Connection, se obtuvo una ligera
reduccion en el tiempo de respuesta —en el orden de
milisegundos—, aunque no lo suficiente para representar una
mejora significativa. En esta prueba se contabilizaron 223,352
solicitudes satisfactorias, es decir, 3,570 mas que con Round-
Robin, junto con 10 solicitudes fallidas.

Ambos algoritmos incrementaron el numero total de
solicitudes procesadas debido a la mayor duracion de la
prueba, lo que permitié observar el comportamiento del
sistema bajo cargas mas elevadas. El algoritmo Least-
Connection se mostr6 mas eficiente en la distribucion de
solicitudes, aunque los tiempos de respuesta continuaron
siendo elevados.

Este aspecto resulta critico, ya que el tiempo de respuesta
recomendado para servidores Web es de 200 milisegundos a
fin de garantizar un posicionamiento adecuado en motores de
busqueda (Google, 2020).

En contraste, los resultados obtenidos en estas pruebas
(valores superiores a 6 segundos) son considerablemente
mayores, lo que revela la existencia de cuellos de botella en el
sistema.

Las pruebas siguientes se enfocaran en reducir el tiempo de
respuesta mediante la modificacién del nimero de usuarios
concurrentes, la eleccion del algoritmo de distribucion mas
eficiente y la optimizacion de los sitios Web de prueba.

6.2 Prueba: 768 usuarios concurrentes, 30 minutos de
prueba, modelos de procesamiento Prefork mdédulo de
ordenamiento Round-Robin-Weighted y mddulo de
ordenamiento Weigthed-Least-Connection, ambos con una

peticién para el nodo maestro por cada cinco a los nodos
esclavos.

En la prueba con el algoritmo Round-Robin Weighted, el
nodo maestro recibié una solicitud por cada cinco enviadas a
los nodos esclavos, lo que redujo parcialmente la carga sobre
él. Sin embargo, no se obtuvo una mejora significativa en el
tiempo de respuesta, que permanecié por encima de los 6
segundos. ElI ndmero de solicitudes satisfactorias fue de
221,894, valor similar al registrado en la prueba con Round-
Robin.

La prueba con Weighted Least-Connection proporciond
resultados cercanos a los obtenidos con Least-Connection,
aunque en este caso el nodo maestro recibié una menor
proporcion de solicitudes. A pesar de ello, el tiempo de
respuesta no mejord debido al elevado nimero de usuarios
concurrentes, lo cual generd retardos en el sistema. En total, se
registraron 223,202 solicitudes satisfactorias y 0 errores
(Nufiez, 2014).

Los resultados evidencian que en las pruebas iniciales los
tiempos de respuesta eran menores porque se utilizaba la
carpeta holatlaloc, que no contenia un sitio Web completo. Al
aumentar la complejidad de los sitios de prueba (imagenes,
videos, sonido, etc.), se incrementa la latencia, definida como
el tiempo que tarda en transmitirse un paquete dentro de la red
(INC, 2020).

En escenarios de alta concurrencia, la transferencia de
multiples recursos Web por conexiones simultdneas provoca
una saturacién en el canal de comunicacion entre el cliente y
el cluster, lo que incrementa los tiempos de respuesta.

Para evidenciar el cuello de botella, se realizé una prueba
con 768 usuarios concurrentes durante la descarga de recursos
Web. En este escenario, el nodo maestro distribuye las
solicitudes entre los nodos esclavos, los cuales procesan la
informacion y devuelven las respuestas al maestro.
Posteriormente, este envia al cliente los archivos que
componen los sitios Web.

La limitacion principal se encuentra en el ancho de banda
del nodo maestro, cuya tarjeta de red alcanza un méximo de
100 Mbps. Esta capacidad resultd insuficiente para atender
simultaneamente todas las solicitudes, generando retrasos en la
salida de informacion y confirmando la existencia de un cuello
de botella en la comunicacion.

Una estrategia para mejorar el tiempo de respuesta del
cluster consiste en reducir el nimero de usuarios concurrentes
Y, en consecuencia, disminuir el volumen de datos transmitidos
en el canal de comunicacion. Esta medida mitiga la saturacion
y evita que los cuellos de botella limiten el rendimiento y la
escalabilidad del sistema (Oracle, 2009).

Con este proposito, se disefid una nueva prueba con 384
usuarios concurrentes durante 10 minutos en los cinco sitios
Web de ejemplo, con el fin de analizar si la reduccién de carga
se traduce en una mejora significativa en los tiempos de
respuesta.

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 158

7. Prueba: 384 usuarios concurrentes, 10 minutos de
prueba, modelos de procesamiento Prefork mddulo de
ordenamiento Round-Robin.

La prueba 7 se llevd a cabo con la mitad de los usuarios
concurrentes soportados por el claster. Los resultados
mostraron una reduccién significativa en el tiempo promedio
de respuesta individual, que pasé a 3.74 segundos. En
comparacion, la prueba 5, realizada con parametros similares,
pero con mayor concurrencia, registré un tiempo de 5.59
segundos por solicitud. Esto representa una mejora de 1.85
segundos en el tiempo de entrega de respuestas.

Con base en estos hallazgos, se plante6 una prueba
adicional utilizando 384 usuarios concurrentes durante un
periodo de 30 minutos, con el fin de evaluar la estabilidad del
sistema bajo una carga intermedia sostenida en el tiempo.

7.1 Prueba 384 usuarios concurrentes, 30 minutos de
prueba, modelos de procesamiento Prefork y médulo de
ordenamiento Round-Robin.

En la prueba 7.1 se incrementd el tiempo de duracion del
ensayo con el objetivo de analizar si el tiempo de respuesta se
mantenia por debajo de los 3 segundos. El propdsito fue
confirmar que la reduccion de usuarios concurrentes, aun con
cargas prolongadas, contribuye a minimizar el cuello de botella
y mantiene la estabilidad del sistema. Los resultados
evidencian que el clUster es capaz de soportar la cantidad
méaxima de usuarios concurrentes definida para esta prueba sin
comprometer el procesamiento, aunque se registrd un
incremento en la carga de la red asociado a dicho nivel de
concurrencia.

Adicionalmente, se evalué el efecto de la optimizacion
del contenido de los sitios Web en el tiempo de respuesta. En
este proyecto, tres de los sitios de ejemplo incluyen recursos
como imégenes y videos, cuyo peso puede incrementar la
latencia. La minimizacién de estos archivos constituye una
estrategia para reducir el tiempo de descarga por parte del
cliente (Axarnet, 2020).

Como parte del experimento, se planted eliminar el video
de 24 MB incluido en el sitio Barbershop, con el fin de
observar si esta optimizacion se reflejaba en una mejora en los
tiempos de respuesta. La prueba se aplicé a los cinco sitios
Web de ejemplo implementados en el proyecto.

7.2 Prueba: 384 usuarios concurrentes, 10 minutos de
prueba, modelos de procesamiento Prefork mdédulo de
ordenamiento Round-Robin.

La prueba 7.2 mostré una disminucion de un segundo en el
tiempo de respuesta respecto a la prueba 7.1. Sin embargo, esta
reduccion no es suficiente para concluir que el video del sitio
Barbershop fuera el Unico factor responsable del retardo
observado.

En este proyecto se integraron tres sitios Web de ejemplo
con contenido multimedia (imagenes y videos), lo que permite
simular un entorno mas cercano al comportamiento real de un
sitio Web moderno y medir el impacto de estos recursos en la

latencia. Como punto de comparacion, se empled el sitio viaje,
Cuya estructura es basica y compuesta Unicamente por texto,
con el fin de observar el tiempo de respuesta que ofrece el
cluster en condiciones minimas de carga de recursos.

7.3 Prueba: 384 usuarios concurrentes, 10 minutos de
prueba, modelos de procesamiento Prefork, médulo de
ordenamiento Round-Robin, y prueba al sitio “viaje”.

La prueba 7.3 mostré una reduccion significativa en el tiempo
de respuesta, alcanzando un promedio de 0.97 segundos por
solicitud individual (Google, 2020). Este resultado confirma que
el peso de los archivos multimedia en los sitios Web de ejemplo
constituye un factor determinante en los retardos observados. En
efecto, los sitios que incluyen videos e imagenes presentan
tiempos de resolucion mas altos que aquellos compuestos
Unicamente por texto.

El disefio experimental contemplé el uso de sitios
enriquecidos con contenido multimedia para evaluar el
rendimiento real del cluster, considerando tanto sus capacidades
como sus limitaciones. A fin de mejorar los tiempos de respuesta,
se planted reducir el peso de los recursos multimedia en los cinco
sitios Web. Para ello, se emplearon versiones optimizadas de cada
sitio, reemplazadas dentro del clister mediante la carpeta
compartida /export.

La siguiente prueba (7.4) se llevd a cabo sobre estos cinco
sitios Web en su version optimizada, con el propdsito de analizar
la mejora alcanzada en los tiempos de respuesta.

7.4 Prueba: 384 usuarios concurrentes, 10 minutos de
prueba, modelos de procesamiento Prefork y el mddulo de
ordenamiento Round-Robin.

La prueba evidencié una mejora en el tiempo de respuesta
promedio, que se redujo a 2.10 segundos, frente a los 2.95
segundos registrados en la prueba 7.2. Esta disminucion
permitié incrementar la cantidad de transacciones entre el
cluster y los clientes, lo que se tradujo en un mayor nimero de
solicitudes atendidas satisfactoriamente dentro del mismo
intervalo de prueba.

La optimizacion de los cinco sitios Web gener6 un
aumento de 32,914 solicitudes satisfactorias adicionales
respecto a la prueba 7.2, bajo condiciones similares de tiempo
de prueba y usuarios concurrentes. Asimismo, se observé que
al disminuir el nimero de usuarios concurrentes es posible
obtener tiempos de respuesta ain mas reducidos.

Para confirmar lo antes dicho, se planted una nueva
prueba con 200 usuarios concurrentes, cuyo propésito fue
analizar el impacto directo de la concurrencia reducida sobre
los tiempos de respuesta del cluster.

7.5 Prueba: 200 usuarios concurrentes, 10 minutos de
prueba, modelos de procesamiento Prefork y el mddulo de
ordenamiento Round-Robin.

Los resultados mostraron una reduccion adicional de un
segundo en el tiempo de respuesta respecto a la prueba 7.4. Esto
confirma que, al disminuir el nimero de usuarios concurrentes, el
canal de comunicacion presenta menor saturacion, lo que facilita

C. Garcia-Herrera et al. / Publicacion Semestral Padi Vol. 13 No. 26 (2026) 149-160 159

que un mayor numero de solicitudes se resuelva de manera
correcta. Sin embargo, esta mejora implica un sacrificio en la
capacidad maxima de usuarios concurrentes que el sistema puede
atender de forma simulténea.

Con base en estos resultados, se plante¢ analizar el desempefio
de los algoritmos de ordenamiento restantes bajo condiciones de
menor concurrencia. Para ello, se configuraron nuevas pruebas
con 200 usuarios concurrentes, con el objetivo de mantener los
tiempos de respuesta por debajo de los 2 segundos y evaluar si
este parametro puede reducirse ain mas mediante la eleccion de
un algoritmo de distribucién mas eficiente.

7.6 Prueba: 200 usuarios concurrentes, 10 minutos de
prueba, modelos de procesamiento Prefork con el médulo
de ordenamiento Round-Robin-Weighted.

La prueba mostrd resultados muy similares a los de la
prueba 7.5, a pesar de que el algoritmo Round-Robin Weighted
distribuye la carga asignando una menor proporcién de
solicitudes al nodo maestro (una por cada cinco entregadas a
los nodos esclavos).

En este escenario, el tiempo de respuesta se redujo apenas
1 milisegundo, mientras que el ndmero de solicitudes
satisfactorias aumentd en 1,000 transacciones adicionales
respecto a la prueba anterior.

7.7 Prueba: 200 usuarios concurrentes, 10 minutos de
prueba, modelos de procesamiento Prefork y el mddulo de
ordenamiento Least-Connection.

La prueba 7.7, realizada con el algoritmo de ordenamiento
Least-Connection, mostrdé un tiempo de respuesta
practicamente equivalente al de las pruebas 7.5y 7.6, con una
mejora marginal de 3 milisegundos. La principal diferencia
radico en el mayor nimero de transacciones enviadas, lo que
permitié procesar y resolver un volumen superior de
solicitudes de manera satisfactoria. Cabe destacar que durante
esta prueba no se registraron errores.

7.8 Prueba: 200 usuarios concurrentes, 10 minutos de
prueba, modelos de procesamiento Prefork y el mddulo de
ordenamiento Weigthed-Least-Connection.

Esta daltima prueba, realizada con el algoritmo de
ordenamiento Weighted Least-Connection, proporciond
resultados muy similares a los obtenidos en la prueba 7.6. En
ambos casos se asignd el mismo valor de importancia al nodo
maestro, el cual recibié una solicitud por cada cinco asignadas
a los nodos esclavos.

El andlisis de las pruebas 7.5 a 7.8 mostrd valores de
rendimiento similares en cuanto a tiempos de respuesta y
solicitudes satisfactorias. Sin embargo, el algoritmo Least-
Connection se destac6 por procesar una mayor cantidad de
transacciones y reducir ligeramente el tiempo de respuesta por
solicitud individual. En consecuencia, este algoritmo fue
seleccionado para configurarse en el proyecto como opcion
preferente de distribucion de carga.

La evaluacion integral de todas las pruebas permitid
establecer los pardmetros de operacion mas adecuados para el

cluster. Se determiné que la capacidad maxima practica es de
768 usuarios concurrentes, aunque este nivel provoca un cuello
de botella en el canal de comunicacidn, lo que retrasa la entrega
de respuestas al cliente. Para mitigar esta limitacion, se optd
por reducir el nimero de usuarios concurrentes, lo que permitié
mantener los tiempos de respuesta por debajo de los 2
segundos.

Asimismo, la optimizacion del peso de los archivos
multimedia que conforman los sitios Web de prueba mejoro
notablemente el rendimiento, alcanzando un tiempo minimo de
1.09 segundos por respuesta individual, el mejor registrado en
el proyecto.

En cuanto a los mddulos de procesamiento de Apache, se
concluy6 que Prefork es el mas adecuado para este proyecto.
Aungue Worker y Event admiten un mayor nimero de usuarios
concurrentes, presentan desventajas criticas:

e Incompatibilidad con bibliotecas externas, lo que
afecta aplicaciones Web dependientes de estas (como
Ganglia).

e Mayor probabilidad de generar cuellos de botella al
elevar la concurrencia permitida.

Por el contrario, Prefork ofrece plena compatibilidad con
bibliotecas externas y asegura un funcionamiento estable, aun
cuando el nimero maximo de usuarios concurrentes es mas
reducido (Apache, 2020).

5. Conclusiones

El presente trabajo permiti6 la construccion y
configuracion de un clUster de tres nodos empleando el sistema
operativo Rocks. Para su implementacion se utilizaron
protocolos y herramientas clave como DHCP para el
direccionamiento, SSH para las conexiones seguras y Ganglia
para el monitoreo de recursos.

Las pruebas realizadas permitieron analizar el desempefio
del claster bajo distintos escenarios, identificando los
parametros que influyen en su rendimiento:

Capacidad de usuarios concurrentes:

e El cluster alcanzé un méaximo tedrico de 768 usuarios
concurrentes con Prefork, sin presentar errores.

e Los modulos Worker y Event permitieron configurar
hasta 1050 usuarios teodricos, aunque en la practica la
capacidad se limit6 a 1010-1020 usuarios,
presentando fallos cuando se excedi6 esta cifra.

Estabilidad de los modulos de procesamiento:

o Prefork resulto el modulo més estable, con un
rendimiento sostenido incluso en pruebas
prolongadas de hasta 30 minutos.

e Worker y Event mostraron mayor concurrencia, pero
errores en pruebas extendidas y limitaciones de
compatibilidad con bibliotecas externas como
Ganglia.

C. Garcia-Herrera et al. / Publicacién Semestral Padi Vol. 13 No. 26 (2026) 149-160 160

Algoritmos de ordenamiento (IPVSADM):

e Se evaluaron los algoritmos Round-Robin, Round-
Robin Weighted, Least-Connection y Weighted
Least-Connection.

e El algoritmo Least-Connection destac6 por ofrecer la
mayor cantidad de solicitudes satisfactorias y un
tiempo de respuesta ligeramente menor, por lo que
fue seleccionado como el mas eficiente para este
proyecto.

Cuello de botella y tiempo de respuesta:

e Se identificé un cuello de botella en el canal de
comunicacion del nodo maestro, vinculado a la
saturacion de la velocidad del canal (100 Mbps).

e Lareduccion del nimero de usuarios concurrentes y
la optimizacion del contenido multimedia de los sitios
Web permitieron mejorar el tiempo de respuesta hasta
1.09 segundos por solicitud, el mejor resultado del
estudio.

En sintesis, el clister configurado con Prefork como
modulo de procesamiento y el algoritmo Least-Connection
como esquema de distribucién ofrece la mejor relacion entre
estabilidad, compatibilidad y eficiencia. Si bien la
concurrencia maxima préctica se sitla en 768 usuarios, las
estrategias de optimizacion aplicadas demostraron que es
posible mantener tiempos de respuesta competitivos y mitigar
los efectos de los cuellos de botella, asegurando un
rendimiento confiable para aplicaciones Web.

Referencias

Apache. (2020). Apache HTTP Server Project. Apache
Software Foundation. https://httpd.apache.org/

Axarnet. (2020, 24 de febrero). Reducir el tiempo de
respuesta del servidor. Axarnet.
https://axarnet.es/blog/reducir-tiempo-respuesta-
servidor?dt=1614621127478

CIMAT. (2023). Proyecto Cluster El Insurgente. Centro de
Investigacion en Matematicas.
https://hpc.cimat.mx/proyectos/Insurgente

Garza, L. (2017). Proyecto de servidor Web en clister con
alta disponibilidad y distribucion de carga: Herramienta de
virtualizacion KVM [Tesis de maestria, Universidad
Politécnica de Valencia].

Gonzélez, B. (2016). Cluster de alta disponibilidad sobre
plataformas GNU/Linux (VERITAS) [Tesis de maestria,
Universitat Oberta de Catalunya].

Gonzalez, R., & Rodriguez, S. (2008). Disefio e
implementacion de un clister tipo Beowulf para el

desarrollo de cémputo cientifico avanzado. Instituto
Politécnico Nacional.

Google. (2020, 17 de diciembre). PageSpeed Tools.
https://developers.google.com/speed/docs/insights/Server?
hl=es-419

Inc. (2020, 15 de febrero). Qué es la latencia y como se puede
mejorar. Inc Hosting.
https://www.inchosting.pe/blog/sitio-Web/que-es-la-
latencia-y-como-se-puede-mejorar

Massie, M., Li, B., Nicholes, B., & Vuksan, V. (2012).
Monitoring with Ganglia. O’Reilly Media.

Martinez, F. (2009). Creacion y validacion de un cldster de
computacion cientifica basado en Rocks [Tesis de
maestria, Universidad Carlos 111 de Madrid].

Mesa, M. (2008). Método para el manejo del balanceo de
carga en sistemas de cémputo distribuido de alto
desempefio [Tesis de maestria, Universidad Nacional de
Colombia].

Nufiez, J. L. (2014). Alternativas para la escalabilidad de
aplicaciones en plataformas Web de alta concurrencia.
Interfases, (7), 45-58.

Oracle. (2009). Identificacién rapida de cuellos de botella:
Una mejor manera de realizar pruebas de carga. Oracle
Corporation.

RedHat. (20204, 5 de julio). Sinopsis de la suite para clister.
Red Hat. https://access.redhat.com/documentation/es-
es/red_hat_enterprise_linux/5/html-
single/cluster_suite_overview/index

RedHat. (2020b, 25 de julio). Virtual Server Administration.
Red Hat. https://access.redhat.com/documentation/es-
es/red_hat_enterprise_linux/5/html-
single/virtual_server_administration/index

Rios, I. V. (2010). Instalacion y configuracién de un cldster
de alto rendimiento [Tesis de maestria, Universidad Carlos
111 de Madrid].

Rocksclusters. (2018, 13 de mayo). Rocksclusters website.
http://www.rocksclusters.org

Server, L. V. (1998, 10 de julio). Servidor virtual a través de
NAT. Linux Virtual Server.
http://www.linuxvirtualserver.org/VS-NAT.html

Siege Home. (2012). Joe Dog Software: Siege.
https://www.joedog.org/siege-home/

