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Sintonizacion de un controlador PID con redes neuronales artificiales
Tuning a PID Controller with artificial neural networks
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Resumen

Este trabajo presenta una metodologia para la sintonizacién de controladores PID mediante redes neuronales artificiales (ANN)
aplicada a Rotatory Servo (RS) equipado con un motor de corriente continua (DC). Se exploran dos enfoques: la sintonizacién
previa y la sintonizacién dindmica en tiempo real, ambas basadas en datos generados por simulacion. La ANN es entrenada exclusi-
vamente con datos simulados, sin requerir un modelo matemadtico detallado del sistema fisico, lo que simplifica significativamente
el proceso de disefio. El objetivo de este estudio es demostrar que es posible obtener un rendimiento satisfactorio sin necesidad
de realizar anélisis complejos ni calculos manuales por parte del disefiador. Los experimentos abarcan simulaciones y pruebas en
un entorno fisico, mostrando que la sintonizacién mediante las ANN, tales resultados validan la capacidad de las ANN para opti-
mizar controladores PID, destacando su eficacia en entornos no lineales y con alta variabilidad. Adicionalmente, se compara con
algoritmos genéticos (GA), donde la ANN supera en eficiencia computacional y facilidad de implementacion.

Palabras Clave: Control, Redes Neuronales Artificiales, Sintonizacion.
Abstract

This work presents a methodology for tuning PID controllers using artificial neural networks (ANN), applied to a Rotary Servo
(RS) equipped with a direct current (DC) motor. Two approaches are explored: offline pre-tuning and real-time dynamic tuning, both
based on simulation-generated data. The ANN is trained exclusively with simulated data, without requiring a detailed mathematical
model of the physical system, which significantly simplifies the controller design process. The aim of this study is to demonstrate
that satisfactory performance can be achieved without the need for complex analysis or manual calculations by the designer. The
experiments include both simulations and physical tests, showing that tuning through ANN is effective. These results validate the
ability of ANN to optimize PID controllers and highlight their effectiveness in nonlinear environments with high variability. A
comparative analysis with genetic algorithms (GA) highlights ANN’s advantages in computational efficiency and implementation
ease.

Keywords: Control, Artificial neural networks, Tuning.

1. Introducciéon técnicas modernas. Su integracion con métodos adaptativos e
inteligentes amplia su aplicabilidad en sistemas complejos, des-
de robdtica hasta biomedicina, manteniendo relevancia en la era
de la Industria 4.0 Borase ef al. (2021). Ademas, su compatibi-
lidad con tecnologias modernas los hace fundamentales para la

automatizacién y el Internet de las cosas (IoT) Radonji¢ et al.

Los motores DC son esenciales en muchas aplicaciones de-
bido a que su control es preciso en relacién a su velocidad y
par, simplicidad operativa, y rdpida respuesta a cambios de car-
ga, tales como vehiculos eléctricos, cintas transportadoras y ro-

bots industriales Elmorshedy ez al. (2021). Son muy utilizados
debido a un par alto a bajas velocidades y su facilidad de man-
tenimiento, especialmente en versiones sin escobillas Kommula
y Kota (2022). Los PID siguen siendo la piedra angular del con-
trol automadtico, gracias a su versatilidad y evolucién mediante
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(2022).

Las técnicas de control PID y Proporcional-Integral (PI) si-
guen siendo las mds utilizadas en sistemas de control debido a
su simplicidad y efectividad. Se estima que mas del 95 % de las
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aplicaciones en procesos industriales hacen uso de estos contro-
ladores. Sin embargo, su desempeio puede verse afectado en si-
tuaciones donde el sistema enfrenta variaciones de carga o con-
diciones de inestabilidad, limitando su capacidad de respuesta
optima Lee et al. (2020). Ademds, su desempefio estd estrecha-
mente ligado a una correcta sintonizacion de los parametros y
ganancias del controlador, lo cual puede convertirse en un des-
affo significativo en aplicaciones de alta complejidad Somefun
etal (2021).

La sintonizacién de controladores PID es un proceso esen-
cial para garantizar que el sistema controlado responda de ma-
nera eficiente y estable ante diferentes condiciones de opera-
cién. La eleccion de los pardmetros K, (ganancia proporcional),
K; (ganancia integral) y K, (ganancia derivativa) influye direc-
tamente en el rendimiento del sistema, afectando su estabili-
dad, tiempo de respuesta y precision. Existen diversos métodos
clasicos de sintonizacién de controladores PID, como los méto-
dos de Ziegler-Nichols, Cohen-Coon y la respuesta en bucle
abierto, los cuales son ampliamente utilizados. Sin embargo,
presentan limitaciones al aplicarse a sistemas complejos o no
lineales Astrom y Higglund (2006). Para superar estas limita-
ciones, se han propuesto enfoques mas avanzados. Por ejemplo,
en Gadekar et al. (2020), se presenta un algoritmo de sintoni-
zacién automatica del PID que permite adaptar sus parametros
dindmicamente segin la velocidad deseada en motores BLDC.
En Abdelghany et al. (2023), se introduce un controlador PID
autoajustable basado en légica difusa, disefiado para optimi-
zar el rendimiento de servomotores. Por su parte, Amutham-
bigaiyin Sundari y Maruthupandi (2022) explora la sintoniza-
ci6én del PID mediante algoritmos metaheuristicos, analizando
su desempefio en sistemas de tanques interactivos y no inter-
activos bajo condiciones de perturbacion. En Li y Gao (2021),
se propone un método de sintonizacién robusta para controla-
dores PID fraccionales, orientado a preservar el margen de fa-
se en lazo abierto ante incertidumbres en los parametros de la
planta. Otros enfoques avanzados recurren a algoritmos de op-
timizacion, como los algoritmos genéticos (AG), utilizados en
Cao (2020) para la sintonizacién de PID en sistemas electro-
hidraulicos complejos, logrando una reduccién de oscilaciones
y una mejora en la precisioén del control. Asimismo, el apren-
dizaje automatico ha cobrado relevancia, destacando el uso de
ANN que permiten ajustar los pardmetros del controlador en
funcién del comportamiento dindmico del sistema. En Debnath
et al. (2020), se emplea una ANN para la sintonizacién adap-
tativa de un controlador PID destinado a la regulacién de fre-
cuencia en sistemas eléctricos con generacién distribuida. En
conjunto, la sintonizacién automatica y adaptativa de contro-
ladores PID resulta especialmente beneficiosa en entornos con
répidas variaciones de carga, al mejorar la robustez y la capaci-
dad de respuesta del sistema de control.

En términos generales, la sintonizacién de un controlador
PID se puede clasificar en tres tipos principales, como se ilus-
tra en la Figura 1, los métodos basados en modelo requieren
un conocimiento detallado del sistema, incluyendo su modelo
matematico y parametros especificos. Por otro lado, los méto-
dos libres de modelo se basan puramente en datos y utilizan
técnicas de optimizacidn para llevar a cabo la sintonizacion. Fi-
nalmente, los métodos hibridos combinan el uso del modelo del
sistema con un analisis basado en datos, aprovechando lo mejor

de ambos enfoques para lograr una sintonizacién mads efectiva
y robusta Somefun et al. (2021).

Basados en
el modelo
Sintonizacion o
PID Hibridos
Libre de
modelo

Figura 1: Clasificacion para sintonizacion.

En este contexto, una ANN que cae en la sintonizacion libre
de modelo puede ajustarse para predecir y seleccionar los valo-
res de K, K; y K; en tiempo real, mejorando significativamente
el control adaptativo del sistema.

En este articulo, se abordara la sintonizacién de un contro-
lador PID utilizando dos enfoques distintos. En el primer enfo-
que, las ganancias del controlador PID seran preestablecidas a
través de una ANN. Esta red se entrenard con datos obtenidos
de simulaciones, buscando una solucién 6ptima para determinar
los valores adecuados de las ganancias. En el segundo enfoque,
las ganancias del PID seran ajustadas de manera dindmica por
una ANN, permitiendo que estas se adapten en tiempo real a los
requerimientos del sistema.

El sistema considerado para este estudio es un RS SRV02
que contiene un motor DC. Inicialmente, se realizaran simula-
ciones para ambos enfoques de sintonizacidn con el objetivo de
evaluar su desempefio. Posteriormente, los métodos serdn im-
plementados en el sistema fisico para validar su eficacia en un
entorno real. Este enfoque permite explorar tanto la eficacia de
las ganancias predefinidas como la flexibilidad de las ganancias
dindmicas, ofreciendo un anélisis integral del control adaptati-
Vo.

2. Control de velocidad de un motor DC

Comunmente, la seleccion de las ganancias PID para un
motor DC se realiza utilizando métodos basados en modelos,
los cuales requieren un andlisis detallado como se describira a
continuacion.

El modelado matemético de motores DC es un paso fun-
damental para comprender y disefiar sistemas de control efi-
cientes. Dicho modelo permite establecer una relacién entre la
entrada, como el voltaje aplicado, y la salida, que puede ser la
velocidad angular o la posiciéon del motor. En la mayoria de
las aplicaciones, la dindmica del motor puede aproximarse a
un sistema de primer orden. Esta simplificacidn facilita tanto el
analisis como el disefio del controlador, permitiendo optimizar
el rendimiento y reducir la complejidad del sistema.

El modelo matemadtico de un motor DC se deriva de las
ecuaciones que describen tanto el circuito eléctrico del induci-
do como la dindmica mecdanica del rotor. Las ecuaciones basicas
son:
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Ecuacion del circuito eléctrico:

V() = L% + Ri(t) + E(¢) 1)

donde: V(¢) es el voltaje aplicado al inducido, L es la in-
ductancia del inducido, R es la resistencia del inducido, i(r)
es la corriente en el inducido y E(?) es la fuerza electromotriz
inducida, proporcional a la velocidad angular w(), es decir,
e(t) = K,w(t).

Ecuacion de la dinamica mecanica:
dw(t)
1

J + Bw(t) = K;i(t) )

donde J es el momento de inercia del rotor, B es el coefi-
ciente de friccidn viscosa, K; es la constante de par del motor y
w(t) es la velocidad angular.

2.1. Aproximacion a un Sistema de Primer Orden

La simplificacién del modelo del motor DC (Ecuaciones 1
y 2) a un sistema de primer orden es ampliamente conocida y
reportada en la literatura Franklin et al. (2010). Esta simplifica-
cion desprecia el término inductivo (L% ~ (), valido cuando
7, = L/R < 1,, = J/B entonces (1) se convierte en:

V() = Ri(t) + K,w(t) A3)

Despejando i(r) de la Ecuacion (2)

i = 2 do®

B
= a0 )

Sustituyendo (4) en (3), entonces

_ J dw(t) B
V() =R (Z I + Ew(t)) + K, (1)

_ JRdw() (BR

X X + Ke) w(t) )

Aplicando transformada de Laplace a (5)

R BR
J?tsw(s) + (?t + Ke) w(s) = V(s) (6)
Entonces la funcién de transferencia
w(s) 1
G(s) = = @)
V(s) f(—lfs+(l;<—’f +Ke)

Por lo tanto el modelo se puede expresar como un sistema
estdndar de primer orden como

K

G(s) = —2— 8
) TS+ 1 ®)
donde:
K[ . )

K., = ———— (Ganancia estatica)

BR + KK,

JR
Tw = ———— (Constante de tiempo)
BR + KK,

Esta funcion de transferencia (Ecuacién (8)) muestra que el
motor se comporta como un sistema de primer orden, donde la

constante de tiempo 7, define la rapidez de la respuesta del sis-
tema y la ganancia K, representa la relacién entre la entrada y
la salida en estado estacionario.

La representacién de un motor DC como un sistema de pri-
mer orden simplifica el disefio de controladores, ya que permite
el uso de controladores PID y PI que se ajustan de manera efec-
tiva para mejorar la estabilidad y el rendimiento del sistema.
Esta aproximacién es vdlida cuando la inductancia es despre-
ciable y el comportamiento del motor puede ser dominado por
las caracteristicas mecdnicas y eléctricas principales.

2.2.  Rotatory Servo SRV02

Para este caso de estudio se llevan a acabo las simula-
ciones y pruebas experimentales mediante el dispositivo RS
SRV02, ilustrado en la Figura 2, el cual constituye una plata-
forma versatil e intuitiva para la realizacién de experimentos
relacionados con el control de posiciéon angular (en grados) y
velocidad angular (en revoluciones por minuto, rpm). Este equi-
po, desarrollado por Quanser®, es ideal para la introduccién
y ensefianza de conceptos y teorias fundamentales de control.
Ademais, ha sido adaptado para la adquisicién de datos median-
te un microcontrolador de bajo costo, el Arduino Due, mejo-
rando su funcionalidad y accesibilidad en entornos educativos
y experimentales.

Figura 2: Rotary Servo SRV02

La unidad principal del RS SRVO02 consiste en un sistema
con engranajes. Un motor DC que acciona un pifién pequeio,
el cual estd acoplado a un engranaje de mayor didmetro que ro-
ta alrededor del eje de interés. La posicién angular de este eje
se mide con un codificador 6ptico de alta resolucion, o encoder
el cual se emplea para estimar la velocidad angular del motor,
proporcionando datos precisos tanto de posicién como de mo-
vimiento, algunos datos que detalla al RS SRV02 se muestran
en la Tabla 1.

Tabla 1: Especificaciones del RS SRV02

Dimensiones 15cmx 15cm x 18 cm
Masa 1.2 kg
Voltaje nominal 6V
Corriente maxima 1A

Resolucién del enconder 4096 pulsos por revolucién
Velocidad médxima 60 rpm
Caja reductora 70:1
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Para implementar el control PID en el sistema RS SRV02,
fue necesario determinar la funcién de transferencia del siste-
ma. Esto se logré aplicando un voltaje de entrada especifico
(PWM = 255) y registrando la respuesta en términos de ve-
locidad angular, como se muestra en la Figura 3. Los datos
de entrada (voltaje) y salida (RPM) fueron analizados utilizan-
do el método de System Identification en Matlab®), obteniendo
una aproximacién matematica del sistema RS SRV02 como una
funcién de transferencia de primer orden. Este procedimiento
permitié capturar con precision la dindmica del motor, facili-
tando su modelado y disefio de control.

La funcién de transferencia obtenida, presentada en la
Ecuacién 9, describe el modelo matematico del RS SRV02, per-
mitiendo capturar su dindmica dominante:

4.673

G = 72676

©)

Este modelo de primer orden, como se mencion$ previa-
mente, sirve como la base para el disefio y la sintonizacién del
controlador PID. Su simplicidad facilita tanto el andlisis del
comportamiento del sistema como el desarrollo de estrategias
de control que optimicen su desempefio.

60

50

40

20

10

— Velocidad del motor

0 2 4 6 8 10
Tiempo (s)

Figura 3: Curva de velocidad del motor con PWM=255.

2.3.  Plataforma experimental

Para llevar a cabo la parte experimental de la sintonizacién
de un controlador PID mediante una ANN en el sistema RS
SRV02, se utiliz6 una plataforma experimental representada en
la Figura 4. Esta figura ilustra el esquema de los componentes
fundamentales involucrados en la implementacién del control,
los cuales se detallan a continuacion:

1. Computadora: Equipada con programas como
Matlab/Simulink, Arduino IDE y Python, utilizados para
el disefio y simulacion del sistema. Ademads, la compu-
tadora establece la comunicacion con el Arduino Due.

2. Arduino Due: Recibe los datos del encoder, procesa la
sefial y genera el pulso PWM correspondiente al contro-
lador PID.

3. Controlador de motor L298N: Convierte la sefial PWM
proveniente del Arduino en un voltaje aplicado al motor.
Este voltaje es suministrado por una fuente de voltaje.

4. Planta RS SRV02: Representa el sistema fisico cuya ve-
locidad angular es controlada.

Este conjunto de elementos permite la implementacién y
evaluacion préctica del sistema de control de velocidad, inte-
grando hardware y software de forma eficiente.

velocidad de referencia

velocidad de salida

Figura 4: Diagrama del sistema

3. ANN para control

El uso de técnicas de aprendizaje profundo, como las ANN,
ha sido explorado ampliamente en aplicaciones de control para
motores DC, como en Gundogdu et al. (2021) donde la com-
binacién de las ANN con identificacién de sistemas ha demos-
trado ser efectivo para el control de velocidad en motores DC,
superando métodos convencionales como el Filtro de Kalman
Extendido en estados transitorios y estacionarios. Las ANN, cu-
yo elemento fundamental es el perceptron, representan una de
las formas mds antiguas y conocidas de redes neuronales Kruse
et al. (2022).

El perceptrén, inspirado en el funcionamiento de las neu-
ronas bioldgicas, procesa entradas ponderadas, las combina li-
nealmente y aplica una funcién de activacion para generar una
salida. Aunque originalmente disefiado para resolver problemas
de clasificacién lineal, su concepto basico ha evolucionado ha-
cia arquitecturas avanzadas que pueden modelar sistemas no li-
neales, aproximar funciones y optimizar pardmetros en tiempo
real Géron (2022).

El perceptron tiene una arquitectura como la que se muestra
en la Figura 5, en la cual se identifican los valores de entrada
X1, X2,...,%, y un valor de salida y.

Unién
sumadora

10 ()

Funcién de Salida
ivacié del
activacion f() )
@ perceptron

Figura 5: Estructura de un perceptrén

Las entradas corresponden a las caracteristicas del conjunto
de datos de entrenamiento, mientras que la salida representa la
respuesta esperada para cada muestra de dicho conjunto. Cada
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entrada x; estd asociada a un peso w; donde i = 1,2,3,..,n, wp
representa el peso de una entrada fija o bias. El valor de salida
de la neurona se obtiene calculando la suma ponderada de las
entradas y sus respectivos pesos mas el bias. Esta suma es pro-
cesada a través de una funcién de activacion f( ) que transforma
el valor resultante en una nueva salida, ajustada para capturar la
no linealidad del modelo y facilitar la toma de decisiones.

Por lo tanto, la capacidad de procesamiento de la ANN se
basa en la fortaleza de las conexiones representadas por los pe-
sos. Estas conexiones se ajustan mediante un proceso de adap-
tacién o aprendizaje, que utiliza un conjunto de patrones de en-
trenamiento para optimizar los pesos y mejorar el desempeio
de la red en tareas especificas. Este mecanismo permite a la
ANN identificar patrones, modelar relaciones complejas y ge-
neralizar a nuevos datos Gurney (2017).

3.1. Estructura de la Red Neuronal

La estructura de control propuesta para la sintonizacion del
controlador PID mediante la red neuronal artificial (ANN) se
ilustra en la Figura 6.

+ error Wout
Wref —() PID System

Kp|Ki|Kd

ANN 4-15\/-VM

Figura 6: Diagrama de control.

La red neuronal recibe como entradas la velocidad de refe-
rencia (w.r), la velocidad de salida del motor (w,,,) y el error
(ew = Wref — Woyur). Como salidas, la red proporciona las ga-
nancias K, K;, y K, del controlador PID ya sea para una sinto-
nizacién previa o de forma dindmica. Adicionalmente, la sefial
de control, representada por la linea en rojo, es generada por el
Arduino Due para el control del RS, sustituyendo directamente
a Wy para la parte experimental.

3.2.  Entrenamiento

Para llevar a cabo la etapa de entrenamiento mediante la
ANN, se propone la estructura mostrada en la Figura 7. Esta
configuracién consta de cuatro entradas: x;, que representa la
velocidad de referencia del motor; x,, que corresponde al error
entre la velocidad de referencia y la velocidad de salida; x3, que
indica la velocidad de salida y para la parte experimental repre-
senta el PWM; y x4, que actiia como el término de sesgo o bias.
La red incluye dos capas ocultas, cada una con 10 neuronas,
y tres salidas, correspondientes a los pardmetros del controla-
dor PID: y; = K,,, y» = K; y y3 = K. Esta estructura permite
que la ANN ajuste los valores del controlador en funcién de las
condiciones del sistema.

Primera capa Segunda capa
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Salidas
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Figura 7: Estructura de la ANN

En las capas 1 y 2 se utiliz6 la funcién de activaciéon ReLU
(Rectified Linear Unit), una de las mas populares y ampliamen-
te empleadas en redes neuronales debido a su capacidad para
acelerar el proceso de entrenamiento y mejorar el rendimiento
del modelo en diversos escenarios. La representaciéon matemati-
ca de esta funcién se presenta en la Ecuacién 10.

ReLU(x) = max(0, x) (10)

La funcién ReLLU devuelve la entrada si es positiva y cero
en caso contrario, lo que la hace mas eficiente que funciones
como la sigmoide o la tangente hiperbdlica. Ademds permite
entrenar redes neuronales dado que, como se ha demostrado, su
comportamiento puede entenderse dentro de un marco variacio-
nal que la vincula con soluciones Optimas, facilitando asf tanto
la interpretacién como la optimizaciéon de modelos entrenados
Parhi y Nowak (2020)

El optimizador utilizado para la red neuronal es ADAM
(Adaptive Moment Estimation), un algoritmo ajusta los
parametros del modelo (en este caso, los pesos de la red neuro-
nal) para minimizar una funcién de costo o pérdida, mejoran-
do as{ el rendimiento del modelo Lihua (2022). Sus principales
ventajas incluyen una mayor eficiencia y la correccién de ses-
gos en los primeros pasos, lo que evita inestabilidades en la
optimizacion.

Para mejorar la pertinencia del proceso de entrenamiento,
se redefine la funcién de costo como el Error Cuadratico Medio
(MSE) entre la velocidad de referencia y la salida del sistema en
el dominio temporal. Esta nueva métrica evalia directamente el
desempeifio del controlador bajo las ganancias PID propuestas
por la red neuronal, permitiendo que el aprendizaje se enfoque
en minimizar el error de seguimiento. La expresion formal del
MSE queda definida como:

1 N
MSE = N ; (Wrer(t;) — Wou(1))* (I

donde wr£(t;) representa el valor de la velocidad de referen-
cia en el instante 7;, wou(t;) es la salida real del sistema a ese
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mismo instante, y N es el niimero total de muestras de tiempo
consideradas durante la simulacién. Esta formulacién permite
que la ANN optimice directamente el desempefio del sistema,
enfocdndose en reducir el error de seguimiento.

3.3.  Configuracion para el entrenamiento

El entrenamiento se configuré con un total de 1,000 épo-
cas, empleando el 80 % del conjunto de datos para el proceso
de aprendizaje. Al utilizar el optimizador ADAM, se establecié
una tasa de aprendizaje inicial de 0.01. Este valor se mantuvo
debido a la capacidad de ADAM para ajustar automaticamente
la tasa de aprendizaje durante el entrenamiento, adaptdndola a
las caracteristicas de los gradientes y mejorando asi la eficiencia
del modelo.

3.4.  Primer enfoque: sintonizacion previa

Para entrenar la red neuronal, es fundamental contar con un
conjunto de datos representativo que capture como el sistema
responde bajo diferentes condiciones de operacion y configu-
raciones PID. Con este objetivo, se consideraron los siguientes
pasos:

= Se simul6 la respuesta del motor de corriente continua
(DC) utilizando multiples combinaciones de ganancias
PID.

= Se recopilaron los datos correspondientes a wyer , Wours
e, asociado para cada configuracion y el tiempo de si-
mulacién z.

= Se almacenaron las ganancias K, K;, y K; empleadas en
cada simulacién, para usarlas como etiquetas en el pro-
ceso de entrenamiento.

Para este proposito, se llevaron a cabo 100 simulaciones
destinadas a entrenar la ANN. Cada simulacién tuvo una du-
racién de 10 segundos, y los datos fueron recopilados a una fre-
cuencia de 100 Hz, lo que permitié capturar una muestra com-
pleta y detallada del comportamiento del sistema bajo diferen-
tes configuraciones, un ejemplo representativo de estas simula-
ciones se presenta en la Figura 8, donde se ilustran 25 de los
100 experimentos realizados para la recopilacién de datos. Es-
ta figura permite observar la diversidad de respuestas obtenidas
durante el proceso de simulacidn, las cuales son fundamentales
para el entrenamiento de la ANN.

—— Simulacién 1 (Kp=0.00, Ki=17.31, Kd=0.0086)
Simulacion 2 (Kp=0.00, Ki=8.91, Kd=0.0049)
Simulacién 3 (Kp=0.03, Ki=4.92, Kd=0.0091)
Simulacion 4 (Kp=0.04, Ki=5.32, Kd=0.0022)
Simulacién 5 (Kp=0.05, Ki=11.02, Kd=0.0036)
Simulacion 6 (Kp=0.06, Ki=8.53, Kd=0.0096)
Simulacién 7 (Kp=0.07, Ki=4.90, Kd=0.0012)
~— Simulacion 8 (Kp=0.08, Ki=5.36, Kd=0.0011)
Simulacién 9 (Kp=0.08, Ki=15.19, Kd=0.0015)
~— Simulacion 10 (Kp=0.11, Ki=8.96, Kd=0.0057)
—— Simulacién 11 (Kp=0.13, Ki=18.66, Kd=0.0095)
Simulacién 12 (Kp=0.19, Ki=16.43, Kd=0.0057)
Simulacion 13 (Kp=0.21, Ki=9.23, Kd=0.0081)
Simulacién 14 (Kp=0.23, Ki=18.17, Kd=0.0005)
Simulacion 15 (Kp=0.24, Ki=9.36, Kd=0.0097)
Simulacién 16 (Kp=0.24, Ki=11.09, Kd=0.0042)
Simulacién 17 (Kp=0.25, Ki=18.64, Kd=0.0094)
— Simulacién 18 (Kp=0.27, Ki=17.39, Kd=0.0069)
Simulacion 19 (Kp=0.30, Ki=2.75, Kd=0.0012)
Simulacién 20 (Kp=0.34, Ki=9.00, Kd=0.0009)

0 2 4 6 8 10
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Figura 8: Respuesta del motor ante diferentes valores en las ganancias.

Este enfoque basado en simulacién se adopt6 de manera in-
tencional como una primera etapa metodolégica, permitiendo
generar datos de entrenamiento de forma segura, rdpida y con-
trolada. La estrategia consiste en entrenar la ANN utilizando
un modelo previamente validado, y posteriormente aplicar los
resultados obtenidos sobre la planta fisica. De este modo, se
minimizan riesgos operativos y se garantiza una transicion mas
confiable del entorno simulado al sistema real.

3.5.  Sintonizacion dindmica

El disefio de un control basado en redes neuronales para
ajustar dindmicamente las ganancias K, K; y K; de un con-
trolador PID implica utilizar una ANN que modifique estos
pardmetros en funcién de las condiciones del sistema. Las en-
tradas de la ANN incluye variables wyef, Wour, € = Wref—Wour ¥
la sefial de control (PWM). La red neuronal procesa estas entra-
das para calcular las ganancias del controlador PID, adaptiando-
las en tiempo real para mejorar la respuesta del sistema frente a
perturbaciones externas y cambios en la referencia.

La ANN se disefia con dos capas ocultas y diez neuronas
para capturar las relaciones no lineales entre las entradas y las
salidas. Su entrenamiento requiere un conjunto de datos obte-
nido mediante simulaciones del sistema bajo diferentes confi-
guraciones PID. Durante la operacién en tiempo real, la ANN
recibe los datos del sistema, calcula las ganancias K, K; y Ky,
y ajusta el PID dindmicamente. Esto permite optimizar el des-
empeio del motor DC frente a condiciones variables y pertur-
baciones externas, garantizando una respuesta rdpida y precisa.

4. TImplementacion

Como se menciond, la implementacién de la ANN para la
sintonizacién de un controlador PID se desarrollé en dos en-
foques principales. En el primer enfoque, llevado a cabo de
manera previa, la ANN se empled para determinar los valo-
res iniciales de las ganancias K, K; y K4, que posteriormente
fueron implementados en el sistema RS SRV02. En el segun-
do enfoque, la ANN operé en tiempo real, ajustando de forma
dindmica los valores de las ganancias directamente en el sis-
tema RS SRVO02, lo que permitié una sintonizacién adaptativa
y continua, optimizando el desempeiio del controlador frente a
cambios y perturbaciones.

4.1. Simulacion de sintonizacion previa

Tras el entrenamiento de la ANN, esta proporciond la sin-
tonizacién del controlador PID en funcién de las diversas en-
tradas, simplificando significativamente el proceso de toma de
decisiones para su implementacién en un entorno real. Las ga-
nancias obtenidas fueron:

K, =861, K;=852, K;=0.01

La grafica correspondiente a la simulacién del sistema se
presenta en la Figura 9, donde se utiliza una velocidad de refe-
rencia de w,.y = 60rpm, la cual representa la velocidad méaxima
del sistema RS SRVO02.
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Figura 9: Control de velocidad del RS SRV02 con PID ante una entrada cons-
tante con sintonizacion de ganancias previa.

Si se tiene una referencia que varia con respecto al tiempo,
alcanzando los siguientes valores: 10 rpm de 0 a 5 segundos, 20
rpm de 5 a 15 segundos, 40 rpm de 15 a 25 segundos, 60 rpm
de 25 a 35 segundos, 30 rpm de 35 a 45 segundos, 15 rpm de 45
a 55 segundos y O rpm después de 55 segundos, los resultados
obtenidos se muestran en la Figura 10.
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Figura 10: Control de velocidad del RS SRV02 con PID ante diferentes veloci-
dades de referencia con sintonizacién de ganancias previa.

4.2.  Simulacion de sintonizacion dindmica
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Figura 11: Control de velocidad del RS SRVO02 con PID ante una entrada cons-
tante con sintonizacion de ganancias dindmicas.
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Figura 12: Evolucion de las ganancias con referencia constante.

El entrenamiento de la ANN permitié lograr la sintoniza-
ci6én dinamica del controlador PID, ajustando las ganancias en
tiempo real segun las condiciones del sistema. Este proceso se
llevé a cabo utilizando los experimentos previamente mencio-
nados como conjunto de datos de entrenamiento. Como resul-
tado, se obtuvo un modelo capaz de generar ganancias adapta-
tivas que optimizan el desempefio del controlador PID, garan-
tizando estabilidad y eficiencia incluso ante cambios en la re-
ferencia. Los resultados obtenidos durante el entrenamiento se
ilustran en la Figura 11, donde se observa la respuesta del sis-
tema frente a una velocidad de referencia de 60 RPM. Por otro
lado, la Figura 12 muestra que, ante una referencia constante,
las ganancias del PID experimentan ajustes menores alrededor
de sus valores iniciales. Esto se debe a que la ANN prioriza la
estabilidad del sistema en condiciones estacionarias, realizando
modificaciones sutiles para contrarrestar perturbaciones de baja
magnitud.

70

D
(=}

W
S

o
S

[9%)
(=]

[3S]
(=}

Velocidad (RPM)

(=}

—— Salida del motor (RPM)
----- Referencia (Setpoint)

(=}

0 10 20 30 40 50 60
Tiempo (s)

Figura 13: Control de velocidad del RS SRV02 con PID ante diferentes veloci-
dades de referencia con sintonizacién de ganancias dindmicas.

Al repetir la prueba con una referencia que varia en interva-
los definidos, los resultados obtenidos se presentan en la Figura
13, donde se muestra la respuesta del sistema frente a una re-
ferencia de velocidad dindmica que alcanza un méximo de 60
RPM. Asimismo, la Figura 14 ilustra la evolucién dindmica de
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las ganancias del controlador PID, evidenciando cémo se ajus-
tan en tiempo real para adaptarse a la respuesta del sistema.
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Figura 14: Evolucidn de las ganancias con diferentes velocidades de referencia.

5. Resultados experimentales

Para validar los enfoques previamente mencionados, se
llevé a cabo la sintonizacién del controlador PID y su poste-
rior implementacion en el sistema RS SRV02.

5.1. Experimentacion con sintonizacion previa

En la Figura 15, se presenta el comportamiento del sistema
frente a un setpoint constante de 60 RPM, replicando las condi-
ciones establecidas en la simulacién utilizada como referencia.
Esto permite evaluar la correspondencia entre los resultados ex-
perimentales y los simulados, validando la efectividad de la sin-
tonizacidn realizada previamente en el entorno de simulacién.
Para efectos de comparacion, las ganancias del controlador PID
permanecen constantes con los valores K, = 8.61, K; = 8.52,y
K, =0.01.
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Figura 15: Respuesta el RS SRV02 con control PID ante una entrada constante
con sintonizacién de ganancias previa.

De manera similar, se llevé a cabo una prueba utilizando un
setpoint variable, donde la velocidad de referencia cambié en

intervalos de tiempo predefinidos con los siguientes valores: 10
RPM de 0 a 5 segundos, 20 RPM de 5 a 15 segundos, 40 RPM
de 15 a 25 segundos, 60 RPM de 25 a 35 segundos, 30 RPM
de 35 a 45 segundos, 15 RPM de 45 a 55 segundos y 0 RPM
después de 55 segundos. Los resultados obtenidos se presentan
en la Figura 16, mostrando la respuesta del sistema frente a este
perfil dindmico de referencia.
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Figura 16: Respuesta el RS SRV02 con control PID ante diferentes velocidades
de referencia con sintonizacion de ganancias previa.

5.2.  Experimentacion con sintonizacion dindmica

A través de la sintonizacién dindmica implementada me-
diante la ANN, se realizé inicialmente una prueba utilizando
una referencia constante de 60 RPM. Los resultados obtenidos
se presentan en la Figura 17, donde se ilustra la respuesta del
sistema ante dicha referencia. Por otro lado, en la Figura 18 se
muestra la evolucion de las ganancias del controlador PID en
funcién de la respuesta del sistema RS SRV02, evidenciando el
ajuste continuo de las mismas frente a la referencia establecida.
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Figura 17: Respuesta el RS SRV02 con control PID ante velocidad constante
de referencia con sintonizacion dindmica.

Para los experimentos con una referencia que varia en dis-
tintos intervalos de tiempo, se empled la misma referencia uti-
lizada previamente en los experimentos y simulaciones anterio-
res, garantizando una base de comparacién consistente. En la
Figura 19 se presenta el comportamiento del sistema RS SRV02
frente a los cambios de velocidad, destacando como la ANN se
adapta progresivamente a estas variaciones, mejorando su des-
empefio con el tiempo.
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Figura 18: Evolucién del valor de las ganancia del PID ante velocidad constante
de referencia con sintonizacion dindmica.
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Figura 19: Respuesta el RS SRV02 con control PID ante diferentes velocidades
de referencia con sintonizacion dindmica.

Por otro lado, en la Figura 20, se observa la evolucién
dindmica de las ganancias del controlador PID en respuesta a
las modificaciones de la velocidad de referencia.
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Figura 20: Evolucién de las ganancias del PID ante diferentes velocidades de
referencia con sintonizacién dindmica.

5.3.  Comparacion con algoritmos genéticos

Los AG representan otra técnica de optimizacidn avanzada
utilizada para la sintonizacién de controladores PID, especial-
mente eficaz en sistemas con multiples 6ptimos locales y com-
portamientos no lineales. A diferencia de las ANN, que apren-
den patrones a partir de datos y realizan predicciones en tiempo
real, los AG utilizan operadores de seleccién, cruce y muta-
cién para encontrar soluciones éptimas. Para la sintonizacién
de PID, los AG minimizan una funcién de costo explorando el
espacio de busqueda de ganancias K, K;, K.

No obstante, los AG requieren un mayor nimero de evalua-
ciones del sistema y son computacionalmente mds costosos du-
rante la fase de optimizacién, ya que cada evaluacién implica
simular el comportamiento completo del sistema. En contras-
te, una vez entrenadas, las ANN pueden generalizar soluciones
rapidamente, permitiendo ajustes en tiempo real sin necesidad
de nuevas optimizaciones. Por lo tanto, aunque ambas técni-
cas presentan ventajas significativas sobre métodos clésicos, las
ANN resultan mas adecuadas para aplicaciones en tiempo real
donde la velocidad de ajuste es critica, mientras que los AG
destacan en escenarios donde la precision extrema y el tiempo
de computo no son restricciones severas. A continuacion se ex-
ponen tnicamente los resultados experimentales del sistema RS
SRVO02 sintonizado mediante AG, bajo distintas condiciones de
referencia. Los resultados de simulacién se omiten, dado que el
objetivo principal del estudio no es el andlisis especifico de los
AG, sino su comparacién con otras técnicas de sintonizacion
PID.

5.3.1.  AG para sintonizacion previa

Para garantizar una comparacion justa entre los métodos de
sintonizacién PID basados en ANN y AG, se definicio que am-
bas tecnbicas optimizan el MSE entre las ganancias actuales
como se ve en la Ecuacién (11) junto con los pardmetros mos-
trados en la Tabla 2.

Tabla 2: Pardmetros del AG para sintonizaciéon PID

Parametro Valor
Tamafio de la poblacién 30 individuos
Numero de generaciones 60
Rangos de busqueda K, ,K; €[0,10], K; € [0, 1]

El algoritmo se disefié con una estrategia de elitismo que
conserva los dos mejores individuos por generacion. La proba-
bilidad de cruce fue del 80 %, mientras que la tasa de muta-
cion fue del 20 %. Cada individuo de la poblacién representa
un vector de ganancias PID y se evalda simulando la respues-
ta del sistema con dichas ganancias. A partir de operadores de
seleccion por torneo, cruce lineal con ponderacion aleatoria y
mutacién aditiva gaussiana, el algoritmo evoluciona hacia una
solucién 6ptima. El resultado es una configuraciéon de ganancias
que minimiza el MSE y genera una respuesta rdpida y estable
del sistema, validando la viabilidad del uso de algoritmos evo-
lutivos como alternativa efectiva a métodos convencionales o de
aprendizaje supervisado como las redes neuronales artificiales.

La mejor solucion encontrada por el AG con una MAE mi-
nimo son los siguientes:

K, =3.75,

K;=9.89, K;=0.011



A. Camacho-Ramirez et al. / Publicacion Semestral Pddi Vol. 13 No. 26 (2025) 131-142 140

La Figura 21 muestra los resultados de seguimiento con-
trol de seguimiento de una trayectoria aplicando al sistema RS
SRVO02.
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Figura 21: Control PID con sintonizacién previa mediante AG

5.3.2.  AG adaptativo para sintonizacion dindmica

Aunque los algoritmos genéticos tradicionales operan fue-
ra de linea, hemos desarrollado un enfoque hibrido que per-
mite su aplicacién en tiempo real. Este método ejecuta mini-
optimizaciones genéticas periédicamente durante la operacion
del sistema, ajustando las ganancias PID en respuesta a cambios
en la referencia o perturbaciones. En este trabajo se implementa
un AG adaptativo orientado a la sintonizacién dindmica de un
controlador PID aplicado al control de velocidad de un motor
DC, tal que el AG actia en tiempo real, adaptando las ganancias
PID ante variaciones en la referencia o condiciones operativas,
permitiendo asi una regulacién continua del comportamiento
del sistema. Tomando en cuenta los mismos pardmetros de la
Tabla 2 con una tasa de mutacién del 30 % y elitismo que con-
serva siempre el mejor candidato. La evaluacién de desempefio
se realiza mediante una funcién de costo basada en la Ecua-
cion (11), calculado sobre una ventana deslizante de los ulti-
mos 10 errores, a lo que se le suma una penalizacién si las nue-
vas ganancias cambian bruscamente respecto a las anteriores, lo
que favorece la estabilidad. Cada segundo, el algoritmo realiza
10 generaciones internas donde explora soluciones cercanas a
las ganancias actuales mediante una mutacién adaptativa, redu-
ciendo la intensidad de exploracion conforme avanza el tiempo.
Esta estructura hibrida asegura una bisqueda eficiente y local,
manteniendo la estabilidad del sistema sin reiniciar el proceso
de control. La Figura 22 muestra los resultados de este enfoque
aplicado al sistema RS SRV02.
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Figura 22: Control PID con sintonizacién dindmica mediante AG adaptativo

En la Figura 23 se evidencia la capacidad de adaptacién
dindmica de las ganancias del controlador PID (K,, K; y K;)
ante variaciones en la referencia de velocidad, demostrando ro-
bustez en el desempefio del sistema. Cabe destacar que este en-
foque basado en AG adaptativo tiene una limitacion inherente
la selecciéon manual de ganancias iniciales. Mediante un proce-
so iterativo de prueba y error, se determind como configuracién
optima inicial los valores K, = 8.66, K; = 4.24 y K; = 0.56.
Esta dependencia de pardmetros iniciales suboptimos constitu-
ye una desventaja significativa del método.
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Figura 23: Evolucion de las ganancias de PID ante diferentes velocidades de
referencia con AG adaptativo.

En la Tabla 3 se presenta una comparacién detallada entre
los enfoques de sintonizacién de controladores PID mediante
ANN y AG, considerando tanto la sintonizacién previa como
la dindmica. Los datos que sustentan esta comparacién provie-
nen de simulaciones y pruebas experimentales realizadas sobre
el RS SRVO02, en las que se aplicaron ambos métodos de sin-
tonizacion. Esta tabla permite visualizar las fortalezas y limi-
taciones de cada técnica, asi como su rendimiento en términos
cuantitativos, proporcionando una base sélida para la seleccion
del enfoque mas adecuado en aplicaciones con condiciones de
operacion variables.

A diferencia de las ANN, que requieren entrenamiento in-
tensivo y cuya estructura es mads dificil de interpretar, los AG
proporcionan una solucién mas transparente, lo que los hace
particularmente atractivos para escenarios donde la trazabilidad
del ajuste del controlador es prioritaria. No obstante, los costos
computacionales asociados a su ejecucion periddica son mayo-
res que los de una red neuronal ya entrenada, lo que plantea un
compromiso entre capacidad de adaptacidn, costo y facilidad de
implementacién ya en el sistema embebido.

6. Conclusiones y trabajo futuro

El uso de ANN para la sintonizacién de controladores PID
ha sido demostrado como una herramienta eficaz tanto en esce-
narios de sintonizacién previa como dindmica. En la sintoniza-
cidén previa, valores consistentes para las ganancias del contro-
lador fueron proporcionados por las ANN, lo que facilit6 el di-
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Tabla 3: Comparacion entre ANN y Algoritmos Genéticos para la sintonizacién de controladores PID

Criterio ANN Previa ANN Dindmica GA Previo GA Dindmico
Tipo de entrenamiento Offline (simulado) Online (tiempo real) Offline (simulacién) Online (optimizacién
local)
Enfoque Predictivo basadoen ~ Adaptacién en tiempo Optimizacién Mini-optimizaciones
datos simulados evolutiva periddicas
Modelo requerido No Parcial (modelo Parcial (simplificado)
simple)
Dependencia de Alta Alta Nula Nula
entrenamiento
Adaptabilidad No Alta No Alta
Velocidad de Instantanea Répida (inferencia en Lenta (fase de Lenta (10 gen/seg)
respuesta (post-entrenamiento) optimizacién)
Costo computacional Bajo Medio Alto Alto
MSE (Experimental) 1.65 1.79 2.71
Implementacion fisica  Sencilla (valores fijos) Compleja (integracién  Sencilla (valores fijos) Muy compleja (GA
en tiempo real) embebido)

sefo del sistema y permitié que una correspondencia sélida en-
tre simulaciones y pruebas experimentales fuera mostrada. Por
otro lado, el ajuste de las ganancias del controlador en tiempo
real fue permitido por la sintonizacién dindmica, adaptandose a
cambios en la velocidad de referencia. Sin embargo, aunque un
rendimiento 6ptimo del sistema no fue alcanzado en la dltima
prueba y un desempeio inferior fue observado en comparacion
con la sintonizacién previa, una mejora gradual en el desem-
peiio de la ANN con el tiempo fue detectada.

Estas capacidades han llevado a que las ANN sean consi-
deradas una opcién ideal para aplicaciones donde condiciones
de operacién cambiantes son experimentadas constantemente.
La viabilidad de combinar métodos tradicionales con técnicas
modernas de aprendizaje automatico para optimizar el rendi-
miento en sistemas de control industrial ha sido validada por
la integracién de modelos matemadticos con ANN en el sistema
RS SRVO02.

Aunque el sistema fue representado como una dindmica de
primer orden por el modelo matemadtico identificado, carac-
teristicas propias de una dindmica de segundo orden en lazo
cerrado fueron mostradas por los resultados experimentales. Es-
ta discrepancia puede ser atribuida a simplificaciones aplicadas
durante el modelado, como la omisién de la inductancia y el
acoplamiento mecdnico. Sin embargo, este modelo fue consi-
derado adecuado para el disefio preliminar del controlador PID
y para el entrenamiento inicial de la red neuronal.

Adicionalmente, la comparacién con los enfoques basados
en algoritmos genéticos permitié evidenciar que estos tltimos
presentan ventajas relevantes en términos de interpretabilidad y
ajuste fino. En su modalidad de sintonizacion previa, los algo-
ritmos genéticos ofrecieron el menor MSE, mostrando una alta
precision en la etapa de disefio sin necesidad de entrenamien-
to previo. Por otro lado, la sintonizacion dindmica basada en
AG demostré un buen compromiso entre adaptabilidad y des-
empeio, logrando un seguimiento robusto frente a cambios en
la referencia con ganancias adaptadas en tiempo real.

Como trabajo futuro, se plantea que el modelo sea refinado
mediante la inclusién de una descripciéon dindmica més com-
pleta. Ademas, se propone que la red neuronal sea entrenada
con datos reales del sistema RS SRV02 para incrementar la

precision del modelo, asi como que una nueva configuracion
de capas con la cantidad de neuronas de la red sea creada. Por
su parte, una hibridacién de ambos enfoques empleando ANN
para predecir ajustes iniciales y AG para afinamiento dindmi-
co podria representar una solucién atin mas robusta y eficiente,
integrando lo mejor de ambas metodologias.

No obstante, ha sido demostrado por este estudio que, inclu-
so al ser empleados modelos simplificados y datos generados
mediante simulaciones, una sintonizacion efectiva de controla-
dores PID puede ser lograda por las ANN lo que refuerza la
metodologia.
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