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Resumen

Este trabajo presenta una metodologı́a para la sintonización de controladores PID mediante redes neuronales artificiales (ANN)
aplicada a Rotatory Servo (RS) equipado con un motor de corriente continua (DC). Se exploran dos enfoques: la sintonización
previa y la sintonización dinámica en tiempo real, ambas basadas en datos generados por simulación. La ANN es entrenada exclusi-
vamente con datos simulados, sin requerir un modelo matemático detallado del sistema fı́sico, lo que simplifica significativamente
el proceso de diseño. El objetivo de este estudio es demostrar que es posible obtener un rendimiento satisfactorio sin necesidad
de realizar análisis complejos ni cálculos manuales por parte del diseñador. Los experimentos abarcan simulaciones y pruebas en
un entorno fı́sico, mostrando que la sintonización mediante las ANN, tales resultados validan la capacidad de las ANN para opti-
mizar controladores PID, destacando su eficacia en entornos no lineales y con alta variabilidad. Adicionalmente, se compara con
algoritmos genéticos (GA), donde la ANN supera en eficiencia computacional y facilidad de implementación.

Palabras Clave: Control, Redes Neuronales Artificiales, Sintonización.

Abstract

This work presents a methodology for tuning PID controllers using artificial neural networks (ANN), applied to a Rotary Servo
(RS) equipped with a direct current (DC) motor. Two approaches are explored: offline pre-tuning and real-time dynamic tuning, both
based on simulation-generated data. The ANN is trained exclusively with simulated data, without requiring a detailed mathematical
model of the physical system, which significantly simplifies the controller design process. The aim of this study is to demonstrate
that satisfactory performance can be achieved without the need for complex analysis or manual calculations by the designer. The
experiments include both simulations and physical tests, showing that tuning through ANN is effective. These results validate the
ability of ANN to optimize PID controllers and highlight their effectiveness in nonlinear environments with high variability. A
comparative analysis with genetic algorithms (GA) highlights ANN’s advantages in computational efficiency and implementation
ease.

Keywords: Control, Artificial neural networks, Tuning.

1. Introducción

Los motores DC son esenciales en muchas aplicaciones de-
bido a que su control es preciso en relación a su velocidad y
par, simplicidad operativa, y rápida respuesta a cambios de car-
ga, tales como vehı́culos eléctricos, cintas transportadoras y ro-
bots industriales Elmorshedy et al. (2021). Son muy utilizados
debido a un par alto a bajas velocidades y su facilidad de man-
tenimiento, especialmente en versiones sin escobillas Kommula
y Kota (2022). Los PID siguen siendo la piedra angular del con-
trol automático, gracias a su versatilidad y evolución mediante

técnicas modernas. Su integración con métodos adaptativos e
inteligentes amplı́a su aplicabilidad en sistemas complejos, des-
de robótica hasta biomedicina, manteniendo relevancia en la era
de la Industria 4.0 Borase et al. (2021). Además, su compatibi-
lidad con tecnologı́as modernas los hace fundamentales para la
automatización y el Internet de las cosas (IoT) Radonjić et al.
(2022).

Las técnicas de control PID y Proporcional-Integral (PI) si-
guen siendo las más utilizadas en sistemas de control debido a
su simplicidad y efectividad. Se estima que más del 95 % de las
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aplicaciones en procesos industriales hacen uso de estos contro-
ladores. Sin embargo, su desempeño puede verse afectado en si-
tuaciones donde el sistema enfrenta variaciones de carga o con-
diciones de inestabilidad, limitando su capacidad de respuesta
óptima Lee et al. (2020). Además, su desempeño está estrecha-
mente ligado a una correcta sintonización de los parámetros y
ganancias del controlador, lo cual puede convertirse en un des-
afı́o significativo en aplicaciones de alta complejidad Somefun
et al. (2021).

La sintonización de controladores PID es un proceso esen-
cial para garantizar que el sistema controlado responda de ma-
nera eficiente y estable ante diferentes condiciones de opera-
ción. La elección de los parámetros Kp (ganancia proporcional),
Ki (ganancia integral) y Kd (ganancia derivativa) influye direc-
tamente en el rendimiento del sistema, afectando su estabili-
dad, tiempo de respuesta y precisión. Existen diversos métodos
clásicos de sintonización de controladores PID, como los méto-
dos de Ziegler-Nichols, Cohen-Coon y la respuesta en bucle
abierto, los cuales son ampliamente utilizados. Sin embargo,
presentan limitaciones al aplicarse a sistemas complejos o no
lineales Åström y Hägglund (2006). Para superar estas limita-
ciones, se han propuesto enfoques más avanzados. Por ejemplo,
en Gadekar et al. (2020), se presenta un algoritmo de sintoni-
zación automática del PID que permite adaptar sus parámetros
dinámicamente según la velocidad deseada en motores BLDC.
En Abdelghany et al. (2023), se introduce un controlador PID
autoajustable basado en lógica difusa, diseñado para optimi-
zar el rendimiento de servomotores. Por su parte, Amutham-
bigaiyin Sundari y Maruthupandi (2022) explora la sintoniza-
ción del PID mediante algoritmos metaheurı́sticos, analizando
su desempeño en sistemas de tanques interactivos y no inter-
activos bajo condiciones de perturbación. En Li y Gao (2021),
se propone un método de sintonización robusta para controla-
dores PID fraccionales, orientado a preservar el margen de fa-
se en lazo abierto ante incertidumbres en los parámetros de la
planta. Otros enfoques avanzados recurren a algoritmos de op-
timización, como los algoritmos genéticos (AG), utilizados en
Cao (2020) para la sintonización de PID en sistemas electro-
hidráulicos complejos, logrando una reducción de oscilaciones
y una mejora en la precisión del control. Asimismo, el apren-
dizaje automático ha cobrado relevancia, destacando el uso de
ANN que permiten ajustar los parámetros del controlador en
función del comportamiento dinámico del sistema. En Debnath
et al. (2020), se emplea una ANN para la sintonización adap-
tativa de un controlador PID destinado a la regulación de fre-
cuencia en sistemas eléctricos con generación distribuida. En
conjunto, la sintonización automática y adaptativa de contro-
ladores PID resulta especialmente beneficiosa en entornos con
rápidas variaciones de carga, al mejorar la robustez y la capaci-
dad de respuesta del sistema de control.

En términos generales, la sintonización de un controlador
PID se puede clasificar en tres tipos principales, como se ilus-
tra en la Figura 1, los métodos basados en modelo requieren
un conocimiento detallado del sistema, incluyendo su modelo
matemático y parámetros especı́ficos. Por otro lado, los méto-
dos libres de modelo se basan puramente en datos y utilizan
técnicas de optimización para llevar a cabo la sintonización. Fi-
nalmente, los métodos hı́bridos combinan el uso del modelo del
sistema con un análisis basado en datos, aprovechando lo mejor

de ambos enfoques para lograr una sintonización más efectiva
y robusta Somefun et al. (2021).

Sintonización
        PID

Basados en 
 el modelo

Híbridos

Libre de
 modelo

Figura 1: Clasificación para sintonización.

En este contexto, una ANN que cae en la sintonización libre
de modelo puede ajustarse para predecir y seleccionar los valo-
res de Kp, Ki y Kd en tiempo real, mejorando significativamente
el control adaptativo del sistema.

En este artı́culo, se abordará la sintonización de un contro-
lador PID utilizando dos enfoques distintos. En el primer enfo-
que, las ganancias del controlador PID serán preestablecidas a
través de una ANN. Esta red se entrenará con datos obtenidos
de simulaciones, buscando una solución óptima para determinar
los valores adecuados de las ganancias. En el segundo enfoque,
las ganancias del PID serán ajustadas de manera dinámica por
una ANN, permitiendo que estas se adapten en tiempo real a los
requerimientos del sistema.

El sistema considerado para este estudio es un RS SRV02
que contiene un motor DC. Inicialmente, se realizarán simula-
ciones para ambos enfoques de sintonización con el objetivo de
evaluar su desempeño. Posteriormente, los métodos serán im-
plementados en el sistema fı́sico para validar su eficacia en un
entorno real. Este enfoque permite explorar tanto la eficacia de
las ganancias predefinidas como la flexibilidad de las ganancias
dinámicas, ofreciendo un análisis integral del control adaptati-
vo.

2. Control de velocidad de un motor DC

Comúnmente, la selección de las ganancias PID para un
motor DC se realiza utilizando métodos basados en modelos,
los cuales requieren un análisis detallado como se describirá a
continuación.

El modelado matemático de motores DC es un paso fun-
damental para comprender y diseñar sistemas de control efi-
cientes. Dicho modelo permite establecer una relación entre la
entrada, como el voltaje aplicado, y la salida, que puede ser la
velocidad angular o la posición del motor. En la mayorı́a de
las aplicaciones, la dinámica del motor puede aproximarse a
un sistema de primer orden. Esta simplificación facilita tanto el
análisis como el diseño del controlador, permitiendo optimizar
el rendimiento y reducir la complejidad del sistema.

El modelo matemático de un motor DC se deriva de las
ecuaciones que describen tanto el circuito eléctrico del induci-
do como la dinámica mecánica del rotor. Las ecuaciones básicas
son:
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Ecuación del circuito eléctrico:

V(t) = L
di(t)
dt
+ Ri(t) + E(t) (1)

donde: V(t) es el voltaje aplicado al inducido, L es la in-
ductancia del inducido, R es la resistencia del inducido, i(t)
es la corriente en el inducido y E(t) es la fuerza electromotriz
inducida, proporcional a la velocidad angular ω(t), es decir,
e(t) = Keω(t).

Ecuación de la dinámica mecánica:

J
dω(t)

dt
+ Bω(t) = Kti(t) (2)

donde J es el momento de inercia del rotor, B es el coefi-
ciente de fricción viscosa, Kt es la constante de par del motor y
ω(t) es la velocidad angular.

2.1. Aproximación a un Sistema de Primer Orden

La simplificación del modelo del motor DC (Ecuaciones 1
y 2) a un sistema de primer orden es ampliamente conocida y
reportada en la literatura Franklin et al. (2010). Esta simplifica-
ción desprecia el término inductivo (L di(t)

dt ≈ 0), válido cuando
τe = L/R ≪ τm = J/B entonces (1) se convierte en:

V(t) = Ri(t) + Keω(t) (3)

Despejando i(t) de la Ecuación (2)

i(t) =
J
Kt

dω(t)
dt
+

B
Kt
ω(t) (4)

Sustituyendo (4) en (3), entonces

V(t) = R
(

J
Kt

dω(t)
dt
+

B
Kt
ω(t)

)
+ Keω(t)

=
JR
Kt

dω(t)
dt
+

(
BR
Kt
+ Ke

)
ω(t) (5)

Aplicando transformada de Laplace a (5)

JR
Kt

sω(s) +
(

BR
Kt
+ Ke

)
ω(s) = V(s) (6)

Entonces la función de transferencia

G(s) =
ω(s)
V(s)

=
1

JR
Kt

s +
(

BR
Kt
+ Ke

) (7)

Por lo tanto el modelo se puede expresar como un sistema
estándar de primer orden como

G(s) =
Km

τms + 1
(8)

donde:

Km =
Kt

BR + KtKe
(Ganancia estática)

τm =
JR

BR + KtKe
(Constante de tiempo)

Esta función de transferencia (Ecuación (8)) muestra que el
motor se comporta como un sistema de primer orden, donde la

constante de tiempo τm define la rapidez de la respuesta del sis-
tema y la ganancia Km representa la relación entre la entrada y
la salida en estado estacionario.

La representación de un motor DC como un sistema de pri-
mer orden simplifica el diseño de controladores, ya que permite
el uso de controladores PID y PI que se ajustan de manera efec-
tiva para mejorar la estabilidad y el rendimiento del sistema.
Esta aproximación es válida cuando la inductancia es despre-
ciable y el comportamiento del motor puede ser dominado por
las caracterı́sticas mecánicas y eléctricas principales.

2.2. Rotatory Servo SRV02
Para este caso de estudio se llevan a acabo las simula-

ciones y pruebas experimentales mediante el dispositivo RS
SRV02, ilustrado en la Figura 2, el cual constituye una plata-
forma versátil e intuitiva para la realización de experimentos
relacionados con el control de posición angular (en grados) y
velocidad angular (en revoluciones por minuto, rpm). Este equi-
po, desarrollado por Quanser®, es ideal para la introducción
y enseñanza de conceptos y teorı́as fundamentales de control.
Además, ha sido adaptado para la adquisición de datos median-
te un microcontrolador de bajo costo, el Arduino Due, mejo-
rando su funcionalidad y accesibilidad en entornos educativos
y experimentales.

Figura 2: Rotary Servo SRV02

La unidad principal del RS SRV02 consiste en un sistema
con engranajes. Un motor DC que acciona un piñón pequeño,
el cual está acoplado a un engranaje de mayor diámetro que ro-
ta alrededor del eje de interés. La posición angular de este eje
se mide con un codificador óptico de alta resolución, o encoder
el cual se emplea para estimar la velocidad angular del motor,
proporcionando datos precisos tanto de posición como de mo-
vimiento, algunos datos que detalla al RS SRV02 se muestran
en la Tabla 1.

Tabla 1: Especificaciones del RS SRV02
Dimensiones 15cm x 15 cm x 18 cm

Masa 1.2 kg
Voltaje nominal 6 V

Corriente máxima 1 A
Resolución del enconder 4096 pulsos por revolución

Velocidad máxima 60 rpm
Caja reductora 70:1
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Para implementar el control PID en el sistema RS SRV02,
fue necesario determinar la función de transferencia del siste-
ma. Esto se logró aplicando un voltaje de entrada especı́fico
(PWM = 255) y registrando la respuesta en términos de ve-
locidad angular, como se muestra en la Figura 3. Los datos
de entrada (voltaje) y salida (RPM) fueron analizados utilizan-
do el método de System Identification en Matlab®, obteniendo
una aproximación matemática del sistema RS SRV02 como una
función de transferencia de primer orden. Este procedimiento
permitió capturar con precisión la dinámica del motor, facili-
tando su modelado y diseño de control.

La función de transferencia obtenida, presentada en la
Ecuación 9, describe el modelo matemático del RS SRV02, per-
mitiendo capturar su dinámica dominante:

G(s) =
4.673

s + 4.676
(9)

Este modelo de primer orden, como se mencionó previa-
mente, sirve como la base para el diseño y la sintonización del
controlador PID. Su simplicidad facilita tanto el análisis del
comportamiento del sistema como el desarrollo de estrategias
de control que optimicen su desempeño.
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Figura 3: Curva de velocidad del motor con PWM=255.

2.3. Plataforma experimental

Para llevar a cabo la parte experimental de la sintonización
de un controlador PID mediante una ANN en el sistema RS
SRV02, se utilizó una plataforma experimental representada en
la Figura 4. Esta figura ilustra el esquema de los componentes
fundamentales involucrados en la implementación del control,
los cuales se detallan a continuación:

1. Computadora: Equipada con programas como
Matlab/Simulink, Arduino IDE y Python, utilizados para
el diseño y simulación del sistema. Además, la compu-
tadora establece la comunicación con el Arduino Due.

2. Arduino Due: Recibe los datos del encoder, procesa la
señal y genera el pulso PWM correspondiente al contro-
lador PID.

3. Controlador de motor L298N: Convierte la señal PWM
proveniente del Arduino en un voltaje aplicado al motor.
Este voltaje es suministrado por una fuente de voltaje.

4. Planta RS SRV02: Representa el sistema fı́sico cuya ve-
locidad angular es controlada.

Este conjunto de elementos permite la implementación y
evaluación práctica del sistema de control de velocidad, inte-
grando hardware y software de forma eficiente.

1
2

3 4

velocidad de salida

pwm

voltaje

velocidad de referencia

comunicación

Figura 4: Diagrama del sistema

3. ANN para control

El uso de técnicas de aprendizaje profundo, como las ANN,
ha sido explorado ampliamente en aplicaciones de control para
motores DC, como en Gundogdu et al. (2021) donde la com-
binación de las ANN con identificación de sistemas ha demos-
trado ser efectivo para el control de velocidad en motores DC,
superando métodos convencionales como el Filtro de Kalman
Extendido en estados transitorios y estacionarios. Las ANN, cu-
yo elemento fundamental es el perceptrón, representan una de
las formas más antiguas y conocidas de redes neuronales Kruse
et al. (2022).

El perceptrón, inspirado en el funcionamiento de las neu-
ronas biológicas, procesa entradas ponderadas, las combina li-
nealmente y aplica una función de activación para generar una
salida. Aunque originalmente diseñado para resolver problemas
de clasificación lineal, su concepto básico ha evolucionado ha-
cia arquitecturas avanzadas que pueden modelar sistemas no li-
neales, aproximar funciones y optimizar parámetros en tiempo
real Géron (2022).

El perceptron tiene una arquitectura como la que se muestra
en la Figura 5, en la cual se identifican los valores de entrada
x1, x2, . . . , xn y un valor de salida y.

x1

x2

xn

wb

w1

w2

wn

∑n
i=1 xiwi f( ) y

Entradas

Unión
sumadora

Función de
activación f( )

Salida
del

perceptrón

1

...

Figura 5: Estructura de un perceptrón

Las entradas corresponden a las caracterı́sticas del conjunto
de datos de entrenamiento, mientras que la salida representa la
respuesta esperada para cada muestra de dicho conjunto. Cada
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entrada xi está asociada a un peso wi donde i = 1, 2, 3, .., n, wb

representa el peso de una entrada fija o bias. El valor de salida
de la neurona se obtiene calculando la suma ponderada de las
entradas y sus respectivos pesos mas el bias. Esta suma es pro-
cesada a través de una función de activación f ( ) que transforma
el valor resultante en una nueva salida, ajustada para capturar la
no linealidad del modelo y facilitar la toma de decisiones.

Por lo tanto, la capacidad de procesamiento de la ANN se
basa en la fortaleza de las conexiones representadas por los pe-
sos. Estas conexiones se ajustan mediante un proceso de adap-
tación o aprendizaje, que utiliza un conjunto de patrones de en-
trenamiento para optimizar los pesos y mejorar el desempeño
de la red en tareas especı́ficas. Este mecanismo permite a la
ANN identificar patrones, modelar relaciones complejas y ge-
neralizar a nuevos datos Gurney (2017).

3.1. Estructura de la Red Neuronal

La estructura de control propuesta para la sintonización del
controlador PID mediante la red neuronal artificial (ANN) se
ilustra en la Figura 6.

 error out

Kp Ki Kd

PWM

Figura 6: Diagrama de control.

La red neuronal recibe como entradas la velocidad de refe-
rencia (ωre f ), la velocidad de salida del motor (ωout) y el error
(eω = ωre f − ωout). Como salidas, la red proporciona las ga-
nancias Kp, Ki, y Kd del controlador PID ya sea para una sinto-
nización previa o de forma dinámica. Adicionalmente, la señal
de control, representada por la lı́nea en rojo, es generada por el
Arduino Due para el control del RS, sustituyendo directamente
a ωout para la parte experimental.

3.2. Entrenamiento

Para llevar a cabo la etapa de entrenamiento mediante la
ANN, se propone la estructura mostrada en la Figura 7. Esta
configuración consta de cuatro entradas: x1, que representa la
velocidad de referencia del motor; x2, que corresponde al error
entre la velocidad de referencia y la velocidad de salida; x3, que
indica la velocidad de salida y para la parte experimental repre-
senta el PWM; y x4, que actúa como el término de sesgo o bias.
La red incluye dos capas ocultas, cada una con 10 neuronas,
y tres salidas, correspondientes a los parámetros del controla-
dor PID: y1 = Kp, y2 = Ki y y3 = Kd. Esta estructura permite
que la ANN ajuste los valores del controlador en función de las
condiciones del sistema.

x1

x2

x3

x4

y1

y2

y3

Entradas
Primera capa Segunda capa

Salidas

1

Figura 7: Estructura de la ANN

En las capas 1 y 2 se utilizó la función de activación ReLU
(Rectified Linear Unit), una de las más populares y ampliamen-
te empleadas en redes neuronales debido a su capacidad para
acelerar el proceso de entrenamiento y mejorar el rendimiento
del modelo en diversos escenarios. La representación matemáti-
ca de esta función se presenta en la Ecuación 10.

ReLU(x) = máx(0, x) (10)

La función ReLU devuelve la entrada si es positiva y cero
en caso contrario, lo que la hace más eficiente que funciones
como la sigmoide o la tangente hiperbólica. Además permite
entrenar redes neuronales dado que, como se ha demostrado, su
comportamiento puede entenderse dentro de un marco variacio-
nal que la vincula con soluciones óptimas, facilitando ası́ tanto
la interpretación como la optimización de modelos entrenados
Parhi y Nowak (2020)

El optimizador utilizado para la red neuronal es ADAM
(Adaptive Moment Estimation), un algoritmo ajusta los
parámetros del modelo (en este caso, los pesos de la red neuro-
nal) para minimizar una función de costo o pérdida, mejoran-
do ası́ el rendimiento del modelo Lihua (2022). Sus principales
ventajas incluyen una mayor eficiencia y la corrección de ses-
gos en los primeros pasos, lo que evita inestabilidades en la
optimización.

Para mejorar la pertinencia del proceso de entrenamiento,
se redefine la función de costo como el Error Cuadrático Medio
(MSE) entre la velocidad de referencia y la salida del sistema en
el dominio temporal. Esta nueva métrica evalúa directamente el
desempeño del controlador bajo las ganancias PID propuestas
por la red neuronal, permitiendo que el aprendizaje se enfoque
en minimizar el error de seguimiento. La expresión formal del
MSE queda definida como:

MSE =
1
N

N∑
i=1

(ωref(ti) − ωout(ti))2 (11)

donde ωref(ti) representa el valor de la velocidad de referen-
cia en el instante ti, ωout(ti) es la salida real del sistema a ese
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mismo instante, y N es el número total de muestras de tiempo
consideradas durante la simulación. Esta formulación permite
que la ANN optimice directamente el desempeño del sistema,
enfocándose en reducir el error de seguimiento.

3.3. Configuración para el entrenamiento

El entrenamiento se configuró con un total de 1,000 épo-
cas, empleando el 80 % del conjunto de datos para el proceso
de aprendizaje. Al utilizar el optimizador ADAM, se estableció
una tasa de aprendizaje inicial de 0.01. Este valor se mantuvo
debido a la capacidad de ADAM para ajustar automáticamente
la tasa de aprendizaje durante el entrenamiento, adaptándola a
las caracterı́sticas de los gradientes y mejorando ası́ la eficiencia
del modelo.

3.4. Primer enfoque: sintonización previa

Para entrenar la red neuronal, es fundamental contar con un
conjunto de datos representativo que capture cómo el sistema
responde bajo diferentes condiciones de operación y configu-
raciones PID. Con este objetivo, se consideraron los siguientes
pasos:

Se simuló la respuesta del motor de corriente continua
(DC) utilizando múltiples combinaciones de ganancias
PID.

Se recopilaron los datos correspondientes a ωre f , ωout,
eω asociado para cada configuración y el tiempo de si-
mulación t.

Se almacenaron las ganancias Kp, Ki, y Kd empleadas en
cada simulación, para usarlas como etiquetas en el pro-
ceso de entrenamiento.

Para este propósito, se llevaron a cabo 100 simulaciones
destinadas a entrenar la ANN. Cada simulación tuvo una du-
ración de 10 segundos, y los datos fueron recopilados a una fre-
cuencia de 100 Hz, lo que permitió capturar una muestra com-
pleta y detallada del comportamiento del sistema bajo diferen-
tes configuraciones, un ejemplo representativo de estas simula-
ciones se presenta en la Figura 8, donde se ilustran 25 de los
100 experimentos realizados para la recopilación de datos. Es-
ta figura permite observar la diversidad de respuestas obtenidas
durante el proceso de simulación, las cuales son fundamentales
para el entrenamiento de la ANN.
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Simulación 1 (Kp=0.00, Ki=17.31, Kd=0.0086)
Simulación 2 (Kp=0.00, Ki=8.91, Kd=0.0049)
Simulación 3 (Kp=0.03, Ki=4.92, Kd=0.0091)
Simulación 4 (Kp=0.04, Ki=5.32, Kd=0.0022)
Simulación 5 (Kp=0.05, Ki=11.02, Kd=0.0036)
Simulación 6 (Kp=0.06, Ki=8.53, Kd=0.0096)
Simulación 7 (Kp=0.07, Ki=4.90, Kd=0.0012)
Simulación 8 (Kp=0.08, Ki=5.36, Kd=0.0011)
Simulación 9 (Kp=0.08, Ki=15.19, Kd=0.0015)
Simulación 10 (Kp=0.11, Ki=8.96, Kd=0.0057)
Simulación 11 (Kp=0.13, Ki=18.66, Kd=0.0095)
Simulación 12 (Kp=0.19, Ki=16.43, Kd=0.0057)
Simulación 13 (Kp=0.21, Ki=9.23, Kd=0.0081)
Simulación 14 (Kp=0.23, Ki=18.17, Kd=0.0005)
Simulación 15 (Kp=0.24, Ki=9.36, Kd=0.0097)
Simulación 16 (Kp=0.24, Ki=11.09, Kd=0.0042)
Simulación 17 (Kp=0.25, Ki=18.64, Kd=0.0094)
Simulación 18 (Kp=0.27, Ki=17.39, Kd=0.0069)
Simulación 19 (Kp=0.30, Ki=2.75, Kd=0.0012)
Simulación 20 (Kp=0.34, Ki=9.00, Kd=0.0009)

Figura 8: Respuesta del motor ante diferentes valores en las ganancias.

Este enfoque basado en simulación se adoptó de manera in-
tencional como una primera etapa metodológica, permitiendo
generar datos de entrenamiento de forma segura, rápida y con-
trolada. La estrategia consiste en entrenar la ANN utilizando
un modelo previamente validado, y posteriormente aplicar los
resultados obtenidos sobre la planta fı́sica. De este modo, se
minimizan riesgos operativos y se garantiza una transición más
confiable del entorno simulado al sistema real.

3.5. Sintonización dinámica

El diseño de un control basado en redes neuronales para
ajustar dinámicamente las ganancias Kp, Ki y Kd de un con-
trolador PID implica utilizar una ANN que modifique estos
parámetros en función de las condiciones del sistema. Las en-
tradas de la ANN incluye variablesωre f ,ωout, eω = ωre f−ωout y
la señal de control (PWM). La red neuronal procesa estas entra-
das para calcular las ganancias del controlador PID, adaptándo-
las en tiempo real para mejorar la respuesta del sistema frente a
perturbaciones externas y cambios en la referencia.

La ANN se diseña con dos capas ocultas y diez neuronas
para capturar las relaciones no lineales entre las entradas y las
salidas. Su entrenamiento requiere un conjunto de datos obte-
nido mediante simulaciones del sistema bajo diferentes confi-
guraciones PID. Durante la operación en tiempo real, la ANN
recibe los datos del sistema, calcula las ganancias Kp, Ki y Kd,
y ajusta el PID dinámicamente. Esto permite optimizar el des-
empeño del motor DC frente a condiciones variables y pertur-
baciones externas, garantizando una respuesta rápida y precisa.

4. Implementación

Como se mencionó, la implementación de la ANN para la
sintonización de un controlador PID se desarrolló en dos en-
foques principales. En el primer enfoque, llevado a cabo de
manera previa, la ANN se empleó para determinar los valo-
res iniciales de las ganancias Kp, Ki y Kd, que posteriormente
fueron implementados en el sistema RS SRV02. En el segun-
do enfoque, la ANN operó en tiempo real, ajustando de forma
dinámica los valores de las ganancias directamente en el sis-
tema RS SRV02, lo que permitió una sintonización adaptativa
y continua, optimizando el desempeño del controlador frente a
cambios y perturbaciones.

4.1. Simulación de sintonización previa

Tras el entrenamiento de la ANN, esta proporcionó la sin-
tonización del controlador PID en función de las diversas en-
tradas, simplificando significativamente el proceso de toma de
decisiones para su implementación en un entorno real. Las ga-
nancias obtenidas fueron:

Kp = 8.61, Ki = 8.52, Kd = 0.01

La gráfica correspondiente a la simulación del sistema se
presenta en la Figura 9, donde se utiliza una velocidad de refe-
rencia de ωre f = 60rpm, la cual representa la velocidad máxima
del sistema RS SRV02.
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Figura 9: Control de velocidad del RS SRV02 con PID ante una entrada cons-
tante con sintonización de ganancias previa.

Si se tiene una referencia que varı́a con respecto al tiempo,
alcanzando los siguientes valores: 10 rpm de 0 a 5 segundos, 20
rpm de 5 a 15 segundos, 40 rpm de 15 a 25 segundos, 60 rpm
de 25 a 35 segundos, 30 rpm de 35 a 45 segundos, 15 rpm de 45
a 55 segundos y 0 rpm después de 55 segundos, los resultados
obtenidos se muestran en la Figura 10.
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Figura 10: Control de velocidad del RS SRV02 con PID ante diferentes veloci-
dades de referencia con sintonización de ganancias previa.

4.2. Simulación de sintonización dinámica
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Figura 11: Control de velocidad del RS SRV02 con PID ante una entrada cons-
tante con sintonización de ganancias dinámicas.
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Figura 12: Evolución de las ganancias con referencia constante.

El entrenamiento de la ANN permitió lograr la sintoniza-
ción dinámica del controlador PID, ajustando las ganancias en
tiempo real según las condiciones del sistema. Este proceso se
llevó a cabo utilizando los experimentos previamente mencio-
nados como conjunto de datos de entrenamiento. Como resul-
tado, se obtuvo un modelo capaz de generar ganancias adapta-
tivas que optimizan el desempeño del controlador PID, garan-
tizando estabilidad y eficiencia incluso ante cambios en la re-
ferencia. Los resultados obtenidos durante el entrenamiento se
ilustran en la Figura 11, donde se observa la respuesta del sis-
tema frente a una velocidad de referencia de 60 RPM. Por otro
lado, la Figura 12 muestra que, ante una referencia constante,
las ganancias del PID experimentan ajustes menores alrededor
de sus valores iniciales. Esto se debe a que la ANN prioriza la
estabilidad del sistema en condiciones estacionarias, realizando
modificaciones sutiles para contrarrestar perturbaciones de baja
magnitud.
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Figura 13: Control de velocidad del RS SRV02 con PID ante diferentes veloci-
dades de referencia con sintonización de ganancias dinámicas.

Al repetir la prueba con una referencia que varı́a en interva-
los definidos, los resultados obtenidos se presentan en la Figura
13, donde se muestra la respuesta del sistema frente a una re-
ferencia de velocidad dinámica que alcanza un máximo de 60
RPM. Asimismo, la Figura 14 ilustra la evolución dinámica de
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las ganancias del controlador PID, evidenciando cómo se ajus-
tan en tiempo real para adaptarse a la respuesta del sistema.
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Figura 14: Evolución de las ganancias con diferentes velocidades de referencia.

5. Resultados experimentales

Para validar los enfoques previamente mencionados, se
llevó a cabo la sintonización del controlador PID y su poste-
rior implementación en el sistema RS SRV02.

5.1. Experimentación con sintonización previa

En la Figura 15, se presenta el comportamiento del sistema
frente a un setpoint constante de 60 RPM, replicando las condi-
ciones establecidas en la simulación utilizada como referencia.
Esto permite evaluar la correspondencia entre los resultados ex-
perimentales y los simulados, validando la efectividad de la sin-
tonización realizada previamente en el entorno de simulación.
Para efectos de comparación, las ganancias del controlador PID
permanecen constantes con los valores Kp = 8.61, Ki = 8.52, y
Kd = 0.01.
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Figura 15: Respuesta el RS SRV02 con control PID ante una entrada constante
con sintonización de ganancias previa.

De manera similar, se llevó a cabo una prueba utilizando un
setpoint variable, donde la velocidad de referencia cambió en

intervalos de tiempo predefinidos con los siguientes valores: 10
RPM de 0 a 5 segundos, 20 RPM de 5 a 15 segundos, 40 RPM
de 15 a 25 segundos, 60 RPM de 25 a 35 segundos, 30 RPM
de 35 a 45 segundos, 15 RPM de 45 a 55 segundos y 0 RPM
después de 55 segundos. Los resultados obtenidos se presentan
en la Figura 16, mostrando la respuesta del sistema frente a este
perfil dinámico de referencia.
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Figura 16: Respuesta el RS SRV02 con control PID ante diferentes velocidades
de referencia con sintonización de ganancias previa.

5.2. Experimentación con sintonización dinámica

A través de la sintonización dinámica implementada me-
diante la ANN, se realizó inicialmente una prueba utilizando
una referencia constante de 60 RPM. Los resultados obtenidos
se presentan en la Figura 17, donde se ilustra la respuesta del
sistema ante dicha referencia. Por otro lado, en la Figura 18 se
muestra la evolución de las ganancias del controlador PID en
función de la respuesta del sistema RS SRV02, evidenciando el
ajuste continuo de las mismas frente a la referencia establecida.
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Figura 17: Respuesta el RS SRV02 con control PID ante velocidad constante
de referencia con sintonización dinámica.

Para los experimentos con una referencia que varı́a en dis-
tintos intervalos de tiempo, se empleó la misma referencia uti-
lizada previamente en los experimentos y simulaciones anterio-
res, garantizando una base de comparación consistente. En la
Figura 19 se presenta el comportamiento del sistema RS SRV02
frente a los cambios de velocidad, destacando cómo la ANN se
adapta progresivamente a estas variaciones, mejorando su des-
empeño con el tiempo.
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Figura 18: Evolución del valor de las ganancia del PID ante velocidad constante
de referencia con sintonización dinámica.
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Figura 19: Respuesta el RS SRV02 con control PID ante diferentes velocidades
de referencia con sintonización dinámica.

Por otro lado, en la Figura 20, se observa la evolución
dinámica de las ganancias del controlador PID en respuesta a
las modificaciones de la velocidad de referencia.
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Figura 20: Evolución de las ganancias del PID ante diferentes velocidades de
referencia con sintonización dinámica.

5.3. Comparación con algoritmos genéticos
Los AG representan otra técnica de optimización avanzada

utilizada para la sintonización de controladores PID, especial-
mente eficaz en sistemas con múltiples óptimos locales y com-
portamientos no lineales. A diferencia de las ANN, que apren-
den patrones a partir de datos y realizan predicciones en tiempo
real, los AG utilizan operadores de selección, cruce y muta-
ción para encontrar soluciones óptimas. Para la sintonización
de PID, los AG minimizan una función de costo explorando el
espacio de búsqueda de ganancias Kp, Ki, Kd.

No obstante, los AG requieren un mayor número de evalua-
ciones del sistema y son computacionalmente más costosos du-
rante la fase de optimización, ya que cada evaluación implica
simular el comportamiento completo del sistema. En contras-
te, una vez entrenadas, las ANN pueden generalizar soluciones
rápidamente, permitiendo ajustes en tiempo real sin necesidad
de nuevas optimizaciones. Por lo tanto, aunque ambas técni-
cas presentan ventajas significativas sobre métodos clásicos, las
ANN resultan más adecuadas para aplicaciones en tiempo real
donde la velocidad de ajuste es crı́tica, mientras que los AG
destacan en escenarios donde la precisión extrema y el tiempo
de cómputo no son restricciones severas. A continuación se ex-
ponen únicamente los resultados experimentales del sistema RS
SRV02 sintonizado mediante AG, bajo distintas condiciones de
referencia. Los resultados de simulación se omiten, dado que el
objetivo principal del estudio no es el análisis especı́fico de los
AG, sino su comparación con otras técnicas de sintonización
PID.

5.3.1. AG para sintonización previa
Para garantizar una comparación justa entre los métodos de

sintonización PID basados en ANN y AG, se definicio que am-
bas tecnbicas optimizan el MSE entre las ganancias actuales
como se ve en la Ecuación (11) junto con los parámetros mos-
trados en la Tabla 2.

Tabla 2: Parámetros del AG para sintonización PID
Parámetro Valor

Tamaño de la población 30 individuos
Número de generaciones 60

Rangos de búsqueda Kp , Ki ∈ [0, 10], Kd ∈ [0, 1]

El algoritmo se diseñó con una estrategia de elitismo que
conserva los dos mejores individuos por generación. La proba-
bilidad de cruce fue del 80 %, mientras que la tasa de muta-
ción fue del 20 %. Cada individuo de la población representa
un vector de ganancias PID y se evalúa simulando la respues-
ta del sistema con dichas ganancias. A partir de operadores de
selección por torneo, cruce lineal con ponderación aleatoria y
mutación aditiva gaussiana, el algoritmo evoluciona hacia una
solución óptima. El resultado es una configuración de ganancias
que minimiza el MSE y genera una respuesta rápida y estable
del sistema, validando la viabilidad del uso de algoritmos evo-
lutivos como alternativa efectiva a métodos convencionales o de
aprendizaje supervisado como las redes neuronales artificiales.

La mejor solucion encontrada por el AG con una MAE mi-
nimo son los siguientes:

Kp = 3.75, Ki = 9.89, Kd = 0.011
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La Figura 21 muestra los resultados de seguimiento con-
trol de seguimiento de una trayectoria aplicando al sistema RS
SRV02.
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Figura 21: Control PID con sintonización previa mediante AG

5.3.2. AG adaptativo para sintonización dinámica
Aunque los algoritmos genéticos tradicionales operan fue-

ra de lı́nea, hemos desarrollado un enfoque hı́brido que per-
mite su aplicación en tiempo real. Este método ejecuta mini-
optimizaciones genéticas periódicamente durante la operación
del sistema, ajustando las ganancias PID en respuesta a cambios
en la referencia o perturbaciones. En este trabajo se implementa
un AG adaptativo orientado a la sintonización dinámica de un
controlador PID aplicado al control de velocidad de un motor
DC, tal que el AG actúa en tiempo real, adaptando las ganancias
PID ante variaciones en la referencia o condiciones operativas,
permitiendo ası́ una regulación continua del comportamiento
del sistema. Tomando en cuenta los mismos parámetros de la
Tabla 2 con una tasa de mutación del 30 % y elitismo que con-
serva siempre el mejor candidato. La evaluación de desempeño
se realiza mediante una función de costo basada en la Ecua-
cion (11), calculado sobre una ventana deslizante de los últi-
mos 10 errores, a lo que se le suma una penalización si las nue-
vas ganancias cambian bruscamente respecto a las anteriores, lo
que favorece la estabilidad. Cada segundo, el algoritmo realiza
10 generaciones internas donde explora soluciones cercanas a
las ganancias actuales mediante una mutación adaptativa, redu-
ciendo la intensidad de exploración conforme avanza el tiempo.
Esta estructura hı́brida asegura una búsqueda eficiente y local,
manteniendo la estabilidad del sistema sin reiniciar el proceso
de control. La Figura 22 muestra los resultados de este enfoque
aplicado al sistema RS SRV02.
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Figura 22: Control PID con sintonización dinámica mediante AG adaptativo

En la Figura 23 se evidencia la capacidad de adaptación
dinámica de las ganancias del controlador PID (Kp, Ki y Kd)
ante variaciones en la referencia de velocidad, demostrando ro-
bustez en el desempeño del sistema. Cabe destacar que este en-
foque basado en AG adaptativo tiene una limitación inherente
la selección manual de ganancias iniciales. Mediante un proce-
so iterativo de prueba y error, se determinó como configuración
óptima inicial los valores Kp = 8.66, Ki = 4.24 y Kd = 0.56.
Esta dependencia de parámetros iniciales subóptimos constitu-
ye una desventaja significativa del método.
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Figura 23: Evolución de las ganancias de PID ante diferentes velocidades de
referencia con AG adaptativo.

En la Tabla 3 se presenta una comparación detallada entre
los enfoques de sintonización de controladores PID mediante
ANN y AG, considerando tanto la sintonización previa como
la dinámica. Los datos que sustentan esta comparación provie-
nen de simulaciones y pruebas experimentales realizadas sobre
el RS SRV02, en las que se aplicaron ambos métodos de sin-
tonización. Esta tabla permite visualizar las fortalezas y limi-
taciones de cada técnica, ası́ como su rendimiento en términos
cuantitativos, proporcionando una base sólida para la selección
del enfoque más adecuado en aplicaciones con condiciones de
operación variables.

A diferencia de las ANN, que requieren entrenamiento in-
tensivo y cuya estructura es más difı́cil de interpretar, los AG
proporcionan una solución más transparente, lo que los hace
particularmente atractivos para escenarios donde la trazabilidad
del ajuste del controlador es prioritaria. No obstante, los costos
computacionales asociados a su ejecución periódica son mayo-
res que los de una red neuronal ya entrenada, lo que plantea un
compromiso entre capacidad de adaptación, costo y facilidad de
implementación ya en el sistema embebido.

6. Conclusiones y trabajo futuro

El uso de ANN para la sintonización de controladores PID
ha sido demostrado como una herramienta eficaz tanto en esce-
narios de sintonización previa como dinámica. En la sintoniza-
ción previa, valores consistentes para las ganancias del contro-
lador fueron proporcionados por las ANN, lo que facilitó el di-
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Tabla 3: Comparación entre ANN y Algoritmos Genéticos para la sintonización de controladores PID
Criterio ANN Previa ANN Dinámica GA Previo GA Dinámico

Tipo de entrenamiento Offline (simulado) Online (tiempo real) Offline (simulación) Online (optimización
local)

Enfoque Predictivo basado en
datos simulados

Adaptación en tiempo
real

Optimización
evolutiva

Mini-optimizaciones
periódicas

Modelo requerido No No Parcial (modelo
simple)

Parcial (simplificado)

Dependencia de
entrenamiento

Alta Alta Nula Nula

Adaptabilidad No Alta No Alta
Velocidad de

respuesta
Instantánea

(post-entrenamiento)
Rápida (inferencia en

ms)
Lenta (fase de
optimización)

Lenta (10 gen/seg)

Costo computacional Bajo Medio Alto Alto
MSE (Experimental) 1.65 2.58 1.79 2.71

Implementación fı́sica Sencilla (valores fijos) Compleja (integración
en tiempo real)

Sencilla (valores fijos) Muy compleja (GA
embebido)

seño del sistema y permitió que una correspondencia sólida en-
tre simulaciones y pruebas experimentales fuera mostrada. Por
otro lado, el ajuste de las ganancias del controlador en tiempo
real fue permitido por la sintonización dinámica, adaptándose a
cambios en la velocidad de referencia. Sin embargo, aunque un
rendimiento óptimo del sistema no fue alcanzado en la última
prueba y un desempeño inferior fue observado en comparación
con la sintonización previa, una mejora gradual en el desem-
peño de la ANN con el tiempo fue detectada.

Estas capacidades han llevado a que las ANN sean consi-
deradas una opción ideal para aplicaciones donde condiciones
de operación cambiantes son experimentadas constantemente.
La viabilidad de combinar métodos tradicionales con técnicas
modernas de aprendizaje automático para optimizar el rendi-
miento en sistemas de control industrial ha sido validada por
la integración de modelos matemáticos con ANN en el sistema
RS SRV02.

Aunque el sistema fue representado como una dinámica de
primer orden por el modelo matemático identificado, carac-
terı́sticas propias de una dinámica de segundo orden en lazo
cerrado fueron mostradas por los resultados experimentales. Es-
ta discrepancia puede ser atribuida a simplificaciones aplicadas
durante el modelado, como la omisión de la inductancia y el
acoplamiento mecánico. Sin embargo, este modelo fue consi-
derado adecuado para el diseño preliminar del controlador PID
y para el entrenamiento inicial de la red neuronal.

Adicionalmente, la comparación con los enfoques basados
en algoritmos genéticos permitió evidenciar que estos últimos
presentan ventajas relevantes en términos de interpretabilidad y
ajuste fino. En su modalidad de sintonización previa, los algo-
ritmos genéticos ofrecieron el menor MSE, mostrando una alta
precisión en la etapa de diseño sin necesidad de entrenamien-
to previo. Por otro lado, la sintonización dinámica basada en
AG demostró un buen compromiso entre adaptabilidad y des-
empeño, logrando un seguimiento robusto frente a cambios en
la referencia con ganancias adaptadas en tiempo real.

Como trabajo futuro, se plantea que el modelo sea refinado
mediante la inclusión de una descripción dinámica más com-
pleta. Además, se propone que la red neuronal sea entrenada
con datos reales del sistema RS SRV02 para incrementar la

precisión del modelo, ası́ como que una nueva configuración
de capas con la cantidad de neuronas de la red sea creada. Por
su parte, una hibridación de ambos enfoques empleando ANN
para predecir ajustes iniciales y AG para afinamiento dinámi-
co podrı́a representar una solución aún más robusta y eficiente,
integrando lo mejor de ambas metodologı́as.

No obstante, ha sido demostrado por este estudio que, inclu-
so al ser empleados modelos simplificados y datos generados
mediante simulaciones, una sintonización efectiva de controla-
dores PID puede ser lograda por las ANN lo que refuerza la
metodologı́a.
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