

Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119-130

 ISSN: 2007-6363

E. F. Acevedo-Mendoza a, I. Barragan-Vite a,* , J. Medina-Marín a, G. E. Anaya-Fuentes a

a Área Académica de Ingeniería y Arquitectura, Universidad Autónoma del Estado de Hidalgo, 42184, Pachuca, Hidalgo, México.

Resumen

El documento aborda el problema de corte unidimensional que consiste en cortar objetos pequeños o ítems de piezas
grandes de material o stocks. A lo largo del tiempo, se han desarrollado diversos modelos basados en programación lineal y
estrategias para abordar este problema, que van desde métodos exactos hasta algoritmos heurísticos, metaheurísticos e
híbridos. En este estudio se evalúa la efectividad del Algoritmo Discreto del Búfalo Africano con tres diferentes funciones
objetivo. La primera función considera minimizar el desperdicio; la segunda, el número de stocks usados y la tercera es una
combinación de las dos anteriores. Se realizaron experimentos bajo dos escenarios con instancias de diferente complejidad y
características. Los resultados muestran que las funciones con una sola medida de desempeño son adecuadas para una
complejidad moderada y alta, mientras que la función con dos medidas de desempeño es idónea para cualquier complejidad,
pero es sensible a la heterogeneidad de los ítems.

Palabras Clave: Problema de corte, Algoritmo del Búfalo Africano, Programación Lineal, Algoritmos Heurísticos.

Abstract

The document addresses the one-dimensional cutting stock problem which consists in cutting small objects or items
from large pieces of material or stocks. Over time, various linear programming models have been developed and strategies to
tackle this problem, ranging from exact methods, to heuristic algorithms, metaheuristics, and hybrid methods. In this study the
effectiveness of the Discrete African Buffalo Algorithm is evaluated with three objective functions. The first function considers
the minimization of waste; the second one, the number of stocks used, and the third one is a combination of the first two
functions. Experiments were conducted under two scenarios with instances of different complexity and features. Results show
that the functions with one performance measure are suitable for moderate and high complexity while the function with two
performance measures is suitable for any type of complexity but it is sensible to the heterogeneity of the items.

Keywords: Cutting Stock Problem, African Buffalo Algorithm, Linear Programming, Heuristic Algorithms.

1.​ Introducción

El problema de corte es una clase de problemas de
optimización vinculados a la producción industrial y a la
gestión de materiales. Actualmente, es uno de los problemas
de optimización más estudiados, y las empresas se enfrentan
al reto de cortar materiales de gran tamaño, como papel,
vidrio, madera o acero, en piezas más pequeñas para
responder a una demanda específica. Su meta principal es
satisfacer esta demanda empleando la menor cantidad de
material posible o reduciendo el desperdicio al mínimo. En
ciertos problemas del mundo real, no resulta adecuado

enfocarse únicamente en la minimización del desperdicio de
material como objetivo principal, ya que este objetivo
impacta solo una parte de los costos totales involucrados en el
proceso de corte, como el costo de la compra de material, el
costo de almacenamiento, la gestión de inventario, el uso de
maquinaria y de mano de obra, que pueden ser impactados
por objetivos como el número de rollos o placas de material
comprados, o bien la reutilización de material.

Este trabajo aborda una variante unidimensional del
problema de corte (1D-CSP, One-dimensional Cutting Stock
Problem), específicamente aquella en la que se utiliza una
única pieza de material o stock, según la clasificación de

 *Autor para la correspondencia: irvingb@uaeh.edu.mx
Correo electrónico: ac354160@uaeh.edu.mx (Eloísa Fernanda Acevedo-Mendoza), irvingb@uaeh.edu.mx (Irving Barragan-Vite), jmedina@uaeh.edu.mx (Joselito
Medina-Marín), ganaya@uaeh.edu.mx (Gustavo Erick Anaya Fuentes).

Historial del manuscrito: recibido el 30/01/2025, última versión-revisada recibida el 05/09/2025, aceptado el 10/09/2025,
en línea (postprint) desde el 26/09/2025, publicado el 05/01/2026. DOI: https://doi.org/10.29057/icbi.v13i26.14491

https://orcid.org/0009-0008-2157-6996
https://orcid.org/0000-0002-3625-6943
https://orcid.org/0000-0003-0937-8707
https://orcid.org/0000-0002-3708-6763

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 120

(Wäscher, Hausner, & Schumann, 2007). En esta variante,
todas las piezas a cortar, o ítems, se obtienen de un único tipo
de stock, lo que implica que las piezas de stock empleadas
tienen las mismas dimensiones (largo L y ancho W).
Además, tanto el stock como los ítems comparten el mismo
ancho, aunque estos últimos pueden variar en longitud. Así, el
problema se simplifica al encontrar una disposición adecuada
de los ítems sobre las piezas de stock en una única dimensión,
es decir, a lo largo del stock (L).

Se considera que (Kantorovich, 1960) fue el primero en
abordar este problema, al plantear su modelo mediante
programación lineal (PL) y emplear el método de
multiplicadores para encontrar una solución. Después se
desarrolló una heurística en (Hassler, 1975) para generar
patrones que incorporan de manera secuencial nuevos
patrones de corte a la solución existente hasta cubrir
completamente la demanda. En cada iteración, el método
elige un patrón de corte que combina una baja pérdida de
material con una alta frecuencia de uso (número de veces que
se aplica dicho patrón). Precisamente para los problemas de
patrones se formuló un problema de minimización de
patrones de corte en (Farley & Richardson, 1984) como un
problema de carga fija, aplicando el método simplex para
sustituir las variables básicas, correspondientes a los patrones
de corte, por variables excedentes, con el objetivo de
disminuir la cantidad de patrones utilizados. En (Foerster &
Wäscher, 2000) se presentó el método de solución KOMBI,
que amplía este procedimiento al basarse en la premisa de
que, al combinar patrones de corte, la suma de las frecuencias
de los nuevos patrones debe ser igual a la suma de las
frecuencias de los patrones originales, garantizando así que se
mantenga constante la cantidad de material de entrada. Para el
mismo año en el trabajo de (Vanderbeck, 2000) se propuso un
método exacto para resolver el problema de minimización de
patrones, formulando como un modelo de programación
entera cuadrática. En el trabajo de (Kolen & Spieksma, 2000)
se desarrolló un algoritmo de ramificación y acotación
diseñado para obtener las soluciones óptimas de Pareto en un
conjunto de instancias pequeñas del problema. Tres años más
tarde, en (Umetani, Yagiura, & Ibaraki, 2003) se propuso una
formulación considerando un enfoque de búsqueda local
iterada para minimizar la cantidad de stocks, limitando el uso
a una cantidad máxima predefinida de patrones de corte
distintos. Este algoritmo de búsqueda local explora la
vecindad generada al modificar un patrón de corte dentro del
conjunto actual, aplicando perturbaciones basadas en la
solución dual del problema auxiliar de programación lineal.

En (Lee, 2007) se presentó una heurística de búsqueda
local denominada CRAWLA, basada en programación lineal
entera. Esta heurística aborda de manera integral tanto el
problema principal como el subproblema del enfoque
tradicional de generación de patrones, logrando un modelo
unificado que crea directamente nuevos patrones de corte.
Aunque el método destina tiempo a la generación de nuevas
columnas, asegura que estas contribuyan a una mejora en el
modelo de programación lineal entera, en lugar de limitarse a
la mejora continua que suele buscar el enfoque tradicional de
generación de columnas basado en precios. Un año más tarde
se propuso un algoritmo de ramificación
(branch-price-and-cut) para resolver de manera exacta el
problema de minimización de patrones en (Alves & de

Carvalho, 2008) y en (Alves, Macedo, & de Carvalho, 2009)
abordaron este problema utilizando la generación de
columnas y presentaron diversas estrategias para reforzar la
formulación planteada en su estudio. Se obtuvieron límites
inferiores de alta calidad tanto a partir del nuevo modelo de
programación entera como de un modelo basado en
programación por restricciones. De manera más reciente
algunos estudios han abordado métodos clásicos para resolver
casos particulares del 1D-CSP como se muestra en (Sarper &
Jaksic, 2019), (Sa Santos & Nepomuceno, 2022).

El Algoritmo del Búfalo Africano (ABO) ha ganado
atención en la literatura reciente como una técnica innovadora
dentro de los algoritmos de optimización inspirados en la
naturaleza. Este algoritmo, que emula el comportamiento
colectivo de los búfalos africanos en su búsqueda de recursos,
se ha actualizado y mejorado en diversos artículos, reflejando
su creciente importancia en la solución de problemas
complejos en diferentes áreas. Entre los artículos recientes,
las contribuciones más destacadas han explorado la
adaptación del Algoritmo Discreto del Búfalo Africano
(DABO) a problemas de optimización combinatoria cuyas
soluciones requieren ser discretas, (Zhou, Jiang, & Wang,
2020), (Jiang, Zhu, & Deng, 2020), (Gherboudj, 2018). Estas
aplicaciones han mostrado resultados prometedores al
comparar su desempeño con otros algoritmos bio-inspirados,
como el enjambre de partículas o los algoritmos genéticos,
(Montiel-Arrieta, Barragan-Vite, Seck-Tuoh-Mora,
Hernandez-Romero, & Gonzalez-Hernandez, 2023). Nuevas
variantes del ABO continúan siendo objeto de investigaciones
que expanden sus aplicaciones y refinan su funcionamiento
como en (Singh, Meena, Slowik, & Bishnoi, 2020),
consolidándose como una herramienta valiosa en el ámbito de
la optimización. En particular, en la variante DABO se han
realizado ajustes para abordar problemas con soluciones
discretas. No obstante, en la solución del 1D-CSP con esta
variante del ABO aún no se han explorado modificaciones
que mejoren su desempeño como el uso de funciones fitness
que permitan evaluar de manera adecuada las soluciones,
hasta el empleo de métodos de cruza o mutación que mejoren
la eficiencia y efectividad del algoritmo.

En este sentido el presente trabajo busca mejorar la
efectividad del DABO para resolver el 1D-CSP a través de
una función objetivo o fitness con dos criterios para guiar la
búsqueda de la mejor solución ya que, usualmente los
estudios sobre el 1D-CSP se enfocan en el uso de un solo
criterio. En este trabajo se realizó un análisis de tres funciones
objetivo para resolver el 1D-CSP. La primera considera
solamente la minimización de desperdicio total como se
propuso en (Montiel Arrieta, Barragán Vite, Hernández
Romero, & González Hernández, 2023); la segunda,
considera solamente la minimización del número de stocks
usados, y la tercera función toma en cuenta la minimización
tanto el desperdicio como el número de stocks con
desperdicio. Esto se ha planteado así debido a que existen
soluciones en el 1D-CSP que pueden tener el mínimo
desperdicio total, pero un gran número de stocks usados, y
viceversa. Para determinar la efectividad de las tres
funciones, se emplea un conjunto de 70 instancias de la
literatura con diferente complejidad. Estas instancias se
seleccionaron debido a que, en un primer escenario 10 de las
instancias poseen una complejidad variable con stocks de

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 121

diferente longitud, mientras que en un segundo escenario, el
grupo restante de instancias consideran el mismo tamaño de
stock lo que permite eliminar la influencia de este factor en
los resultados y en la comparación de las funciones objetivo.

Se determinó que la función que combina tanto el
desperdicio total como el número de stocks usados ofrece los
mejores resultados para instancias desde baja hasta alta
complejidad, mientras que las funciones que consideran un
solo criterio, como desperdicio o número de stocks usados en
total, arrojan buenos resultados para instancias de moderada y
alta complejidad. Los resultados obtenidos en este trabajo
contribuyen a ampliar el conocimiento sobre la
implementación del DABO en la solución del 1D-CSP, al
comparar y mostrar su desempeño con funciones fitness que
consideran un criterio o dos criterios de manera conjunta para
evaluar las soluciones y cómo los resultados mejoran cuando
se emplean dos criterios, lo que puede ampliarse a problemas
similares como el Binpacking Problem.

El trabajo se limita a comparar los objetivos de reducción
del desperdicio y del uso de stocks, de manera individual y de
forma conjunta, con la implementación del DABO para
resolver el 1D-CSP, sin explorar el uso de otros métodos de
cruza, mutación o reinicio de la manada. Asimismo,
solamente se realiza la comparación del DABO con otras
implementaciones del ABO que han utilizado el mismo tipo
de instancias seleccionadas en este trabajo.

Las siguientes secciones se organizan como sigue: en la
Sección 2 se describen los conceptos básicos sobre el
problema de corte, también sobre el algoritmo discreto del
búfalo africano con el que se desarrolla el trabajo, en el que se
implementa una función de costo que considera dos medidas
de desempeño de manera conjunta. En la Sección 3 se
describe la metodología para resolver el problema de corte
con los tres modelos propuestos y se presentan los resultados
obtenidos acompañado del análisis correspondiente.

2.​ Conceptos básicos

En esta sección se proporcionan los conceptos clave del

1D-CSP así como los modelos matemáticos que usualmente
se han utilizado en la literatura en la implementación de los
diferentes algoritmos desarrollados para resolverlo. Además,
se ofrecen las definiciones del DABO y los pasos para su
implementación.

2.1. Problema de corte de una dimensión

De acuerdo con la clasificación de (Wäscher et al., 2007),
el 1D-CSP corresponde al problema de un solo stock, es
decir, todos los stocks disponibles tienen las mismas
dimensiones, ancho (W) y largo (L). Los ítems que se
obtienen de los stocks varían en el largo, pero el ancho es fijo
e igual al del stock. Se considera que el número de stocks
disponibles es ilimitado. La Figura 1 muestra un ejemplo de
un conjunto de ítems que deben ser obtenidos de piezas de
stock de longitud . El plan de corte consiste en usar 𝐿 = 10
seis stocks para cortar todos los ítems requeridos, donde las
partes de color verde de los stocks indican desperdicio.

En general y de manera formal, una instancia del 1D-CSP
puede definirse por la longitud del stock , un número de 𝐿 𝑚

ítems con longitudes y demanda , para . 𝑙
𝑖

𝑑
𝑖

𝑖 = 1, 2, …, 𝑚
Aunque en la literatura existen diferentes modelos
matemáticos para abordar la solución del 1D-CSP, aquí
mostramos tres modelos cuyas funciones objetivo son objeto
de estudio en este trabajo.

Figura 1. Ejemplo del 1D-CSP con tres ítems y el plan de corte.

2.1.1. Modelo enfocado en la minimización del desperdicio

El modelo (2)-(6) considera la minimización del
desperdicio total como función objetivo (FO1), donde:

 𝑤
𝑗

= 𝐿 −
𝑖=1

𝑛

∑ 𝑥
𝑖𝑗

𝑙
𝑖
, 𝑗 = 1, 2, …, 𝑚{ } (1)

y es la cantidad de órdenes del ítem obtenidas del stock . 𝑥
𝑖𝑗

𝑖 𝑗
La restricción (2) indica que la cantidad total de piezas del
ítem obtenidas de los stocks no debe exceder su demanda, 𝑖 𝑗
mientras que la restricción (3) muestra que la longitud de
cada patrón de corte no debe exceder la longitud del stock,
considerando el desperdicio del patrón.

2.1.2 Modelo enfocado en la minimización del número de
stocks usados

Un ligero cambio en el modelo enfocado en el desperdicio
produce el modelo (7) – (11) donde la función objetivo (FO2)
considera el número total de stocks usados, el cual debe ser
minimizado.

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 122

2.1.3 Modelo enfocado en la minimización conjunta del
número de stocks con desperdicio y el desperdicio total

El modelo (13) – (15) considera la minimización tanto del
desperdicio total como del número de stocks con desperdicio
como se muestra en su función objetivo (FO3).

2.2 Algoritmo Discreto del Búfalo Africano

En este estudio se retoma el trabajo de (Barragan-Vite,
Montiel-Arrieta, Seck-Tuoh-Mora, Hernandez-Romero, &
Medina-Marin, 2023) en el que se introdujo el Algoritmo
Discreto del Búfalo Africano para resolver el 1D-CSP
(DABO-1DCSP) en un espacio de búsqueda discreto. El
algoritmo está adaptado para problemas en los que las soluciones
posibles están definidas en un conjunto finito de valores, esto
lleva a que la adaptación del comportamiento colectivo conlleve
a realizar movimientos en los que los búfalos cambian de
posición entre diferentes soluciones discretas según las mejores
posiciones observadas. Esto permite que el algoritmo explore y
explote el espacio de soluciones factibles de manera eficiente
para la naturaleza discreta del problema.

De cierta forma su funcionamiento inicia al igual que en
el ABO original, (Odili, Mohd Nizam, & Shahid, 2015). Se
genera un conjunto inicial de soluciones, después se evalúa el
desempeño de cada solución con base en su calidad con
respecto al objetivo del problema. En cada iteración las

soluciones se mueven en el espacio de búsqueda, tomando en
cuenta la calidad de las soluciones colindantes y, así mismo,
la comunicación entre las soluciones les permite compartir
información sobre los puntos prometedores en el espacio
discreto, lo cual les ayuda a moverse hacia soluciones
potencialmente mejores, el algoritmo se detiene cuando se
alcanza un número máximo de iteraciones o cuando se logra
una solución satisfactoria que cumple con los requisitos del
problema. La explotación del espacio de soluciones se realiza
mediante la Ecuación con la que se actualiza el fitness de cada
búfalo, mientras que con la Ecuación se realiza la
exploración. Con los valores de fitness de cada nueva
posición se determina el nuevo mejor búfalo o solución para
la siguiente iteración.

En la Ecuación (17), , y son factores de 𝑙𝑝1 𝑙𝑝2 𝑙𝑝3

aprendizaje. A diferencia del ABO original, el término
 se introduce para representar el mecanismo de 𝑙𝑝3(𝑏𝑟 − 𝑤

𝑘
)

aprendizaje aleatorio, donde es un búfalo o solución 𝑏𝑟
seleccionada de manera aleatoria de la manada actual,
(Barragan-Vite, et al., 2023), (Jiang, Zhu, & Deng, 2020).

Para discretizar las soluciones se emplean las Ecuaciones
 y , en las que se realizan operaciones de cruza y (19) (20)

mutación de acuerdo a las Ecuaciones y , donde (21) (22) 𝐶𝑅
indica una operación de cruza y una operación de 𝑀𝑈
mutación. Asimismo, debe 𝑙𝑝1 + 𝑙𝑝2 + 𝑙𝑝3 = 1
satisfacerse, de tal forma que estos valores representan las
tasas de diferentes tipos de cruza, y es la tasa de mutación. λ
El símbolo indica que si se satisface la condición mostrada ⊗
se realizará la operación de cruza o de mutación del elemento
a la izquierda de o ; mientras que el símbolo indica 𝐶𝑅 𝑀𝑈 ⊕
que la operación de cruza a su izquierda tiene mayor 𝐶𝑅
prioridad, pero si su condición no se satisface se inicia el
elemento a su derecha. Por otro lado, es un número 𝑟
aleatorio en el intervalo [0,1].

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 123

En este trabajo se emplea la adaptación de la operación de

cruza ITX empleada en (Barragan-Vite, et al., 2023), la cual
se ilustra en la Figura 2 donde y son subconjuntos de 𝑆

1
𝑆

2
ítems asignados aleatoriamente tal que . Entre 𝑆

1
∩ 𝑆

2
= ∅

paréntesis se muestra la longitud correspondiente al ítem de
acuerdo a la instancia de la Figura 1. Por otra parte, la
operación de mutación se realiza con la operación swap, es
decir, se intercambian entre sí de manera aleatoria dos
posiciones de cada solución como se muestra en la Figura 3.

a) Copia de longitudes de (, respectivamente) localizadas 𝑆
1

𝑆
2

en Padre 1 (Padre 2) a Hijo 1 (Hijo 2).

b) Copia de longitudes de (, respectivamente) localizadas 𝑆
1

𝑆
2

en Padre 1 (Padre 2) a Hijo 2 (Hijo 1) en las posiciones
faltantes.

Figura 2. Operación de cruza ITX.

Figura 3. Operación de mutación swap o intercambio de dos

longitudes de ítems.

3.​ Experimentos y Resultados

El propósito de este estudio es analizar la efectividad de
las funciones objetivo descritas en la Sección 2 cuando se
emplean como funciones fitness en el DABO-1DCSP, y
determinar cuál o cuáles producen un mejor desempeño del
algoritmo. Se plantean dos escenarios de experimentos. El
primer escenario consiste en un grupo de diez instancias con
complejidad variable (número de ítems,), donde el largo de 𝑛
los stocks también es variable. En este escenario se empleó el
método de Taguchi para ajustar los valores de los parámetros
de ejecución del algoritmo como se mostró en (Jiang, Zhu, &
Deng, 2020). El ajuste se realizó con cada una de las
funciones. En el segundo escenario se realizaron
experimentos con cuatro grupos de instancias denominadas
binpack1, binpack2, binpack3 y binpack4 con incremento de
complejidad. Sin embargo, el largo de los stocks es el mismo
en todos los grupos lo cual nos permite tener una mejor
comprensión del desempeño de cada función fitness. En este
escenario no se ajustaron los parámetros para la ejecución del
algoritmo, sino que se tomaron los mejores valores ajustados
de cada función fitness en el primer escenario con base en su
clasificación (Rank). Todos los experimentos se realizaron en
una computadora con procesador Intel(R) Core(TM)
i5-1035G1 CPU @ 1.00GHz 1.20 GHz y RAM de 8GB. El
DABO-1DCSP fue codificado en Python3.11.1. El código del
DABO-1DCSP con el que se realizaron las pruebas se puede
encontrar en
https://github.com/viteib/articulo_AcevedoMendoza.git.

3.1 Experimentos y resultados del escenario uno.

En este escenario se probaron las tres funciones , 𝐹𝑂1
 y descritas en la Sección 2 con el DABO-1DCSP 𝐹𝑂2 𝐹𝑂3

en un conjunto de diez instancias tomadas de (Liang, Yao,
Newton, & Hoffman, 2002). Esto es, cada función se empleó
de manera independiente como la función fitness que guía la
búsqueda de la mejor solución o la solución óptima. Los
datos necesarios de las instancias se muestran en la Tabla 1,
de donde puede observarse que varían en complejidad
(número de ítems,). Además, la columna cuatro muestra el 𝑛
número de ítems diferentes () en todas las instancias, así 𝑛

𝑑𝑖𝑓
como la variabilidad entre la instancia con el menor número
de ítems y la instancia con el mayor número de ítems,
expresada como desviación estándar (D. E.).

Tabla 1: Conjunto de instancias de prueba del primera fase.

Instancia 𝑛 𝐿 (D. E.) 𝑛
𝑑𝑖𝑓

1a 20 14

4 (10.55)

2a 50 15
3a 60 25
4a 60 25
5a 126 4300
6a 200 86
7a 200 120
8a 400 120
9a 400 120
10a 600 120

Los valores de los parámetros se ajustaron mediante el

método de Taguchi con el diseño para seis 𝐿
25

56()

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 124

parámetros con cinco niveles cada uno, los cuales se muestran
en la Tabla 2, donde representa el life span para el 𝑙𝑠
procedimiento de re-inicialización del búfalo que alcance este
valor a lo largo de las iteraciones. Los experimentos para el
ajuste se realizaron con base en la instancia 6a como un punto
medio en la complejidad de las instancias de la Tabla 1 y el
valor de respuesta usado fue el promedio de diez corridas con
cada una de las medidas de desempeño de las funciones
objetivo , y , correspondientemente. El arreglo 𝐹𝑂1 𝐹𝑂2 𝐹𝑂3
ortogonal para el diseño experimental se empleó tal como se
describe en (Barragan-Vite, et al., 2023). Los resultados de
respuesta para medias del método de Taguchi para cada una
de las funciones , y , se muestran en las Tablas 𝐹𝑂1 𝐹𝑂2 𝐹𝑂3
3, 4 y 5, respectivamente. Los resultados de la Tabla 4 se han
replicado del trabajo de (Barragan-Vite, et al., 2023).

Tabla 2: Diseño experimental para el ajuste de los parámetros del
DABO-1D-CSP de la fase 1 de experimentos.

Factor
(Parámetro)

Nivel
1

Nivel
2

Nivel
3

Nivel
4

Nivel
5

Población 80 100 120 150 200
Número de
iteraciones 500 600 800 1000 1500

 𝑙𝑝1 0.1 0.2 0.3 0.4 0.5
 𝑙𝑝2 0.1 0.2 0.3 0.4 0.5

 λ 0.05 0.1 0.15 0.2 0.25
 𝑙𝑠 5 10 15 20 25

Tabla 3: Respuesta para medias y clasificación (Rank) de los
factores para (desperdicio total). 𝐹𝑂1
Nivel Pob. Núm.

iter.
 𝑙𝑝1 𝑙𝑝2 λ 𝑙𝑠

1 797.9 796.2 772.1 765.2 806.5 756.6
2 789.3 779.0 761.8 772.1 772.1 777.2
3 754.9 765.2 768.6 775.5 773.8 779.0
4 772.1 754.9 792.7 775.5 760.0 787.6
5 754.9 773.8 773.8 780.7 756.6 768.6

Delta 43.0 41.3 31.0 15.5 49.9 31.0
Rank 2 3 5 6 1 4

Tabla 4: Respuesta para medias y clasificación (Rank) de los
factores para (stocks usados). 𝐹𝑂2
Nivel Pob. Núm.

iter.
 𝑙𝑝1 𝑙𝑝2 λ 𝑙𝑠

1 87.20 86.98 86.80 86.84 87.04 86.70
2 86.92 86.98 86.70 86.92 86.86 86.90
3 86.56 86.84 86.82 86.72 86.64 86.54
4 86.50 86.68 86.72 86.54 86.62 87.00
5 86.68 86.38 86.82 86.84 86.70 86.72

Delta 0.70 0.60 0.12 0.38 0.42 0.46
Rank 1 2 6 5 4 3

Tabla 5: Respuesta para medias y clasificación (Rank) de los
factores para (stocks usados y desperdicio). 𝐹𝑂3
Nivel Pob. Núm.

iter.
 𝑙𝑝1 𝑙𝑝2 λ 𝑙𝑠

1 0.2059 0.2060 0.2275 0.1863 0.2035 0.1902
2 0.2007 0.2082 0.2139 0.1961 0.1934 0.1905
3 0.1884 0.2008 0.1903 0.1981 0.1889 0.2022
4 0.1956 0.1766 0.1704 0.2031 0.1956 0.1937
5 0.1842 0.1832 0.1728 0.1913 0.1934 0.1982

Delta 0.0217 0.0316 0.0572 0.0168 0.0146 0.0121
Rank 3 2 1 4 5 6

Con base en los resultados del método de Taguchi, se
seleccionaron los valores de los parámetros que se muestran
en la Tabla 6 para cada una de las funciones fitness. Los
resultados de los experimentos con cada una de las funciones
fitness se muestran en la Tabla 7. Se realizaron 50 ejecuciones
con cada una de las funciones. Los valores en negrita indican
el resultado mínimo entre las funciones comparadas.

Tabla 6: Valores seleccionados de los parámetros para cada
función fitness para los experimentos del escenario uno.
Función Pob. Núm. iter. 𝑙𝑝1 𝑙𝑝2 λ 𝑙𝑠

 𝐹𝑂1 120 1000 0.2 0.1 0.25 15
 𝐹𝑂2 150 1500 0.2 0.2 0.2 15
 𝐹𝑂3 200 1000 0.4 0.1 0.15 5

Tabla 7: Resultados de Stock Promedio () con la ejecución del 𝑆
DABO-1DCSP con las diferentes funciones fitness.

Instancia
 𝐹𝑂1 𝐹𝑂2 𝐹𝑂3

 𝑆 𝑆 𝑆
1a 9 9 9
2a 23.94 23.96 23.4
3a 16 16 15.96
4a 19.94 19.96 19.64
5a 55.76 55.68 55.7
6a 87.52 87.68 88.2
7a 74.82 74.8 74.8
8a 161.08 161.1 162.58
9a 168.88 169.08 170.52
10a 245.78 245.54 249.22

De la Tabla 7 se observa que la ejecución del

DABO-1DCSP con la función obtiene el mejor stock 𝐹𝑂3
promedio en seis de las diez instancias. En segundo lugar, la
función que considera solamente el desperdicio, obtiene 𝐹𝑂1
mejores resultados en cuatro de las diez instancias, mientras
que la solamente obtiene mejores resultados en tres de 𝐹𝑂2
las diez instancias. No obstante, aunque la función 𝐹𝑂3
resuelve más instancias, la diferencia con los resultados con
las otras dos funciones es muy pequeña. La función 𝐹𝑂1
logra resolver mejor instancias de mayor complejidad, es
decir, entre 200 y 400 ítems. En la Tabla 8 se muestran los
tiempos computacionales obtenidos con cada una de las
funciones con los que se lograron sus mejores resultados de
stock promedio. La función obtiene tiempos ligeramente 𝐹𝑂3
superiores a los de las otras dos funciones, particularmente
donde las tres funciones logran resultados similares o iguales,
como en las instancias 1a y 7a. La ligera superioridad en
tiempo de la función puede atribuirse a su propia 𝐹𝑂3
evaluación en cada iteración, ya que se consideran dos
términos en la función.

Tabla 8: Resultados de tiempo promedio con la ejecución del 𝑇
DABO-1DCSP con las diferentes funciones fitness.

Instancia
 𝐹𝑂1 𝐹𝑂2 𝐹𝑂3

 𝑇 𝑇 𝑇
1a 210.6 216.95 213.9
2a 378.7 362.98 418.5
3a 342.9 337.4 383.4
4a 362.9 361.6 376.2
5a 724.6 711.8 716.5
6a 1112.9 1079.1 1105.8
7a 1023.7 996.2 991.9

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 125

8a 2208.0 2127.7 2142.9
9a 2216.3 2182.3 2216.1
10a 3347.6 3285.5 3221.6

La Figura A1 del apéndice A muestra las gráficas de

convergencia de las funciones , y para cada 𝐹𝑂1 𝐹𝑂2 𝐹𝑂3
una de las instancias de la Tabla 1. La comparación se realizó
para las primeras 1000 iteraciones en la ejecución de cada
función. Se observa que la función converge de manera 𝐹𝑂3
más rápida que las funciones y en intancias de baja 𝐹𝑂1 𝐹𝑂2
y moderada complejidad (instancias 1a a 4a), pero en
instancias de alta complejidad la función tiene un 𝐹𝑂3
marcado menor desempeño que las otras dos funciones. Las
funciones y tienen un comportamiento muy similar 𝐹𝑂1 𝐹𝑂2
a lo largo de las instancias, siendo la función las función 𝐹𝑂1
ligeramente mejor que la función . Debido a que la 𝐹𝑂2
función tuvo mejores resultados de Stock Promedio, en 𝐹𝑂3
la Tabla 9 se muestra su comparación con los algoritmos
ABO-1DCSP y ABO-CSP, que son otras implementaciones
recientes del ABO para resolver el 1D-CSP. Los resultados
del algoritmo ABO-1DCSP se tomaron de (Montiel-Arrieta,
et al., 2023) y los resultados del ABO-CSP, de
(Montiel-Arrieta, Barragan-Vite, Hernandez-Romero, &
Gonzalez-Hernandez, 2022). El algoritmo ABO-CSP emplea
en su función objetivo únicamente el número de stocks
usados, mientras que el algoritmo ABO-1DCSP emplea el
desperdicio total. Ambos algoritmos usan el método de
discretización Ranked Order Value. El algoritmo ABO-CSP
reinicializa la población de búfalos (soluciones) cada diez
iteraciones. El algoritmo ABO-1DCSP realiza un
procedimiento adicional antes de reinicializar la población,
que consiste en formar un nuevo con base en las 𝑏𝑔𝑚𝑎𝑥
mejores soluciones de la última iteración antes de la reiniciar
toda la población. La comparación de los resultados muestra
que el ABO-1DCSP obtiene los mejores resultados en todas
las instancias bajo prueba. Solamente en la instancia 1a el
algoritmo DABO-1DCSP con la función iguala al 𝐹𝑂3
resultado del ABO-1DCSP. Sin embargo, el DABO-1DCSP-

 supera ligeramente al ABO-CSP en todas las instancias, 𝐹𝑂3
aunque las diferencias entre las soluciones no son muy
marcadas.

Tabla 9: Comparación del Stock Promedio con otras 𝑆
implementaciones del algoritmo ABO.

Instancia
DABO-1DCS

P- 𝐹𝑂3
ABO-CSP ABO-1DCSP

 𝑆 𝑆 𝑆
1a 9 9.26 9
2a 23.4 24.52 23
3a 15.96 16 15
4a 19.64 20 19
5a 55.7 56.62 53
6a 88.2 89.46 79.08
7a 74.8 75.62 68
8a 162.58 162.76 144.9
9a 170.52 172.4 150
10a 249.22 250.4 217.2

3.2 Experimentos y resultados del escenario dos

Los experimentos del segundo escenario se realizaron con
un conjunto de cuatro grupos de instancias denominadas

binpack1, binpack2, binpack3 y binpack4. Estas instancias
usan una misma longitud del stock, pero la complejidad
incrementa en los grupos de instancias, como se muestra en la
Tabla 10.

Tabla 10: Detalles de las instancias de prueba del escenario dos.
Grupo de
instancias

Núm. de
intancias

 𝑛 𝐿 (D. E.) 𝑛
𝑑𝑖𝑓

binpack1

20

120

150

11 (2.71)
binpack2 250 8 (2.14)
binpack3 500 2 (0.40)
binpack4 1000 1 (0)

Para la ejecución del DABO-1DCSP, los valores de los

parámetros fueron seleccionados de los resultados del método
de Taguchi obtenidos en el escenario uno para cada función
objetivo de acuerdo a la clasificación (Rank) mínima de cada
parámetro. Por ejemplo, el parámetro de Población tuvo un

 en los resultados de , un para 𝑅𝑎𝑛𝑘 = 2 𝐹𝑂1 𝑅𝑎𝑛𝑘 = 1 𝐹𝑂2
y un , para , por lo que para los experimentos 𝑅𝑎𝑛𝑘 = 3 𝐹𝑂3
se seleccionó una Población de 150. De las misma manera se
obtuvieron los valores del resto de los parámetros. Estos
valores se muestran en la Tabla 11. Los resultados para el
stock promedio se muestran en las Tablas B1 a B4 del
Apéndice B. También se muestra el óptimo teórico de cada
instancia en la segunda columna de cada tabla de resultados,
donde este valor se calcula con la Ecuación (23).

 𝑂𝑝𝑡. = ⌈ 𝑖=1

𝑚

∑ 𝑙
𝑖
𝑑

𝑖

𝐿 ⌉ (23)

Los resultados del segundo escenario muestran que la

función es adecuada para resolver todas las instancias 𝐹𝑂3
desde binpack1 hasta binpack4. La función sobresale de 𝐹𝑂3
manera muy evidente para resolver las intancias de estos
grupos, a pesar de que la complejidad incrementa de manera
muy marcada. No obstante, ninguna de las funciones muestra
tener resultados cercanos al valor óptimo teórico de las
instancias bajo prueba. La función tiene los porcentajes 𝐹𝑂3
más cercanos al valor óptimo teórico, apenas superando el
10% en las instancias de binpack4; aunque se desearía que
fueran menores al 1% como otros algoritmos logran obtener.

En los resultados de los dos escenarios puede observarse
que la función puede verse afectada por la variabilidad 𝐹𝑂3
en el número de items diferentes, ya que a pesar de que
existen instancias en ambos escenarios con una cantidad de
items similar, la variabilidad (D. E.) de ítems diferentes en el
escenario uno es mucho mayor que en las instancias del
escenario dos.

Tabla 11: Valores seleccionados de los parámetros para las
funciones fitness para los experimentos del escenario dos.

Pob. Núm. iter. 𝑙𝑝1 𝑙𝑝2 λ 𝑙𝑠
150 1000 0.4 0.1 0.25 15

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 126

4.​ Conclusiones

Resolver problemas como el 1D-CSP de manera eficiente
tiene beneficios importantes para las empresas, como la
reducción de costos de material, disminución de residuos
optimización del tiempo de producción y una mejor gestión
de recursos, además desde una perspectiva ambiental,
optimizar los problemas de corte contribuye a la
sostenibilidad al minimizar el desperdicio y promover el uso
eficiente de los materiales. En este trabajo se utilizó el
DABO-1DCSP para resolver el 1D-CSP utilizando tres
funciones objetivo que minimizan el desperdicio, el número
de stocks usados o ambas métricas de manera conjunta. El
propósito fue determinar con qué tipo de función es más
efectivo el DABO-1DCSP. Los resultados de dos escenarios
desarrollados muestran que las funciones con una sola medida
de desempeño son más efectivas con instancias de moderada
y alta complejidad, mientras que la función con dos medidas
de desempeño es idónea para instancias de baja, media y alta
complejidad, en términos generales, aunque la diversidad en
el tipo ítems puede afectar su desempeño.

En conclusión, el presente documento ofrece un análisis
exhaustivo del problema de corte unidimensional, destacando
al Algoritmo Discreto del Búfalo Africano como una
herramienta innovadora en el campo de la optimización
industrial. La evaluación de las funciones objetivo
(minimización del desperdicio, reducción del uso de stocks y
su combinación), permite concluir que la combinación de las
dos funciones con un único objetivo es más efectiva en la
solución del problema 1DCSP aunque su desempeño se aleja
un poco más de los valores óptimos teóricos cuando la
cantidad de los ítems se incrementa y su heterogeneidad
disminuye. Por lo tanto, este estudio no solo profundiza en la
comprensión teórica y la aplicabilidad práctica del DABO en
problemas combinatorios, sino que también fortalece su
utilidad al integrar ajustes y estrategias adaptativas orientadas
a mejorar su desempeño. Los hallazgos obtenidos aportan
contribuciones significativas tanto al ámbito teórico como a la
implementación práctica en la resolución de problemas
industriales de alta complejidad. En un trabajo futuro se
planea explorar otros procedimientos de cruza y mutación, así
como de reinicio de la manada que pudieran mejorar el
desempeño del DABO-1DCSP con el uso de la función , 𝐹𝑂3
y al mismo tiempo ampliar las comparaciones mediante un
conjunto más grande de instancias y con algoritmos diferentes
al ABO o basados en otro tipo de dinámica de búsqueda.

Referencias

Barragan-Vite, I., Montiel-Arrieta, L. J., Seck-Tuoh-Mora, J. C.,

Hernandez-Romero, N., & Medina-Marin, J. (2023).
Algoritmo discreto del búfalo africano para resolver el
problema de corte de material de una dimensión. Pädi:
Boletín Científico de Ciencias Básicas e Ingenierías del
ICBI, 123-132.

Odili, J. B., Mohd Nizam, K. M., & Shahid, A. (2015). African

Buffalo Optimization: A Swarm-Intelligence Technique.
2015 IEEE International Symposium on Robotics and
Intelligent Sensors (IRIS 2015) (pp. 443-448). Malaysia:
Elsevier B. V.

Jiang, T., Zhu, H., & Deng, G. (2020). Improved African buffalo

optimization algorithm for the green flexible job shop
scheduling problem considering energy consumption.
Journal of Intelligent & Fuzzy Systems, 4573-4589.

Liang, K.-H., Yao, X., Newton, C., & Hoffman, D. (2002).

Anewevolutionaryapproachtocuttingstockproblems with
and without contiguity . Computers & Operations
Research, 1641-1659.

Montiel-Arrieta, L. J., Barragan-Vite, I., Seck-Tuoh-Mora, J. C.,

Hernandez-Romero, N., & Gonzalez-Hernandez, M.
(2023). Minimizing the total waste in the one-dimensional
cutting stock problem with the African buffalo
optimization algorithm. PeerJ Computer Science, e1728.

Montiel-Arrieta, L. J., Barragan-Vite, I., Hernandez-Romero, N., &

Gonzalez-Hernandez, M. (2022). Algoritmo del búfalo
africano para resolver el problema de corte
unidimensional. Pädi Boletín Científico de Ciencias
Básicas e Ingenierías del ICBI, 1-8.

Wäscher, G., Hausner, H., & Schumann, H. (2007). An improved

typology of cutting and packing problems. European
Journal of Operational Research, 183, 1109-1130.

Kantorovich, L. V. (1960). Mathematical methods of organizing and

planning production. Management science, 6(4), 366-422.

Hassler, R. (1975). Control de cambios en el patron de corte en

problemas de corte unidimensionales . Investigación de
operaciones.

Farley, A., & Richardson, K. (1984). Problemas de carga fija con

cargas fijas idénticas. Revista Europea de Investigación
Operativa .

Foerster, H., & Wäscher, G. (2000). Pattern reduction in

one-dimensional cutting stock problems. International
Journal of Production Research, 38(7), 1657-1676.

Umetani, S., Yagiura, M., & Ibaraki, T. (2003). Una búsqueda local

basada en LP para el problema de corte unidimensional
utilizando un número dado de patrones de corte. IEICE
Transactions on Fundamentals of Electronics,
Communications and Computer Sciences.

Lee, J. (2007). Generación de columnas in situ para un problema de

material de corte. Computer & Operations Research.

Alves, C., & de Carvalho, J. (2008). A branch-and-price-and-cut

algorithm for the pattern minimization problem.

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 127

ALIO/EURO V Conference on Combinatorial
Optimization. (pp. 435-453). Paris: EDP Sciences.

Alves, C., Macedo, R., & de Carvalho, J. V. (2009). New lower

bounds based on column generation and constraint
programming for the pattern minimization problem.
Computers & Operations Research, 36(11), 2944-2954.

Gherboudj, A. (2018). Two discrete binary versions of African

Buffalo Optimization metaheuristic. ACSIT, ICITE, SIPM -
2018 (pp. 33-46). Academy & Industry Research
Collaboration Center (AIRCC).

Zhou, H., Jiang, T., & Wang, Y. (2020). Discrete African Buffalo

Optimization Algorithm for the Low-carbon Flexible Job
Shop Scheduling Problem. Journal of Advanced
Manufacturing Systems, 9(4), 837-854.

Kolen, A. W., & Spieksma, F. C. (2000). Solving a bi-criterion

cutting stock problem with open-ended demand: a case
study. Journal of the Operational Research Society,
1238-1247.

Singh, P., Meena, N. K., Slowik, A., & Bishnoi, S. K. (2020).
Modified African Buffalo Optimization for Strategic
Integration of Battery Energy Storage in Distribution
Networks. IEEE Access, 14289-14301.

Sarper, H., & Jaksic, N. I. (2019). Simulation of the stochastic

one-dimensional cutting stock problem Simulation of the
stochastic one-dimensional cutting stock problem to
minimize the total inventory cost. 29th International
Conference on Flexible Automation and Intelligent
Manufacturing (pp. 24-28). Limerick: Elsevier.

Sa Santos, J. V., & Nepomuceno, N. (2022). Computational

Performance Evaluation of Column Generation and
Generate-and-Solve Techniques for the One-Dimensional
Cutting Stock Problem. Algorithms, 15, 394.

Vanderbeck, F. (2000). Exact Algorithm for Minimising the Number

of Setups in the One-Dimensional Cutting Stock Problem.
Operations Research, 48(6), 915-926.

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 128

Apéndice A. Gráficas de convergencia de los experimentos del escenario uno

a) Instancia 1a

b) Instancia 2a

c) Instancia 3a

d) Instancia 4a

e) Instancia 5a

f) Instancia 6a

g) Instancia 7a

h) Instancia 8a

i) Instancia 9a

j) Instancia 10a

Figura A1: Gráficas de convergencia de las funciones fitness para las instancias de los experimentos del escenario uno.

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 129

Apéndice B. Resultados de las instancias de los experimentos del escenario dos

Tabla B1: Resultados de Stock Promedio () para las instancias binpack1. 𝑆

Instancia Opt.
 𝐹𝑂1

%>Opt.
 𝐹𝑂2

%>Opt.
 𝐹𝑂3

%>Opt.
 𝑆 𝑆 𝑆

u120_00 48 52.4 9.17 52.48 9.33 49.56 3.25
u120_01 49 53.06 8.29 53.08 8.33 49.92 1.88
u120_02 46 50.12 8.96 50.06 8.83 47.38 3.00
u120_03 49 54.04 10.29 53.88 9.96 50.8 3.67
u120_04 50 54.32 8.64 54.28 8.56 51.4 2.80
u120_05 48 52.64 9.67 52.4 9.17 49.8 3.75
u120_06 48 52.52 9.42 52.54 9.46 49.52 3.17
u120_07 49 53.72 9.63 53.9 10.00 50.72 3.51
u120_08 50 55.3 10.60 55.4 10.80 52.02 4.04
u120_09 46 50.68 10.17 50.44 9.65 47.98 4.30
u120_10 52 56.92 9.46 57.04 9.69 53.8 3.46
u120_11 49 53.6 9.39 53.54 9.27 50.72 3.51
u120_12 48 52.78 9.96 52.78 9.96 50.04 4.25
u120_13 49 53.12 8.41 53.08 8.33 50.1 2.24
u120_14 50 54.34 8.68 54.48 8.96 51.36 2.72
u120_15 48 52.66 9.71 52.6 9.58 49.86 3.88
u120_16 52 56.94 9.50 56.92 9.46 53.84 3.54
u120_17 52 56.96 9.54 57.02 9.65 53.94 3.73
u120_18 49 53.5 9.18 53.36 8.90 50.38 2.82
u120_19 49 54.16 10.53 53.96 10.12 51.0 4.08

El valor en negrita indica el mejor resultado obtenido entre las funciones comparadas.

Tabla B2: Resultados de Stock Promedio () para las instancias binpack2. 𝑆

Instancia Opt.
 𝐹𝑂1

%>Opt.
 𝐹𝑂2

%>Opt.
 𝐹𝑂3

%>Opt.
 𝑆 𝑆 𝑆

u250_00 99 110.06 11.17 110.2 11.31 104.94 6.00
u250_01 100 110.98 10.98 110.9 10.90 105.6 5.60
u250_02 102 113.66 11.43 113.64 11.41 108.22 6.10
u250_03 100 110.74 10.74 110.82 10.82 105.52 5.52
u250_04 101 112.4 11.29 112.16 11.05 106.92 5.86
u250_05 101 113.0 11.88 112.9 11.78 107.32 6.26
u250_06 102 112.94 10.73 113.08 10.86 107.42 5.31
u250_07 103 115.7 12.33 115.66 12.29 109.82 6.62
u250_08 105 117.12 11.54 117.32 11.73 111.7 6.38
u250_09 101 112.46 11.35 112.0 10.89 106.96 5.90
u250_10 105 117.04 11.47 117.16 11.58 111.28 5.98
u250_11 101 112.96 11.84 112.74 11.62 107.16 6.10
u250_12 105 117.86 12.25 117.8 12.19 112.06 6.72
u250_13 102 114.1 11.86 114.26 12.02 108.72 6.59
u250_14 100 110.78 10.78 110.76 10.76 105.84 5.84
u250_15 105 117.7 12.10 117.36 11.77 111.9 6.57
u250_16 97 107.64 10.97 107.62 10.95 102.82 6.00
u250_17 100 110.94 10.94 110.68 10.68 105.3 5.30
u250_18 100 111.42 11.42 111.46 11.46 106.08 6.08
u250_19 102 113.3 11.08 113.36 11.14 107.48 5.37

El valor en negrita indica el mejor resultado obtenido entre las funciones comparadas.

 E. F. Acevedo-Mendoza et al. / Publicación Semestral Pädi Vol. 13 No. 26 (2026) 119–130 130

Tabla B3: Resultados de Stock Promedio () para las instancias binpack3. 𝑆

Instancia Opt.
 𝐹𝑂1

%>Opt.
 𝐹𝑂2

%>Opt.
 𝐹𝑂3

%>Opt.
 𝑆 𝑆 𝑆

u500_00 198 222.96 12.61 222.96 12.61 214.88 8.53
u500_01 201 227.04 12.96 226.48 12.68 218.02 8.47
u500_02 202 227.42 12.58 227.56 12.65 218.94 8.39
u500_03 204 231.28 13.37 231.4 13.43 222.22 8.93
u500_04 206 232.36 12.80 232.32 12.78 223.84 8.66
u500_05 206 232.58 12.90 232.8 13.01 223.66 8.57
u500_06 207 234.24 13.16 233.9 13.00 225.5 8.94
u500_07 204 230.68 13.08 231.08 13.27 222.56 9.10
u500_08 196 220.44 12.47 220.76 12.63 212.04 8.18
u500_09 202 227.08 12.42 227.24 12.50 218.6 8.22
u500_10 200 224.6 12.30 224.74 12.37 216.62 8.31
u500_11 200 226.14 13.07 226.2 13.10 217.62 8.81
u500_12 199 224.48 12.80 224.12 12.62 215.82 8.45
u500_13 196 220.48 12.49 220.54 12.52 212.38 8.36
u500_14 204 229.92 12.71 229.86 12.68 221.34 8.50
u500_15 201 225.44 12.16 225.72 12.30 217.54 8.23
u500_16 202 227.58 12.66 227.52 12.63 218.56 8.20
u500_17 198 223.2 12.73 222.94 12.60 214.32 8.24
u500_18 202 227.6 12.67 227.76 12.75 219.18 8.50
u500_19 196 220.94 12.72 220.6 12.55 213.62 8.99

El valor en negrita indica el mejor resultado obtenido entre las funciones comparadas.

Tabla B4: Resultados de Stock Promedio () para las instancias binpack4. 𝑆

Instancia Opt.
 𝐹𝑂1

%>Opt.
 𝐹𝑂2

%>Opt.
 𝐹𝑂3

%>Opt.
 𝑆 𝑆 𝑆

u1000_00 399 455.5 14.16 455.74 14.22 444.34 11.36
u1000_01 406 464.24 14.34 464.42 14.39 453.66 11.74
u1000_02 411 470.92 14.58 470.16 14.39 458.94 11.66
u1000_03 411 470.78 14.55 470.9 14.57 459.68 11.84
u1000_04 397 452.94 14.09 452.66 14.02 441.36 11.17
u1000_05 399 456.38 14.38 456.18 14.33 445.76 11.72
u1000_06 395 450.36 14.02 450.4 14.03 439.92 11.37
u1000_07 404 461 14.11 460.82 14.06 449.7 11.31
u1000_08 399 456.16 14.33 456.46 14.40 445.52 11.66
u1000_09 397 453.98 14.35 454.06 14.37 443.78 11.78
u1000_10 400 456.82 14.21 456.86 14.22 446.02 11.51
u1000_11 401 457.42 14.07 457.58 14.11 446.66 11.39
u1000_12 393 448.08 14.02 447.12 13.77 436.82 11.15
u1000_13 396 450.66 13.80 450.64 13.80 440.04 11.12
u1000_14 394 449.08 13.98 448.96 13.95 438.18 11.21
u1000_15 402 459.98 14.42 460.24 14.49 449.8 11.89
u1000_16 404 462.38 14.45 462 14.36 451.16 11.67
u1000_17 404 463.5 14.73 463.36 14.69 452.5 12.00
u1000_18 399 454.84 13.99 455.78 14.23 445.06 11.54
u1000_19 400 456.48 14.12 457.02 14.26 446 11.50

El valor en negrita indica el mejor resultado obtenido entre las funciones comparadas.

	

