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Resumen 

El documento aborda el problema de corte unidimensional que consiste en cortar objetos pequeños o ítems de piezas 
grandes de material o stocks. A lo largo del tiempo, se han desarrollado diversos modelos basados en programación lineal y 
estrategias para abordar este problema, que van desde métodos exactos hasta algoritmos heurísticos, metaheurísticos e 
híbridos. En este estudio se evalúa la efectividad del Algoritmo Discreto del Búfalo Africano con tres diferentes funciones 
objetivo. La primera función considera minimizar el desperdicio; la segunda, el número de stocks usados y la tercera es una 
combinación de las dos anteriores. Se realizaron experimentos bajo dos escenarios con instancias de diferente complejidad y 
características. Los resultados muestran que las funciones con una sola medida de desempeño son adecuadas para una 
complejidad moderada y alta, mientras que la función con dos medidas de desempeño es idónea para cualquier complejidad, 
pero es sensible a la heterogeneidad de los ítems. 
 
Palabras Clave:  Problema de corte, Algoritmo del Búfalo Africano, Programación Lineal,  Algoritmos Heurísticos.  
 
Abstract 

The document addresses the one-dimensional cutting stock problem which consists in cutting small objects or items 
from large pieces of material or stocks. Over time, various linear programming models have been developed and strategies to 
tackle this problem, ranging from exact methods, to heuristic algorithms, metaheuristics, and hybrid methods. In this study the 
effectiveness of the Discrete African Buffalo Algorithm is evaluated with three objective functions. The first function considers 
the minimization of waste; the second one, the number of stocks used, and the third one is a combination of the first two 
functions. Experiments were conducted under two scenarios with instances of different complexity and features. Results show 
that the functions with one performance measure are suitable for moderate and high complexity while the function with two 
performance measures is suitable for any type of complexity but it is sensible to the heterogeneity of the items. 

Keywords: Cutting Stock Problem, African Buffalo Algorithm, Linear Programming, Heuristic Algorithms. 

 
1.​ Introducción 

El problema de corte es una clase de problemas de 
optimización vinculados a la producción industrial y a la 
gestión de materiales. Actualmente, es uno de los problemas 
de optimización más estudiados, y las empresas se enfrentan 
al reto de cortar materiales de gran tamaño, como papel, 
vidrio, madera o acero, en piezas más pequeñas para 
responder a una demanda específica. Su meta principal es 
satisfacer esta demanda empleando la menor cantidad de 
material posible o reduciendo el desperdicio al mínimo. En 
ciertos problemas del mundo real, no resulta adecuado 

enfocarse únicamente en la minimización del desperdicio de 
material como objetivo principal, ya que este objetivo 
impacta solo una parte de los costos totales involucrados en el 
proceso de corte, como el costo de la compra de material, el 
costo de almacenamiento, la gestión de inventario, el uso de 
maquinaria y de mano de obra, que pueden ser impactados 
por objetivos como el número de rollos o placas de material 
comprados, o bien la reutilización de material.  

Este trabajo aborda una variante unidimensional del 
problema de corte (1D-CSP, One-dimensional Cutting Stock 
Problem), específicamente aquella en la que se utiliza una 
única pieza de material o stock, según la clasificación de 
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(Wäscher, Hausner, & Schumann, 2007). En esta variante, 
todas las piezas a cortar, o ítems, se obtienen de un único tipo 
de stock, lo que implica que las piezas de stock empleadas 
tienen las mismas dimensiones (largo L y ancho W).  
Además, tanto el stock como los ítems comparten el mismo 
ancho, aunque estos últimos pueden variar en longitud. Así, el 
problema se simplifica al encontrar una disposición adecuada 
de los ítems sobre las piezas de stock en una única dimensión, 
es decir, a lo largo del stock (L). 

Se considera que (Kantorovich, 1960) fue el primero en 
abordar este problema, al plantear su modelo mediante 
programación lineal (PL) y emplear el método de 
multiplicadores para encontrar una solución. Después se 
desarrolló una heurística en (Hassler, 1975) para generar 
patrones que incorporan de manera secuencial nuevos 
patrones de corte a la solución existente hasta cubrir 
completamente la demanda. En cada iteración, el método 
elige un patrón de corte que combina una baja pérdida de 
material con una alta frecuencia de uso (número de veces que 
se aplica dicho patrón). Precisamente para los problemas de 
patrones se formuló un problema de minimización de 
patrones de corte en (Farley & Richardson, 1984) como un 
problema de carga fija, aplicando el método simplex para 
sustituir las variables básicas, correspondientes a los patrones 
de corte, por variables excedentes, con el objetivo de 
disminuir la cantidad de patrones utilizados.  En   (Foerster & 
Wäscher, 2000) se presentó el método de solución KOMBI, 
que amplía este procedimiento al basarse en la premisa de 
que, al combinar patrones de corte, la suma de las frecuencias 
de los nuevos patrones debe ser igual a la suma de las 
frecuencias de los patrones originales, garantizando así que se 
mantenga constante la cantidad de material de entrada. Para el 
mismo año en el trabajo de (Vanderbeck, 2000) se propuso un 
método exacto para resolver el problema de minimización de 
patrones, formulando como un modelo de programación 
entera cuadrática. En el trabajo de (Kolen & Spieksma, 2000) 
se desarrolló un algoritmo de ramificación y acotación 
diseñado para obtener las soluciones óptimas de Pareto en un 
conjunto de instancias pequeñas del problema. Tres años más 
tarde, en (Umetani, Yagiura, & Ibaraki, 2003) se propuso una 
formulación considerando un enfoque de búsqueda local 
iterada para minimizar la cantidad de stocks, limitando el uso 
a una cantidad máxima predefinida de patrones de corte 
distintos. Este algoritmo de búsqueda local explora la 
vecindad generada al modificar un patrón de corte dentro del 
conjunto actual, aplicando perturbaciones basadas en la 
solución dual del problema auxiliar de programación lineal.  

En (Lee, 2007) se presentó una heurística de búsqueda 
local denominada CRAWLA, basada en programación lineal 
entera. Esta heurística aborda de manera integral tanto el 
problema principal como el subproblema del enfoque 
tradicional de generación de patrones, logrando un modelo 
unificado que crea directamente nuevos patrones de corte. 
Aunque el método destina tiempo a la generación de nuevas 
columnas, asegura que estas contribuyan a una mejora en el 
modelo de programación lineal entera, en lugar de limitarse a 
la mejora continua que suele buscar el enfoque tradicional de 
generación de columnas basado en precios. Un año más tarde 
se propuso un algoritmo de ramificación 
(branch-price-and-cut) para resolver de manera exacta el 
problema de minimización de patrones en (Alves & de 

Carvalho, 2008)  y en (Alves, Macedo, & de Carvalho, 2009) 
abordaron este problema utilizando la generación de 
columnas y presentaron diversas estrategias para reforzar la 
formulación planteada en su estudio. Se obtuvieron límites 
inferiores de alta calidad tanto a partir del nuevo modelo de 
programación entera como de un modelo basado en 
programación por restricciones. De manera más reciente 
algunos estudios han abordado métodos clásicos para resolver 
casos particulares del 1D-CSP como se muestra en (Sarper & 
Jaksic, 2019), (Sa Santos & Nepomuceno, 2022). 

El Algoritmo del Búfalo Africano (ABO) ha ganado 
atención en la literatura reciente como una técnica innovadora 
dentro de los algoritmos de optimización inspirados en la 
naturaleza. Este algoritmo, que emula el comportamiento 
colectivo de los búfalos africanos en su búsqueda de recursos, 
se ha actualizado y mejorado en diversos artículos, reflejando 
su creciente importancia en la solución de problemas 
complejos en diferentes áreas. Entre los artículos recientes, 
las contribuciones más destacadas han explorado la 
adaptación del Algoritmo Discreto del Búfalo Africano 
(DABO) a problemas de optimización combinatoria cuyas 
soluciones requieren ser discretas, (Zhou, Jiang, & Wang, 
2020), (Jiang, Zhu, & Deng, 2020), (Gherboudj, 2018). Estas 
aplicaciones han mostrado resultados prometedores al 
comparar su desempeño con otros algoritmos bio-inspirados, 
como el enjambre de partículas o los algoritmos genéticos, 
(Montiel-Arrieta, Barragan-Vite, Seck-Tuoh-Mora, 
Hernandez-Romero, & Gonzalez-Hernandez, 2023). Nuevas 
variantes del ABO continúan siendo objeto de investigaciones 
que expanden sus aplicaciones y refinan su funcionamiento 
como en (Singh, Meena, Slowik, & Bishnoi, 2020), 
consolidándose como una herramienta valiosa en el ámbito de 
la optimización. En particular, en la variante DABO se han 
realizado ajustes para abordar problemas con soluciones 
discretas. No obstante, en la solución del 1D-CSP con esta 
variante del ABO aún no se han explorado modificaciones 
que mejoren su desempeño como el uso de funciones fitness 
que permitan evaluar de manera adecuada las soluciones, 
hasta el empleo de métodos de cruza o mutación que mejoren 
la eficiencia y efectividad del algoritmo. 

En este sentido el presente trabajo busca mejorar la 
efectividad del DABO para resolver el 1D-CSP a través de 
una función objetivo o fitness con dos criterios para guiar la 
búsqueda de la mejor solución ya que, usualmente los 
estudios sobre el 1D-CSP se enfocan en el uso de un solo 
criterio. En este trabajo se realizó un análisis de tres funciones 
objetivo para resolver el 1D-CSP. La primera considera 
solamente la minimización de desperdicio total como se 
propuso en (Montiel Arrieta, Barragán Vite, Hernández 
Romero, & González Hernández, 2023); la segunda, 
considera solamente la minimización del número de stocks 
usados, y la tercera función toma en cuenta la minimización 
tanto el desperdicio como el número de stocks con 
desperdicio. Esto se ha planteado así debido a que existen 
soluciones en el 1D-CSP que pueden tener el mínimo 
desperdicio total, pero un gran número de stocks usados, y 
viceversa. Para determinar la efectividad de las tres 
funciones, se emplea un conjunto de 70 instancias de la 
literatura con diferente complejidad. Estas instancias se 
seleccionaron debido a que, en un primer escenario 10 de las 
instancias poseen una complejidad variable con stocks de 
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diferente longitud, mientras que en un segundo escenario, el 
grupo restante de instancias consideran el mismo tamaño de 
stock lo que permite eliminar la influencia de este factor en 
los resultados y en la comparación de las funciones objetivo.  

Se determinó que la función que combina tanto el 
desperdicio total como el número de stocks usados ofrece los 
mejores resultados para instancias desde baja hasta alta 
complejidad, mientras que las funciones que consideran un 
solo criterio, como desperdicio o número de stocks usados en 
total, arrojan buenos resultados para instancias de moderada y 
alta complejidad. Los resultados obtenidos en este trabajo 
contribuyen a ampliar el conocimiento sobre la 
implementación del DABO en la solución del 1D-CSP, al 
comparar y mostrar su desempeño con funciones fitness que 
consideran un criterio o dos criterios de manera conjunta para 
evaluar las soluciones y cómo los resultados mejoran cuando 
se emplean dos criterios, lo que puede ampliarse a problemas 
similares como el Binpacking Problem. 

El trabajo se limita a comparar los objetivos de reducción 
del desperdicio y del uso de stocks, de manera individual y de 
forma conjunta, con la implementación del DABO para 
resolver el 1D-CSP, sin explorar el uso de otros métodos de 
cruza, mutación o reinicio de la manada. Asimismo, 
solamente se realiza la comparación del DABO con otras 
implementaciones del ABO que han utilizado el mismo tipo 
de instancias seleccionadas en este trabajo. 

Las siguientes secciones se organizan como sigue: en la 
Sección 2 se describen los conceptos básicos sobre el 
problema de corte, también sobre el algoritmo discreto del 
búfalo africano con el que se desarrolla el trabajo, en el que se 
implementa una función de costo que considera dos medidas 
de desempeño de manera conjunta. En la Sección 3 se 
describe la metodología para resolver el problema de corte 
con los tres modelos propuestos y se presentan los resultados 
obtenidos acompañado del análisis correspondiente. 
 
2.​ Conceptos básicos 

 
En esta sección se proporcionan los conceptos clave del 

1D-CSP así como los modelos matemáticos que usualmente 
se han utilizado en la literatura en la implementación de los 
diferentes algoritmos desarrollados para resolverlo. Además, 
se ofrecen las definiciones del DABO y los pasos para su 
implementación. 

 
 

2.1. Problema de corte de una dimensión 

De acuerdo con la clasificación de (Wäscher et al., 2007), 
el 1D-CSP corresponde al problema de un solo stock, es 
decir, todos los stocks disponibles tienen las mismas 
dimensiones, ancho (W) y largo (L). Los ítems que se 
obtienen de los stocks varían en el largo, pero el ancho es fijo 
e igual al del stock. Se considera que el número de stocks 
disponibles es ilimitado. La Figura 1 muestra un ejemplo de 
un conjunto de ítems que deben ser obtenidos de piezas de 
stock de longitud . El plan de corte consiste en usar 𝐿 = 10
seis stocks para cortar todos los ítems requeridos, donde las 
partes de color verde de los stocks indican desperdicio. 

En general y de manera formal, una instancia del 1D-CSP 
puede definirse por la longitud del stock , un número  de 𝐿 𝑚

ítems con longitudes  y demanda , para . 𝑙
𝑖

𝑑
𝑖

𝑖 = 1, 2, …, 𝑚
Aunque en la literatura existen diferentes modelos 
matemáticos para abordar la solución del 1D-CSP, aquí 
mostramos tres modelos cuyas funciones objetivo son objeto 
de estudio en este trabajo. 

 
Figura 1. Ejemplo del 1D-CSP con tres ítems y el plan de corte. 

 

2.1.1. Modelo enfocado en la minimización del desperdicio 
 

El modelo (2)-(6) considera la minimización del 
desperdicio total como función objetivo (FO1), donde: 

  𝑤
𝑗

= 𝐿 −
𝑖=1

𝑛

∑ 𝑥
𝑖𝑗

𝑙
𝑖
,   𝑗 = 1,  2,  …, 𝑚{ } (1)  

y  es la cantidad de órdenes del ítem  obtenidas del stock . 𝑥
𝑖𝑗

𝑖 𝑗
La restricción (2) indica que la cantidad total de piezas del 
ítem  obtenidas de los stocks  no debe exceder su demanda, 𝑖 𝑗
mientras que la restricción (3) muestra que la longitud de 
cada patrón de corte no debe exceder la longitud del stock, 
considerando el desperdicio del patrón. 
 

 
2.1.2 Modelo enfocado en la minimización del número de 
stocks usados 
 

Un ligero cambio en el modelo enfocado en el desperdicio 
produce el modelo (7) – (11) donde la función objetivo (FO2) 
considera el número total de stocks usados, el cual debe ser 
minimizado. 
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2.1.3 Modelo enfocado en la minimización conjunta del 
número de stocks con desperdicio y el desperdicio total 
 

El modelo (13) – (15) considera la minimización tanto del 
desperdicio total como del número de stocks con desperdicio 
como se muestra en su función objetivo (FO3). 

 

 
 

2.2 Algoritmo Discreto del Búfalo Africano                                  
                           

En este estudio se retoma el trabajo de (Barragan-Vite, 
Montiel-Arrieta, Seck-Tuoh-Mora, Hernandez-Romero, & 
Medina-Marin, 2023) en el que se introdujo el Algoritmo 
Discreto del Búfalo Africano para resolver el 1D-CSP 
(DABO-1DCSP) en un espacio de búsqueda discreto. El 
algoritmo está adaptado para problemas en los que las soluciones 
posibles están definidas en un conjunto finito de valores, esto 
lleva a que la adaptación del comportamiento colectivo conlleve 
a realizar movimientos en los que los búfalos cambian de 
posición entre diferentes soluciones discretas según las mejores 
posiciones observadas. Esto permite que el algoritmo explore y 
explote el espacio de soluciones factibles de manera eficiente 
para la naturaleza discreta del problema. 

De cierta forma su funcionamiento inicia al igual que en 
el ABO original, (Odili, Mohd Nizam, & Shahid, 2015). Se 
genera un conjunto inicial de soluciones, después se evalúa el 
desempeño de cada solución con base en su calidad con 
respecto al objetivo del problema. En cada iteración las 

soluciones se mueven en el espacio de búsqueda, tomando en 
cuenta la calidad de las soluciones colindantes y, así mismo, 
la comunicación entre las soluciones les permite compartir 
información sobre los puntos prometedores en el espacio 
discreto, lo cual les ayuda a moverse hacia soluciones 
potencialmente mejores, el algoritmo se detiene cuando se 
alcanza un número máximo de iteraciones o cuando se logra 
una solución satisfactoria que cumple con los requisitos del 
problema. La explotación del espacio de soluciones se realiza 
mediante la Ecuación con la que se actualiza el fitness de cada 
búfalo, mientras que con la Ecuación se realiza la 
exploración. Con los valores de fitness de cada nueva 
posición se determina el nuevo mejor búfalo o solución para 
la siguiente iteración. 

 

 
En la Ecuación (17), ,  y  son factores de 𝑙𝑝1 𝑙𝑝2 𝑙𝑝3

aprendizaje. A diferencia del ABO original, el término 
 se introduce para representar el mecanismo de 𝑙𝑝3(𝑏𝑟 − 𝑤

𝑘
)

aprendizaje aleatorio, donde  es un búfalo o solución 𝑏𝑟
seleccionada de manera aleatoria de la manada actual, 
(Barragan-Vite, et al., 2023), (Jiang, Zhu, & Deng, 2020). 

Para discretizar las soluciones se emplean las Ecuaciones 
 y , en las que se realizan operaciones de cruza y (19) (20)

mutación de acuerdo a las Ecuaciones  y , donde  (21) (22) 𝐶𝑅
indica una operación de cruza y  una operación de 𝑀𝑈
mutación. Asimismo,  debe 𝑙𝑝1 + 𝑙𝑝2 + 𝑙𝑝3 = 1
satisfacerse, de tal forma que estos valores representan las 
tasas de diferentes tipos de cruza, y  es la tasa de mutación. λ
El símbolo  indica que si se satisface la condición mostrada ⊗
se realizará la operación de cruza o de mutación del elemento 
a la izquierda de  o ; mientras que el símbolo  indica 𝐶𝑅 𝑀𝑈 ⊕
que la operación de cruza  a su izquierda tiene mayor 𝐶𝑅
prioridad, pero si su condición no se satisface se inicia el 
elemento a su derecha. Por otro lado,  es un número 𝑟
aleatorio en el intervalo [0,1]. 
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En este trabajo se emplea la adaptación de la operación de 

cruza ITX empleada en (Barragan-Vite, et al., 2023), la cual 
se ilustra en la Figura 2 donde  y  son subconjuntos de 𝑆

1
𝑆

2
ítems asignados aleatoriamente tal que . Entre 𝑆

1
∩ 𝑆

2
= ∅

paréntesis se muestra la longitud correspondiente al ítem de 
acuerdo a la instancia de la Figura 1. Por otra parte, la 
operación de mutación se realiza con la operación swap, es 
decir, se intercambian entre sí de manera aleatoria dos 
posiciones de cada solución como se muestra en la Figura 3. 

 

a) Copia de longitudes de  ( , respectivamente) localizadas 𝑆
1

𝑆
2

en Padre 1 (Padre 2) a Hijo 1 (Hijo 2). 
 

b) Copia de longitudes de  ( , respectivamente) localizadas 𝑆
1

𝑆
2

en Padre 1 (Padre 2) a Hijo 2 (Hijo 1) en las posiciones 
faltantes. 

Figura 2. Operación de cruza ITX. 
 
 

 
Figura 3. Operación de mutación swap o intercambio de dos 

longitudes de ítems. 

 

3.​ Experimentos y Resultados  

El propósito de este estudio es analizar la efectividad de 
las funciones objetivo descritas en la Sección 2 cuando se 
emplean como funciones fitness en el DABO-1DCSP, y 
determinar cuál o cuáles producen un mejor desempeño del 
algoritmo. Se plantean dos escenarios de experimentos. El 
primer escenario consiste en un grupo de diez instancias con 
complejidad variable (número de ítems, ), donde el largo de 𝑛
los stocks también es variable. En este escenario se empleó el 
método de Taguchi para ajustar los valores de los parámetros 
de ejecución del algoritmo como se mostró en (Jiang, Zhu, & 
Deng, 2020). El ajuste se realizó con cada una de las 
funciones. En el segundo escenario se realizaron 
experimentos con cuatro grupos de instancias denominadas 
binpack1, binpack2, binpack3 y binpack4 con incremento de 
complejidad. Sin embargo, el largo de los stocks es el mismo 
en todos los grupos lo cual nos permite tener una mejor 
comprensión del desempeño de cada función fitness. En este 
escenario no se ajustaron los parámetros para la ejecución del 
algoritmo, sino que se tomaron los mejores valores ajustados 
de cada función fitness en el primer escenario con base en su 
clasificación (Rank). Todos los experimentos se realizaron en 
una computadora con procesador Intel(R) Core(TM) 
i5-1035G1 CPU @ 1.00GHz   1.20 GHz y RAM de 8GB. El 
DABO-1DCSP fue codificado en Python3.11.1. El código del 
DABO-1DCSP con el que se realizaron las pruebas se puede 
encontrar en 
https://github.com/viteib/articulo_AcevedoMendoza.git. 

 
3.1 Experimentos y resultados del escenario uno. 
 

En este escenario se probaron las tres funciones , 𝐹𝑂1
 y  descritas en la Sección 2 con el DABO-1DCSP 𝐹𝑂2 𝐹𝑂3

en un conjunto de diez instancias tomadas de (Liang, Yao, 
Newton, & Hoffman, 2002). Esto es, cada función se empleó 
de manera independiente como la función fitness que guía la 
búsqueda de la mejor solución o la solución óptima. Los 
datos necesarios de las instancias se muestran en la Tabla 1, 
de donde puede observarse que varían en complejidad 
(número de ítems, ). Además, la columna cuatro muestra el 𝑛
número de ítems diferentes ( ) en todas las instancias, así 𝑛

𝑑𝑖𝑓
como la variabilidad entre la instancia con el menor número 
de ítems y la instancia con el mayor número de ítems, 
expresada como desviación estándar (D. E.). 

 
Tabla 1: Conjunto de instancias de prueba del primera fase. 

Instancia  𝑛  𝐿  (D. E.) 𝑛
𝑑𝑖𝑓

1a 20 14 

4 (10.55) 

2a  50 15 
3a  60 25 
4a  60 25 
5a  126 4300 
6a  200 86 
7a 200 120 
8a 400 120 
9a 400 120 
10a 600 120 

 
Los valores de los parámetros se ajustaron mediante el 

método de Taguchi con el diseño  para seis 𝐿
25

56( )
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parámetros con cinco niveles cada uno, los cuales se muestran 
en la Tabla 2, donde  representa el life span para el 𝑙𝑠
procedimiento de re-inicialización del búfalo que alcance este 
valor a lo largo de las iteraciones. Los experimentos para el 
ajuste se realizaron con base en la instancia 6a como un punto 
medio en la complejidad de las instancias de la Tabla 1 y el 
valor de respuesta usado fue el promedio de diez corridas con 
cada una de las medidas de desempeño de las funciones 
objetivo ,  y , correspondientemente. El arreglo 𝐹𝑂1 𝐹𝑂2 𝐹𝑂3
ortogonal para el diseño experimental se empleó tal como se 
describe en (Barragan-Vite, et al., 2023). Los resultados de 
respuesta para medias del método de Taguchi para cada una 
de las funciones ,  y , se muestran en las Tablas 𝐹𝑂1 𝐹𝑂2 𝐹𝑂3
3, 4 y 5, respectivamente. Los resultados de la Tabla 4 se han 
replicado del trabajo de (Barragan-Vite, et al., 2023). 

 
Tabla 2: Diseño experimental para el ajuste de los parámetros del 
DABO-1D-CSP de la fase 1 de experimentos. 

Factor 
(Parámetro) 

Nivel 
1 

Nivel 
2 

Nivel    
3 

Nivel 
4 

Nivel 
5 

Población 80 100 120 150 200 
Número de 
iteraciones 500 600 800 1000 1500 

 𝑙𝑝1 0.1 0.2 0.3 0.4 0.5 
 𝑙𝑝2 0.1 0.2 0.3 0.4 0.5 

 λ 0.05 0.1 0.15 0.2 0.25 
 𝑙𝑠 5 10 15 20 25 

 
 
Tabla 3: Respuesta para medias y clasificación (Rank) de los 
factores para  (desperdicio total).                                                 𝐹𝑂1
Nivel   Pob. Núm. 

iter. 
 𝑙𝑝1  𝑙𝑝2  λ  𝑙𝑠

1 797.9 796.2 772.1 765.2 806.5 756.6 
2 789.3 779.0 761.8 772.1 772.1 777.2 
3 754.9 765.2 768.6 775.5 773.8 779.0 
4 772.1 754.9 792.7 775.5 760.0 787.6 
5 754.9 773.8 773.8 780.7 756.6 768.6 

Delta  43.0 41.3 31.0 15.5 49.9 31.0 
Rank 2 3 5 6 1 4 

 
Tabla 4: Respuesta para medias y clasificación (Rank) de los 
factores para  (stocks usados). 𝐹𝑂2
Nivel   Pob. Núm. 

iter. 
 𝑙𝑝1  𝑙𝑝2  λ  𝑙𝑠

1 87.20 86.98 86.80 86.84 87.04 86.70 
2 86.92 86.98 86.70 86.92 86.86 86.90 
3 86.56 86.84 86.82 86.72 86.64 86.54 
4 86.50 86.68 86.72 86.54 86.62 87.00 
5 86.68 86.38 86.82 86.84 86.70 86.72 

Delta  0.70 0.60 0.12 0.38 0.42 0.46 
Rank 1 2 6 5 4 3 

 
Tabla 5: Respuesta para medias y clasificación (Rank) de los 
factores para  (stocks usados y desperdicio). 𝐹𝑂3
Nivel   Pob. Núm. 

iter. 
 𝑙𝑝1  𝑙𝑝2  λ  𝑙𝑠

1 0.2059 0.2060 0.2275 0.1863 0.2035 0.1902 
2 0.2007 0.2082 0.2139 0.1961 0.1934 0.1905 
3 0.1884 0.2008 0.1903 0.1981 0.1889 0.2022 
4 0.1956 0.1766 0.1704 0.2031 0.1956 0.1937 
5 0.1842 0.1832 0.1728 0.1913 0.1934 0.1982 

Delta  0.0217 0.0316 0.0572 0.0168 0.0146 0.0121 
Rank 3 2 1 4 5 6 

 

Con base en los resultados del método de Taguchi, se 
seleccionaron los valores de los parámetros que se muestran 
en la Tabla 6 para cada una de las funciones fitness. Los 
resultados de los experimentos con cada una de las funciones 
fitness se muestran en la Tabla 7. Se realizaron 50 ejecuciones 
con cada una de las funciones. Los valores en negrita indican 
el resultado mínimo entre las funciones comparadas. 

Tabla 6: Valores seleccionados de los parámetros para cada 
función fitness para los experimentos del escenario uno. 
Función  Pob. Núm. iter.  𝑙𝑝1  𝑙𝑝2  λ  𝑙𝑠

 𝐹𝑂1 120 1000 0.2 0.1 0.25 15 
 𝐹𝑂2 150 1500 0.2 0.2 0.2 15 
 𝐹𝑂3 200 1000 0.4 0.1 0.15 5 

 
 
Tabla 7: Resultados de Stock Promedio ( ) con la ejecución del 𝑆
DABO-1DCSP con las diferentes funciones fitness. 

Instancia 
 𝐹𝑂1  𝐹𝑂2  𝐹𝑂3

 𝑆  𝑆  𝑆
1a 9 9 9 
2a 23.94 23.96 23.4 
3a 16 16 15.96 
4a 19.94 19.96 19.64 
5a 55.76 55.68 55.7 
6a 87.52 87.68 88.2 
7a 74.82 74.8 74.8 
8a 161.08 161.1 162.58 
9a 168.88 169.08 170.52 
10a 245.78 245.54 249.22 

 
De la Tabla 7 se observa que la ejecución del 

DABO-1DCSP con la función  obtiene el mejor stock 𝐹𝑂3
promedio en seis de las diez instancias. En segundo lugar, la 
función   que considera solamente el desperdicio, obtiene 𝐹𝑂1
mejores resultados en cuatro de las diez instancias, mientras 
que la  solamente obtiene mejores resultados en tres de 𝐹𝑂2
las diez instancias. No obstante, aunque la función  𝐹𝑂3
resuelve más instancias, la diferencia con los resultados con 
las otras dos funciones es muy pequeña. La función  𝐹𝑂1
logra resolver mejor instancias de mayor complejidad, es 
decir, entre 200 y 400 ítems. En la Tabla 8 se muestran los 
tiempos computacionales obtenidos con cada una de las 
funciones con los que se lograron sus mejores resultados de 
stock promedio. La función  obtiene tiempos ligeramente 𝐹𝑂3
superiores a los de las otras dos funciones, particularmente 
donde las tres funciones logran resultados similares o iguales, 
como en las instancias 1a y 7a. La ligera superioridad en 
tiempo de la función  puede atribuirse a su propia 𝐹𝑂3
evaluación en cada iteración, ya que se consideran dos 
términos en la función. 

 
Tabla 8: Resultados de tiempo promedio  con la ejecución del 𝑇
DABO-1DCSP con las diferentes funciones fitness. 

Instancia 
 𝐹𝑂1  𝐹𝑂2  𝐹𝑂3

 𝑇  𝑇  𝑇
1a 210.6 216.95 213.9 
2a 378.7 362.98 418.5 
3a 342.9 337.4 383.4 
4a 362.9 361.6 376.2 
5a 724.6 711.8 716.5 
6a 1112.9 1079.1 1105.8 
7a 1023.7 996.2 991.9 
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8a 2208.0 2127.7 2142.9 
9a 2216.3 2182.3 2216.1 
10a 3347.6 3285.5 3221.6 

 
La Figura A1 del apéndice A muestra las gráficas de 

convergencia de las funciones  ,  y  para cada 𝐹𝑂1 𝐹𝑂2 𝐹𝑂3
una de las instancias de la Tabla 1. La comparación se realizó 
para las primeras 1000 iteraciones en la ejecución de cada 
función. Se observa que la función  converge de manera 𝐹𝑂3
más rápida que las funciones  y  en intancias de baja 𝐹𝑂1 𝐹𝑂2
y moderada complejidad (instancias 1a a 4a), pero en 
instancias de alta complejidad la función  tiene un 𝐹𝑂3
marcado menor desempeño que  las otras dos funciones. Las 
funciones  y  tienen un comportamiento muy similar 𝐹𝑂1 𝐹𝑂2
a lo largo de las instancias, siendo la función las función  𝐹𝑂1
ligeramente mejor que la función . Debido a que la 𝐹𝑂2
función  tuvo mejores resultados de Stock Promedio, en 𝐹𝑂3
la Tabla 9 se muestra su comparación con los algoritmos 
ABO-1DCSP y ABO-CSP, que son otras implementaciones 
recientes del ABO para resolver el 1D-CSP. Los resultados 
del algoritmo ABO-1DCSP se tomaron de (Montiel-Arrieta, 
et al., 2023) y los resultados del ABO-CSP, de 
(Montiel-Arrieta, Barragan-Vite, Hernandez-Romero, & 
Gonzalez-Hernandez, 2022). El algoritmo ABO-CSP emplea 
en su función objetivo únicamente el número de stocks 
usados, mientras que el algoritmo ABO-1DCSP emplea el 
desperdicio total. Ambos algoritmos usan el método de 
discretización Ranked Order Value. El algoritmo ABO-CSP 
reinicializa la población de búfalos (soluciones) cada diez 
iteraciones. El algoritmo ABO-1DCSP realiza un 
procedimiento adicional antes de reinicializar la población, 
que consiste en formar un nuevo  con base en las 𝑏𝑔𝑚𝑎𝑥
mejores soluciones de la última iteración antes de la reiniciar 
toda la población. La comparación de los resultados muestra 
que el ABO-1DCSP obtiene los mejores resultados en todas 
las instancias bajo prueba. Solamente en la instancia 1a el 
algoritmo DABO-1DCSP con la función  iguala al 𝐹𝑂3
resultado del ABO-1DCSP. Sin embargo, el DABO-1DCSP- 

 supera ligeramente al ABO-CSP en todas las instancias, 𝐹𝑂3
aunque las diferencias entre las soluciones no son muy 
marcadas. 

 
Tabla 9: Comparación del Stock Promedio  con otras 𝑆
implementaciones del  algoritmo ABO. 

Instancia 
DABO-1DCS

P-  𝐹𝑂3
ABO-CSP ABO-1DCSP 

 𝑆  𝑆  𝑆
1a 9 9.26 9 
2a 23.4 24.52 23 
3a 15.96 16 15 
4a 19.64 20 19 
5a 55.7 56.62 53 
6a 88.2 89.46 79.08 
7a 74.8 75.62 68 
8a 162.58 162.76 144.9 
9a 170.52 172.4 150 
10a 249.22 250.4 217.2 

 
3.2 Experimentos y resultados del escenario dos 
 

Los experimentos del segundo escenario se realizaron con 
un conjunto de cuatro grupos de instancias denominadas 

binpack1, binpack2, binpack3 y binpack4. Estas instancias 
usan una misma longitud del stock, pero la complejidad 
incrementa en los grupos de instancias, como se muestra en la 
Tabla 10.  

 
Tabla 10: Detalles de las instancias de prueba del escenario dos. 
Grupo de 
instancias  

Núm. de 
intancias 

 𝑛  𝐿  (D. E.) 𝑛
𝑑𝑖𝑓

binpack1 

20 

120 

150 

11 (2.71) 
binpack2 250 8 (2.14) 
binpack3 500 2 (0.40) 
binpack4 1000 1 (0) 

 
Para la ejecución del DABO-1DCSP, los valores de los 

parámetros fueron seleccionados de los resultados del método 
de Taguchi obtenidos en el escenario uno para cada función 
objetivo de acuerdo a la clasificación (Rank) mínima de cada 
parámetro. Por ejemplo, el parámetro de Población tuvo un 

 en los resultados de , un  para  𝑅𝑎𝑛𝑘 = 2 𝐹𝑂1 𝑅𝑎𝑛𝑘 = 1 𝐹𝑂2
y un , para , por lo que para los experimentos 𝑅𝑎𝑛𝑘 = 3 𝐹𝑂3
se seleccionó una Población de 150. De las misma manera se 
obtuvieron los valores del resto de los parámetros. Estos 
valores se muestran en la Tabla 11. Los resultados para el 
stock promedio se muestran en las Tablas B1 a B4 del 
Apéndice B. También se muestra el óptimo teórico de cada 
instancia en la segunda columna de cada tabla de resultados, 
donde este valor se calcula con la Ecuación (23). 

 

     𝑂𝑝𝑡. = ⌈ 𝑖=1

𝑚

∑ 𝑙
𝑖
𝑑

𝑖

𝐿 ⌉    (23) 
 
Los resultados del segundo escenario muestran que la 

función  es adecuada para resolver todas las instancias 𝐹𝑂3
desde binpack1 hasta binpack4. La función  sobresale de 𝐹𝑂3
manera muy evidente para resolver las intancias de estos 
grupos, a pesar de que la complejidad incrementa de manera 
muy marcada. No obstante, ninguna de las funciones muestra 
tener resultados cercanos al valor óptimo teórico de las 
instancias bajo prueba. La función  tiene los porcentajes 𝐹𝑂3
más cercanos al valor óptimo teórico, apenas superando el 
10% en las instancias de binpack4; aunque se desearía que 
fueran menores al 1% como otros algoritmos logran obtener. 

En los resultados de los dos escenarios puede observarse 
que la función  puede verse afectada por la variabilidad 𝐹𝑂3
en el número de items diferentes, ya que a pesar de que 
existen instancias en ambos escenarios con una cantidad de 
items similar, la variabilidad (D. E.) de ítems diferentes en el 
escenario uno es mucho mayor que en las instancias del 
escenario dos. 
 

Tabla 11: Valores seleccionados de los parámetros para las 
funciones fitness para los experimentos del escenario dos. 

Pob. Núm. iter.  𝑙𝑝1  𝑙𝑝2  λ  𝑙𝑠
150 1000 0.4 0.1 0.25 15 
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4.​ Conclusiones  

Resolver problemas como el 1D-CSP de manera eficiente 
tiene beneficios importantes para las empresas, como la 
reducción de costos de material, disminución de residuos 
optimización del tiempo de producción y una mejor gestión 
de recursos, además desde una perspectiva ambiental, 
optimizar los problemas de corte contribuye a la 
sostenibilidad al minimizar el desperdicio y promover el uso 
eficiente de los materiales. En este trabajo se utilizó el 
DABO-1DCSP para resolver el 1D-CSP utilizando tres 
funciones objetivo que minimizan el desperdicio, el número 
de stocks usados o ambas métricas de manera conjunta. El 
propósito fue determinar con qué tipo de función es más 
efectivo el DABO-1DCSP. Los resultados de dos escenarios 
desarrollados muestran que las funciones con una sola medida 
de desempeño son más efectivas con instancias de moderada 
y alta complejidad, mientras que la función con dos medidas 
de desempeño es idónea para instancias de baja, media y alta 
complejidad, en términos generales, aunque la diversidad en 
el tipo ítems puede afectar su desempeño. 

En conclusión, el presente documento ofrece un análisis 
exhaustivo del problema de corte unidimensional, destacando 
al Algoritmo Discreto del Búfalo Africano como una 
herramienta innovadora en el campo de la optimización 
industrial. La evaluación de las funciones objetivo 
(minimización del desperdicio, reducción del uso de stocks y 
su combinación), permite concluir que la combinación de las 
dos funciones con un único objetivo es más efectiva en la 
solución del problema 1DCSP aunque su desempeño se aleja 
un poco más de los valores óptimos teóricos cuando la 
cantidad de los ítems se incrementa y su heterogeneidad 
disminuye. Por lo tanto, este estudio no solo profundiza en la 
comprensión teórica y la aplicabilidad práctica del DABO en 
problemas combinatorios, sino que también fortalece su 
utilidad al integrar ajustes y estrategias adaptativas orientadas 
a mejorar su desempeño. Los hallazgos obtenidos aportan 
contribuciones significativas tanto al ámbito teórico como a la 
implementación práctica en la resolución de problemas 
industriales de alta complejidad. En un trabajo futuro se 
planea explorar otros procedimientos de cruza y mutación, así 
como de reinicio de la manada que pudieran mejorar el 
desempeño del DABO-1DCSP con el uso de la función , 𝐹𝑂3
y al mismo tiempo ampliar las comparaciones mediante un 
conjunto más grande de instancias y con algoritmos diferentes 
al ABO o basados en otro tipo de dinámica de búsqueda. 
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Apéndice A. Gráficas de convergencia de los experimentos del escenario uno  

 

 
a) Instancia 1a 

 
b) Instancia 2a 

 
c) Instancia 3a 

 
d) Instancia 4a 

 
e) Instancia 5a 

 
f) Instancia 6a 

 
g) Instancia 7a 

 
h) Instancia 8a 

 
i) Instancia 9a 

 

 
j) Instancia 10a 

 

 
Figura A1: Gráficas de convergencia de las funciones fitness para las instancias de los experimentos del escenario uno. 
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Apéndice B. Resultados de las instancias de los experimentos del escenario dos 
 
 

Tabla B1: Resultados de Stock Promedio ( ) para las instancias binpack1. 𝑆

Instancia Opt. 
 𝐹𝑂1

%>Opt. 
 𝐹𝑂2

%>Opt. 
 𝐹𝑂3

%>Opt. 
 𝑆  𝑆  𝑆

u120_00 48 52.4 9.17 52.48 9.33 49.56 3.25 
u120_01 49 53.06 8.29 53.08 8.33 49.92 1.88 
u120_02 46 50.12 8.96 50.06 8.83 47.38 3.00 
u120_03 49 54.04 10.29 53.88 9.96 50.8 3.67 
u120_04 50 54.32 8.64 54.28 8.56 51.4 2.80 
u120_05 48 52.64 9.67 52.4 9.17 49.8 3.75 
u120_06 48 52.52 9.42 52.54 9.46 49.52 3.17 
u120_07 49 53.72 9.63 53.9 10.00 50.72 3.51 
u120_08 50 55.3 10.60 55.4 10.80 52.02 4.04 
u120_09 46 50.68 10.17 50.44 9.65 47.98 4.30 
u120_10 52 56.92 9.46 57.04 9.69 53.8 3.46 
u120_11 49 53.6 9.39 53.54 9.27 50.72 3.51 
u120_12 48 52.78 9.96 52.78 9.96 50.04 4.25 
u120_13 49 53.12 8.41 53.08 8.33 50.1 2.24 
u120_14 50 54.34 8.68 54.48 8.96 51.36 2.72 
u120_15 48 52.66 9.71 52.6 9.58 49.86 3.88 
u120_16 52 56.94 9.50 56.92 9.46 53.84 3.54 
u120_17 52 56.96 9.54 57.02 9.65 53.94 3.73 
u120_18 49 53.5 9.18 53.36 8.90 50.38 2.82 
u120_19 49 54.16 10.53 53.96 10.12 51.0 4.08 

El valor en negrita indica el mejor resultado obtenido entre las funciones comparadas. 
 
 
 
 

Tabla B2: Resultados de Stock Promedio ( ) para las instancias binpack2. 𝑆

Instancia Opt. 
 𝐹𝑂1

%>Opt. 
 𝐹𝑂2

%>Opt. 
 𝐹𝑂3

%>Opt. 
 𝑆  𝑆  𝑆

u250_00 99 110.06 11.17 110.2 11.31 104.94 6.00 
u250_01 100 110.98 10.98 110.9 10.90 105.6 5.60 
u250_02 102 113.66 11.43 113.64 11.41 108.22 6.10 
u250_03 100 110.74 10.74 110.82 10.82 105.52 5.52 
u250_04 101 112.4 11.29 112.16 11.05 106.92 5.86 
u250_05 101 113.0 11.88 112.9 11.78 107.32 6.26 
u250_06 102 112.94 10.73 113.08 10.86 107.42 5.31 
u250_07 103 115.7 12.33 115.66 12.29 109.82 6.62 
u250_08 105 117.12 11.54 117.32 11.73 111.7 6.38 
u250_09 101 112.46 11.35 112.0 10.89 106.96 5.90 
u250_10 105 117.04 11.47 117.16 11.58 111.28 5.98 
u250_11 101 112.96 11.84 112.74 11.62 107.16 6.10 
u250_12 105 117.86 12.25 117.8 12.19 112.06 6.72 
u250_13 102 114.1 11.86 114.26 12.02 108.72 6.59 
u250_14 100 110.78 10.78 110.76 10.76 105.84 5.84 
u250_15 105 117.7 12.10 117.36 11.77 111.9 6.57 
u250_16 97 107.64 10.97 107.62 10.95 102.82 6.00 
u250_17 100 110.94 10.94 110.68 10.68 105.3 5.30 
u250_18 100 111.42 11.42 111.46 11.46 106.08 6.08 
u250_19 102 113.3 11.08 113.36 11.14 107.48 5.37 

El valor en negrita indica el mejor resultado obtenido entre las funciones comparadas. 
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Tabla B3: Resultados de Stock Promedio ( ) para las instancias binpack3. 𝑆

Instancia Opt. 
 𝐹𝑂1

%>Opt. 
 𝐹𝑂2

%>Opt. 
 𝐹𝑂3

%>Opt. 
 𝑆  𝑆  𝑆

u500_00 198 222.96 12.61 222.96 12.61 214.88 8.53 
u500_01 201 227.04 12.96 226.48 12.68 218.02 8.47 
u500_02 202 227.42 12.58 227.56 12.65 218.94 8.39 
u500_03 204 231.28 13.37 231.4 13.43 222.22 8.93 
u500_04 206 232.36 12.80 232.32 12.78 223.84 8.66 
u500_05 206 232.58 12.90 232.8 13.01 223.66 8.57 
u500_06 207 234.24 13.16 233.9 13.00 225.5 8.94 
u500_07 204 230.68 13.08 231.08 13.27 222.56 9.10 
u500_08 196 220.44 12.47 220.76 12.63 212.04 8.18 
u500_09 202 227.08 12.42 227.24 12.50 218.6 8.22 
u500_10 200 224.6 12.30 224.74 12.37 216.62 8.31 
u500_11 200 226.14 13.07 226.2 13.10 217.62 8.81 
u500_12 199 224.48 12.80 224.12 12.62 215.82 8.45 
u500_13 196 220.48 12.49 220.54 12.52 212.38 8.36 
u500_14 204 229.92 12.71 229.86 12.68 221.34 8.50 
u500_15 201 225.44 12.16 225.72 12.30 217.54 8.23 
u500_16 202 227.58 12.66 227.52 12.63 218.56 8.20 
u500_17 198 223.2 12.73 222.94 12.60 214.32 8.24 
u500_18 202 227.6 12.67 227.76 12.75 219.18 8.50 
u500_19 196 220.94 12.72 220.6 12.55 213.62 8.99 

El valor en negrita indica el mejor resultado obtenido entre las funciones comparadas. 
 
 
 

Tabla B4: Resultados de Stock Promedio ( ) para las instancias binpack4. 𝑆

Instancia Opt. 
 𝐹𝑂1

%>Opt. 
 𝐹𝑂2

%>Opt. 
 𝐹𝑂3

%>Opt. 
 𝑆  𝑆  𝑆

u1000_00 399 455.5 14.16 455.74 14.22 444.34 11.36 
u1000_01 406 464.24 14.34 464.42 14.39 453.66 11.74 
u1000_02 411 470.92 14.58 470.16 14.39 458.94 11.66 
u1000_03 411 470.78 14.55 470.9 14.57 459.68 11.84 
u1000_04 397 452.94 14.09 452.66 14.02 441.36 11.17 
u1000_05 399 456.38 14.38 456.18 14.33 445.76 11.72 
u1000_06 395 450.36 14.02 450.4 14.03 439.92 11.37 
u1000_07 404 461 14.11 460.82 14.06 449.7 11.31 
u1000_08 399 456.16 14.33 456.46 14.40 445.52 11.66 
u1000_09 397 453.98 14.35 454.06 14.37 443.78 11.78 
u1000_10 400 456.82 14.21 456.86 14.22 446.02 11.51 
u1000_11 401 457.42 14.07 457.58 14.11 446.66 11.39 
u1000_12 393 448.08 14.02 447.12 13.77 436.82 11.15 
u1000_13 396 450.66 13.80 450.64 13.80 440.04 11.12 
u1000_14 394 449.08 13.98 448.96 13.95 438.18 11.21 
u1000_15 402 459.98 14.42 460.24 14.49 449.8 11.89 
u1000_16 404 462.38 14.45 462 14.36 451.16 11.67 
u1000_17 404 463.5 14.73 463.36 14.69 452.5 12.00 
u1000_18 399 454.84 13.99 455.78 14.23 445.06 11.54 
u1000_19 400 456.48 14.12 457.02 14.26 446 11.50 

El valor en negrita indica el mejor resultado obtenido entre las funciones comparadas. 
 


	 

