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Resumen

El documento aborda el problema de corte unidimensional que consiste en cortar objetos pequefios o items de piezas
grandes de material o stocks. A lo largo del tiempo, se han desarrollado diversos modelos basados en programacion lineal y
estrategias para abordar este problema, que van desde métodos exactos hasta algoritmos heuristicos, metaheuristicos e
hibridos. En este estudio se evalta la efectividad del Algoritmo Discreto del Bufalo Africano con tres diferentes funciones
objetivo. La primera funcion considera minimizar el desperdicio; la segunda, el nimero de stocks usados y la tercera es una
combinacion de las dos anteriores. Se realizaron experimentos bajo dos escenarios con instancias de diferente complejidad y
caracteristicas. Los resultados muestran que las funciones con una sola medida de desempefio son adecuadas para una
complejidad moderada y alta, mientras que la funcién con dos medidas de desempeiio es idonea para cualquier complejidad,
pero es sensible a la heterogeneidad de los items.

Palabras Clave: Problema de corte, Algoritmo del Bufalo Africano, Programacion Lineal, Algoritmos Heuristicos.
Abstract

The document addresses the one-dimensional cutting stock problem which consists in cutting small objects or items
from large pieces of material or stocks. Over time, various linear programming models have been developed and strategies to
tackle this problem, ranging from exact methods, to heuristic algorithms, metaheuristics, and hybrid methods. In this study the
effectiveness of the Discrete African Buffalo Algorithm is evaluated with three objective functions. The first function considers
the minimization of waste; the second one, the number of stocks used, and the third one is a combination of the first two
functions. Experiments were conducted under two scenarios with instances of different complexity and features. Results show
that the functions with one performance measure are suitable for moderate and high complexity while the function with two
performance measures is suitable for any type of complexity but it is sensible to the heterogeneity of the items.

Keywords: Cutting Stock Problem, African Buffalo Algorithm, Linear Programming, Heuristic Algorithms.

1. Introduccion enfocarse Unicamente en la minimizacion del desperdicio de

material como objetivo principal, ya que este objetivo

El problema de corte es una clase de problemas de
optimizacion vinculados a la produccion industrial y a la
gestion de materiales. Actualmente, es uno de los problemas
de optimizacidon mas estudiados, y las empresas se enfrentan
al reto de cortar materiales de gran tamafio, como papel,
vidrio, madera o acero, en piezas mas pequeflas para
responder a una demanda especifica. Su meta principal es
satisfacer esta demanda empleando la menor cantidad de
material posible o reduciendo el desperdicio al minimo. En
ciertos problemas del mundo real, no resulta adecuado
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impacta solo una parte de los costos totales involucrados en el
proceso de corte, como el costo de la compra de material, el
costo de almacenamiento, la gestion de inventario, el uso de
maquinaria y de mano de obra, que pueden ser impactados
por objetivos como el ntimero de rollos o placas de material
comprados, o bien la reutilizacién de material.

Este trabajo aborda una variante unidimensional del
problema de corte (1D-CSP, One-dimensional Cutting Stock
Problem), especificamente aquella en la que se utiliza una
unica pieza de material o stock, segiin la clasificacion de
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(Wischer, Hausner, & Schumann, 2007). En esta variante,
todas las piezas a cortar, o items, se obtienen de un Gnico tipo
de stock, lo que implica que las piezas de stock empleadas
tienen las mismas dimensiones (largo L y ancho W).
Ademas, tanto el stock como los items comparten el mismo
ancho, aunque estos ltimos pueden variar en longitud. Asi, el
problema se simplifica al encontrar una disposicion adecuada
de los items sobre las piezas de stock en una unica dimension,
es decir, a lo largo del stock (L).

Se considera que (Kantorovich, 1960) fue el primero en
abordar este problema, al plantear su modelo mediante
programacion lineal (PL) y emplear el método de
multiplicadores para encontrar una solucion. Después se
desarrolld una heuristica en (Hassler, 1975) para generar
patrones que incorporan de manera secuencial nuevos
patrones de corte a la solucion existente hasta cubrir
completamente la demanda. En cada iteracion, el método
elige un patréon de corte que combina una baja pérdida de
material con una alta frecuencia de uso (nimero de veces que
se aplica dicho patron). Precisamente para los problemas de
patrones se formulé un problema de minimizacion de
patrones de corte en (Farley & Richardson, 1984) como un
problema de carga fija, aplicando el método simplex para
sustituir las variables basicas, correspondientes a los patrones
de corte, por variables excedentes, con el objetivo de
disminuir la cantidad de patrones utilizados. En (Foerster &
Waischer, 2000) se presentd el método de solucion KOMBI,
que amplia este procedimiento al basarse en la premisa de
que, al combinar patrones de corte, la suma de las frecuencias
de los nuevos patrones debe ser igual a la suma de las
frecuencias de los patrones originales, garantizando asi que se
mantenga constante la cantidad de material de entrada. Para el
mismo afo en el trabajo de (Vanderbeck, 2000) se propuso un
método exacto para resolver el problema de minimizacioén de
patrones, formulando como un modelo de programacion
entera cuadratica. En el trabajo de (Kolen & Spieksma, 2000)
se desarrolld un algoritmo de ramificacion y acotacion
disefiado para obtener las soluciones dptimas de Pareto en un
conjunto de instancias pequefias del problema. Tres afios mas
tarde, en (Umetani, Yagiura, & Ibaraki, 2003) se propuso una
formulacion considerando un enfoque de busqueda local
iterada para minimizar la cantidad de stocks, limitando el uso
a una cantidad méaxima predefinida de patrones de corte
distintos. Este algoritmo de busqueda local explora la
vecindad generada al modificar un patrén de corte dentro del
conjunto actual, aplicando perturbaciones basadas en la
solucion dual del problema auxiliar de programacion lineal.

En (Lee, 2007) se presentd una heuristica de busqueda
local denominada CRAWLA, basada en programacion lineal
entera. Esta heuristica aborda de manera integral tanto el
problema principal como el subproblema del enfoque
tradicional de generacion de patrones, logrando un modelo
unificado que crea directamente nuevos patrones de corte.
Aunque el método destina tiempo a la generacion de nuevas
columnas, asegura que estas contribuyan a una mejora en el
modelo de programacion lineal entera, en lugar de limitarse a
la mejora continua que suele buscar el enfoque tradicional de
generacion de columnas basado en precios. Un afio mas tarde
se propuso un algoritmo de ramificacion
(branch-price-and-cut) para resolver de manera exacta el
problema de minimizacion de patrones en (Alves & de

Carvalho, 2008) y en (Alves, Macedo, & de Carvalho, 2009)
abordaron este problema utilizando la generacion de
columnas y presentaron diversas estrategias para reforzar la
formulacién planteada en su estudio. Se obtuvieron limites
inferiores de alta calidad tanto a partir del nuevo modelo de
programacion entera como de un modelo basado en
programaciéon por restricciones. De manera mas reciente
algunos estudios han abordado métodos clasicos para resolver
casos particulares del 1D-CSP como se muestra en (Sarper &
Jaksic, 2019), (Sa Santos & Nepomuceno, 2022).

El Algoritmo del Bufalo Africano (ABO) ha ganado
atencion en la literatura reciente como una técnica innovadora
dentro de los algoritmos de optimizacién inspirados en la
naturaleza. Este algoritmo, que emula el comportamiento
colectivo de los bufalos africanos en su bisqueda de recursos,
se ha actualizado y mejorado en diversos articulos, reflejando
su creciente importancia en la soluciéon de problemas
complejos en diferentes areas. Entre los articulos recientes,
las contribuciones mas destacadas han explorado la
adaptacion del Algoritmo Discreto del Bufalo Africano
(DABO) a problemas de optimizacién combinatoria cuyas
soluciones requieren ser discretas, (Zhou, Jiang, & Wang,
2020), (Jiang, Zhu, & Deng, 2020), (Gherboudj, 2018). Estas
aplicaciones han mostrado resultados prometedores al
comparar su desempefio con otros algoritmos bio-inspirados,
como el enjambre de particulas o los algoritmos genéticos,
(Montiel-Arrieta, Barragan-Vite, Seck-Tuoh-Mora,
Hernandez-Romero, & Gonzalez-Hernandez, 2023). Nuevas
variantes del ABO contintian siendo objeto de investigaciones
que expanden sus aplicaciones y refinan su funcionamiento
como en (Singh, Meena, Slowik, & Bishnoi, 2020),
consolidandose como una herramienta valiosa en el ambito de
la optimizacion. En particular, en la variante DABO se han
realizado ajustes para abordar problemas con soluciones
discretas. No obstante, en la solucion del 1D-CSP con esta
variante del ABO atin no se han explorado modificaciones
que mejoren su desempefio como el uso de funciones fitness
que permitan evaluar de manera adecuada las soluciones,
hasta el empleo de métodos de cruza o mutacion que mejoren
la eficiencia y efectividad del algoritmo.

En este sentido el presente trabajo busca mejorar la
efectividad del DABO para resolver el 1D-CSP a través de
una funcién objetivo o fitness con dos criterios para guiar la
busqueda de la mejor solucion ya que, usualmente los
estudios sobre el 1D-CSP se enfocan en el uso de un solo
criterio. En este trabajo se realiz6 un andlisis de tres funciones
objetivo para resolver el 1D-CSP. La primera considera
solamente la minimizacion de desperdicio total como se
propuso en (Montiel Arrieta, Barragan Vite, Hernandez
Romero, & Gonzilez Hernandez, 2023); la segunda,
considera solamente la minimizaciéon del numero de stocks
usados, y la tercera funciéon toma en cuenta la minimizacion
tanto el desperdicio como el numero de stocks con
desperdicio. Esto se ha planteado asi debido a que existen
soluciones en el 1D-CSP que pueden tener el minimo
desperdicio total, pero un gran niimero de stocks usados, y
viceversa. Para determinar la efectividad de las tres
funciones, se emplea un conjunto de 70 instancias de la
literatura con diferente complejidad. Estas instancias se
seleccionaron debido a que, en un primer escenario 10 de las
instancias poseen una complejidad variable con stocks de
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diferente longitud, mientras que en un segundo escenario, el
grupo restante de instancias consideran el mismo tamafio de
stock lo que permite eliminar la influencia de este factor en
los resultados y en la comparacion de las funciones objetivo.

Se determiné que la funcidon que combina tanto el
desperdicio total como el niimero de stocks usados ofrece los
mejores resultados para instancias desde baja hasta alta
complejidad, mientras que las funciones que consideran un
solo criterio, como desperdicio o numero de stocks usados en
total, arrojan buenos resultados para instancias de moderada y
alta complejidad. Los resultados obtenidos en este trabajo
contribuyen a ampliar el conocimiento sobre Ia
implementacion del DABO en la solucion del 1D-CSP, al
comparar y mostrar su desempefio con funciones fitness que
consideran un criterio o dos criterios de manera conjunta para
evaluar las soluciones y como los resultados mejoran cuando
se emplean dos criterios, lo que puede ampliarse a problemas
similares como el Binpacking Problem.

El trabajo se limita a comparar los objetivos de reduccion
del desperdicio y del uso de stocks, de manera individual y de
forma conjunta, con la implementacion del DABO para
resolver el 1D-CSP, sin explorar el uso de otros métodos de
cruza, mutacidon o reinicio de la manada. Asimismo,
solamente se realiza la comparacion del DABO con otras
implementaciones del ABO que han utilizado el mismo tipo
de instancias seleccionadas en este trabajo.

Las siguientes secciones se organizan como sigue: en la
Seccion 2 se describen los conceptos basicos sobre el
problema de corte, también sobre el algoritmo discreto del
bufalo africano con el que se desarrolla el trabajo, en el que se
implementa una funciéon de costo que considera dos medidas
de desempeilo de manera conjunta. En la Seccion 3 se
describe la metodologia para resolver el problema de corte
con los tres modelos propuestos y se presentan los resultados
obtenidos acomparfiado del analisis correspondiente.

2. Conceptos basicos

En esta seccion se proporcionan los conceptos clave del
1D-CSP asi como los modelos matematicos que usualmente
se han utilizado en la literatura en la implementacion de los
diferentes algoritmos desarrollados para resolverlo. Ademas,
se ofrecen las definiciones del DABO y los pasos para su
implementacion.

2.1. Problema de corte de una dimension

De acuerdo con la clasificacion de (Wéscher et al., 2007),
el 1D-CSP corresponde al problema de un solo stock, es
decir, todos los stocks disponibles tienen las mismas
dimensiones, ancho (W) y largo (L). Los items que se
obtienen de los stocks varian en el largo, pero el ancho es fijo
e igual al del stock. Se considera que el nimero de stocks
disponibles es ilimitado. La Figura 1 muestra un ejemplo de
un conjunto de items que deben ser obtenidos de piezas de
stock de longitud L = 10. El plan de corte consiste en usar
seis stocks para cortar todos los items requeridos, donde las
partes de color verde de los stocks indican desperdicio.

En general y de manera formal, una instancia del 1D-CSP
puede definirse por la longitud del stock L, un nimero m de

items con longitudes li y demanda di, parai = 1,2,..,m

Aunque en la literatura existen diferentes modelos
matematicos para abordar la solucion del 1D-CSP, aqui
mostramos tres modelos cuyas funciones objetivo son objeto
de estudio en este trabajo.

STOCKS

PLAN DE CORTE

| _itam _| Longitu | Demanda
hly

1

W

PATROMES DE CORTE

Figura 1. Ejemplo del 1D-CSP con tres items y el plan de corte.

2.1.1. Modelo enfocado en la minimizacion del desperdicio

El modelo (2)-(6) considera la minimizacion del
desperdicio total como funcion objetivo (FOI), donde:

mj} (1)

w—L—le ={1, 2, ..,
I i=1

yx,es la cantidad de 6rdenes del item i obtenidas del stock j.
La restriccion (2) indica que la cantidad total de piezas del
item i obtenidas de los stocks j no debe exceder su demanda,
mientras que la restriccion (3) muestra que la longitud de
cada patron de corte no debe exceder la longitud del stock,
considerando el desperdicio del patron.

m
min FO1 = ij (2)
=1
s.a.
m
inf = di! [ = {1, 2, ...,TL} (3)
j=1
n
qull +w; = Ly;, i={12,...m} 4
i=1
y; €{0,1} (5)
x;; > 0y entero (6)

2.1.2 Modelo enfocado en la minimizacion del numero de
stocks usados

Un ligero cambio en el modelo enfocado en el desperdicio
produce el modelo (7) — (11) donde la funcion objetivo (FO2)
considera el nimero total de stocks usados, el cual debe ser
minimizado.
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m
min FO2 = Zyj (7)
j=1
s.a.
m
in}' = di’ = {112; !n} (8)
j=1
Zx”li =Ly, j=1{1,2,..,m} (9)
i=1
x;; = 0y entero (11

2.1.3 Modelo enfocado en la minimizacion conjunta del
numero de stocks con desperdicio y el desperdicio total

El modelo (13) — (15) considera la minimizacion tanto del

desperdicio total como del numero de stocks con desperdicio
como se muestra en su funcién objetivo (FO3).

m m
nFO3 = — Z [ Z ) a3
min T m+ 1\ 4 L+. m 13
=1 =1

s.a.
m
qu —d, i={1,2..,n) (14)
=1
x;; = 0y entero (15)
donde:
1, siw; >0 j={1,2,..m}

V= (16)
0, en otro caso

2.2 Algoritmo Discreto del Bufalo Africano

En este estudio se retoma el trabajo de (Barragan-Vite,
Montiel-Arrieta, Seck-Tuoh-Mora, Hernandez-Romero, &
Medina-Marin, 2023) en el que se introdujo el Algoritmo
Discreto del Bufalo Africano para resolver el 1D-CSP
(DABO-1DCSP) en un espacio de busqueda discreto. El
algoritmo esta adaptado para problemas en los que las soluciones
posibles estan definidas en un conjunto finito de valores, esto
lleva a que la adaptacion del comportamiento colectivo conlleve
a realizar movimientos en los que los bufalos cambian de
posicion entre diferentes soluciones discretas seglin las mejores
posiciones observadas. Esto permite que el algoritmo explore y
explote el espacio de soluciones factibles de manera eficiente
para la naturaleza discreta del problema.

De cierta forma su funcionamiento inicia al igual que en
el ABO original, (Odili, Mohd Nizam, & Shahid, 2015). Se
genera un conjunto inicial de soluciones, después se evalua el
desempeilo de cada solucion con base en su calidad con
respecto al objetivo del problema. En cada iteracion las

soluciones se mueven en el espacio de busqueda, tomando en
cuenta la calidad de las soluciones colindantes y, asi mismo,
la comunicacion entre las soluciones les permite compartir
informacion sobre los puntos prometedores en el espacio
discreto, lo cual les ayuda a moverse hacia soluciones
potencialmente mejores, el algoritmo se detiene cuando se
alcanza un nimero maximo de iteraciones o cuando se logra
una solucion satisfactoria que cumple con los requisitos del
problema. La explotacion del espacio de soluciones se realiza
mediante la Ecuacion con la que se actualiza el fitness de cada
bufalo, mientras que con la Ecuacién se realiza la
exploracion. Con los valores de fitness de cada nueva
posicion se determina el nuevo mejor bufalo o solucidon para
la siguiente iteracion.

my + Ipl(bgmax — wy) +
lp2(bpmax, —wy) + Ip3(br —w,) (17)

M1 =

Wi + My

Wit1 = 7 (18)

En la Ecuacion (17), Ipl, Ilp2 y lp3 son factores de
aprendizaje. A diferencia del ABO original, el término
lp3(br — Wk) se introduce para representar el mecanismo de

aprendizaje aleatorio, donde br es un bufalo o solucion
seleccionada de manera aleatoria de la manada actual,
(Barragan-Vite, et al., 2023), (Jiang, Zhu, & Deng, 2020).

Para discretizar las soluciones se emplean las Ecuaciones
(19) y (20), en las que se realizan operaciones de cruza y
mutacion de acuerdo a las Ecuaciones (21) y (22), donde CR
indica una operacion de cruza y MU una operacion de
mutacion. Asimismo, Ilpl + lp2 + Ip3 =1  debe
satisfacerse, de tal forma que estos valores representan las
tasas de diferentes tipos de cruza, y A es la tasa de mutacion.
El simbolo @ indica que si se satisface la condicion mostrada
se realizara la operacion de cruza o de mutacion del elemento
a la izquierda de CR o MU; mientras que el simbolo @ indica
que la operacion de cruza CR a su izquierda tiene mayor
prioridad, pero si su condicién no se satisface se inicia el
elemento a su derecha. Por otro lado, r es un nimero
aleatorio en el intervalo [0,1].

Mysq = Ip1 @ CR (bgmax,w,) @ Ip2 @
CR(bpmax, ,w,) @ Ip3 @ CR(br,w,)
(19)
Wi+1 = A @ MU(my) (20)

CR (bgmax,wy,), sir <lIpl

—_— CR(bpmax,,wy), silpl <r <Ipl+ Ip2 @1
CR(br,wy), silpl +Ip2 <r <
Ipl1 + Ip2 + Ip3
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MU(m,), sir<a

Wis1 = (22)
my, sir= 2

En este trabajo se emplea la adaptacion de la operacion de
cruza ITX empleada en (Barragan-Vite, et al., 2023), la cual
se ilustra en la Figura 2 donde S LY S , son subconjuntos de

items asignados aleatoriamente tal que S N S , = @. Entre

paréntesis se muestra la longitud correspondiente al item de
acuerdo a la instancia de la Figura 1. Por otra parte, la
operacion de mutacion se realiza con la operacion swap, es
decir, se intercambian entre si de manera aleatoria dos
posiciones de cada solucion como se muestra en la Figura 3.

$1=(1010),2(7)} 52 =3 ()
Padre 1 Hijo 1 Hijo 2 Padre 2
7 | —| 7 5 |¢#=—| 5
5 10
5 10
10 ([——— | 10 7
5 5 |¢#=———| 5
7 | —r| 7 7
10 | —— | 10 5 |¢#=———| 5

a) Copia de longitudes de S L S 5 respectivamente) localizadas
en Padre 1 (Padre 2) a Hijo 1 (Hijo 2).

Padre 1 Hijo 2 Hijo 1 Padre 2
7 5
5 T~ 7 — 10
5 10 5 10
10 / 7 10 \ 7
5 / 5 5
7 / 10 \ 7
10 5 10 5

b) Copia de longitudes de S L S 5 respectivamente) localizadas

en Padre 1 (Padre 2) a Hijo 2 (Hijo 1) en las posiciones
faltantes.
Figura 2. Operacion de cruza ITX.

Solucién original Intercambio Solucién por mutacion
10 10 5
f 7 \ 7
5 5
-) \ - / -
10
10 10 10
7 7 7

Figura 3. Operacion de mutacién swap o intercambio de dos
longitudes de items.

3. Experimentos y Resultados

El proposito de este estudio es analizar la efectividad de
las funciones objetivo descritas en la Seccidon 2 cuando se
emplean como funciones fitness en el DABO-1DCSP, y
determinar cual o cuales producen un mejor desempeiio del
algoritmo. Se plantean dos escenarios de experimentos. El
primer escenario consiste en un grupo de diez instancias con
complejidad variable (nimero de items, n), donde el largo de
los stocks también es variable. En este escenario se empleo el
método de Taguchi para ajustar los valores de los parametros
de ejecucion del algoritmo como se mostré en (Jiang, Zhu, &
Deng, 2020). El ajuste se realizd0 con cada una de las
funciones. En el segundo escenario se realizaron
experimentos con cuatro grupos de instancias denominadas
binpackl, binpack2, binpack3 y binpack4 con incremento de
complejidad. Sin embargo, el largo de los stocks es el mismo
en todos los grupos lo cual nos permite tener una mejor
comprension del desempefio de cada funcion fitness. En este
escenario no se ajustaron los parametros para la ejecucion del
algoritmo, sino que se tomaron los mejores valores ajustados
de cada funcion fitness en el primer escenario con base en su
clasificacion (Rank). Todos los experimentos se realizaron en
una computadora con procesador Intel(R) Core(TM)
i5-1035G1 CPU @ 1.00GHz 1.20 GHz y RAM de 8GB. El
DABO-1DCSP fue codificado en Python3.11.1. El codigo del
DABO-1DCSP con el que se realizaron las pruebas se puede
encontrar en
https://github.com/viteib/articulo AcevedoMendoza.git.

3.1 Experimentos y resultados del escenario uno.

En este escenario se probaron las tres funciones FO1,
FO2 y FO3 descritas en la Seccion 2 con el DABO-1DCSP
en un conjunto de diez instancias tomadas de (Liang, Yao,
Newton, & Hoffman, 2002). Esto es, cada funcion se empled
de manera independiente como la funcion fitness que guia la
busqueda de la mejor solucién o la solucion optima. Los
datos necesarios de las instancias se muestran en la Tabla 1,
de donde puede observarse que varian en complejidad
(niimero de items, n). Ademas, la columna cuatro muestra el
nimero de items diferentes (n ” f) en todas las instancias, asi

como la variabilidad entre la instancia con el menor nimero
de items y la instancia con el mayor numero de items,
expresada como desviacion estandar (D. E.).

Tabla 1: Conjunto de instancias de prueba del primera fase.

Instancia n L n i (D.E)

la 20 14

2a 50 15

3a 60 25

4a 60 25

Sa 126 4300

6a 200 86 4(10.55)
Ta 200 120

8a 400 120

9a 400 120

10a 600 120

Los valores de los parametros se ajustaron mediante el

método de Taguchi con el disefio L2 5(56) para seis
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parametros con cinco niveles cada uno, los cuales se muestran
en la Tabla 2, donde Is representa el life span para el
procedimiento de re-inicializacion del bufalo que alcance este
valor a lo largo de las iteraciones. Los experimentos para el
ajuste se realizaron con base en la instancia 6a como un punto
medio en la complejidad de las instancias de la Tabla 1 y el
valor de respuesta usado fue el promedio de diez corridas con
cada una de las medidas de desempefio de las funciones
objetivo FO1, FO2 y FO3, correspondientemente. El arreglo
ortogonal para el disefio experimental se empleo tal como se
describe en (Barragan-Vite, et al., 2023). Los resultados de
respuesta para medias del método de Taguchi para cada una
de las funciones FO1, FO2 y FO3, se muestran en las Tablas
3, 4y 5, respectivamente. Los resultados de la Tabla 4 se han
replicado del trabajo de (Barragan-Vite, et al., 2023).

Tabla 2: Diseflo experimental para el ajuste de los parametros del
DABO-1D-CSP de la fase 1 de experimentos.

Con base en los resultados del método de Taguchi, se
seleccionaron los valores de los parametros que se muestran
en la Tabla 6 para cada una de las funciones fitness. Los
resultados de los experimentos con cada una de las funciones
fitness se muestran en la Tabla 7. Se realizaron 50 ejecuciones
con cada una de las funciones. Los valores en negrita indican
el resultado minimo entre las funciones comparadas.

Tabla 6: Valores seleccionados de los parametros para cada
funcion fitness para los experimentos del escenario uno.
Funcion Pob. Num.iter. Ipl Ip2 A ls

Fo1 120 1000 0.2 0.1 0.25 15
Fo2 150 1500 0.2 0.2 0.2 15
FO3 200 1000 0.4 0.1 0.15 5

Tabla 7: Resultados de Stock Promedio (E) con la ejecucion del
DABO-1DCSP con las diferentes funciones fitness.

Factor Nivel  Nivel Nivel Nivel  Nivel Instancia F 91 F 92 F 93
(Parametro) 1 2 3 4 5 S S S
Poblacion 80 100 120 150 200 la 9 9 9
Numero de 2a 23.94 23.96 234
iteraciones 00 600 800 10001500 3a 16 16 15.96
Ip1 0.1 0.2 0.3 0.4 0.5 4a 19.94 19.96 19.64
Ip2 0.1 0.2 0.3 0.4 0.5 Sa 55.76 55.68 55.7
A 0.05 0.1 0.15 0.2 0.25 6a 87.52 87.68 88.2
Is 5 10 15 20 25 7a 74.82 74.8 74.8
8a 161.08 161.1 162.58
9a 168.88 169.08 170.52
10a 245.78 245.54 249.22

Tabla 3: Respuesta para medias y clasificacion (Rank) de los
factores para FO1 (desperdicio total).

Nivel Pob.  Num. Ip1 Ip2 A ls
iter.
1 7979 7962 7721 7652 806.5 756.6
2 7893 779.0 761.8 772.1 7721 7772
3 7549 7652 768.6 7755 773.8 779.0
4 772.1 7549 79277 7755 760.0 787.6
5 7549 773.8 773.8 780.7 756.6 768.6
Delta 43.0 413 31.0 15.5 49.9 31.0
Rank 2 3 5 6 1 4

Tabla 4: Respuesta para medias y clasificacion (Rank) de los
factores para FO2 (stocks usados).

Nivel Pob.  Num. Ip1 Ip2 A ls
iter.
1 8720 8698 86.80 86.84 87.04 86.70
2 8692 8698 86.70 8692 86.86  86.90
3 86.56 86.84 86.82 86.72 86.64 86.54
4 86.50 86.68 86.72 86.54 86.62 87.00
5 86.68 8638 86.82 86.84 86.70  86.72
Delta 0.70 0.60 0.12 0.38 0.42 0.46
Rank 1 2 6 5 4 3

Tabla 5: Respuesta para medias y clasificacion (Rank) de los
factores para FO3 (stocks usados y desperdicio).

Nivel ~ Pob.  Num. Ip1 lp2 A ls
iter.
1 0.2059  0.2060  0.2275  0.1863  0.2035  0.1902
2 0.2007  0.2082  0.2139  0.1961  0.1934  0.1905
3 0.1884  0.2008  0.1903  0.1981  0.1889  0.2022
4 0.1956  0.1766  0.1704  0.2031  0.1956  0.1937
5 0.1842  0.1832  0.1728 0.1913  0.1934  0.1982
Delta  0.0217 0.0316  0.0572  0.0168 0.0146  0.0121
Rank 3 2 1 4 5 6

De la Tabla 7 se observa que la ejecucion del
DABO-1DCSP con la funcion FO3 obtiene el mejor stock
promedio en seis de las diez instancias. En segundo lugar, la
funcion FO1 que considera solamente el desperdicio, obtiene
mejores resultados en cuatro de las diez instancias, mientras
que la FO2 solamente obtiene mejores resultados en tres de
las diez instancias. No obstante, aunque la funcién FO3
resuelve mas instancias, la diferencia con los resultados con
las otras dos funciones es muy pequefia. La funcién FO1
logra resolver mejor instancias de mayor complejidad, es
decir, entre 200 y 400 items. En la Tabla 8 se muestran los
tiempos computacionales obtenidos con cada una de las
funciones con los que se lograron sus mejores resultados de
stock promedio. La funciéon FO3 obtiene tiempos ligeramente
superiores a los de las otras dos funciones, particularmente
donde las tres funciones logran resultados similares o iguales,
como en las instancias la y 7a. La ligera superioridad en
tiempo de la funcion FO3 puede atribuirse a su propia
evaluacion en cada iteracién, ya que se consideran dos
términos en la funcion.

Tabla 8: Resultados de tiempo promedio T con la ejecucion del
DABO-1DCSP con las diferentes funciones fitness.

. FO1 FO2 FO3
Instancia = = =
T T T

la 210.6 216.95 213.9

2a 378.7 362.98 418.5

3a 342.9 3374 383.4

4a 362.9 361.6 376.2

S5a 724.6 711.8 716.5

6a 1112.9 1079.1 1105.8

7a 1023.7 996.2 991.9
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8a 2208.0 2127.7 2142.9
9a 2216.3 2182.3 2216.1
10a 3347.6 3285.5 3221.6

La Figura Al del apéndice A muestra las graficas de
convergencia de las funciones FO1, FO2 y FO3 para cada
una de las instancias de la Tabla 1. La comparacion se realizo
para las primeras 1000 iteraciones en la ejecucion de cada
funcién. Se observa que la funcion FO3 converge de manera
mas rapida que las funciones FO1 y FO2 en intancias de baja
y moderada complejidad (instancias la a 4a), pero en
instancias de alta complejidad la funcién FO3 tiene un
marcado menor desempefio que las otras dos funciones. Las
funciones FO1 y FO2 tienen un comportamiento muy similar
a lo largo de las instancias, siendo la funcion las funcién FO1
ligeramente mejor que la funcion FO2. Debido a que la
funciéon FO3 tuvo mejores resultados de Stock Promedio, en
la Tabla 9 se muestra su comparacion con los algoritmos
ABO-1DCSP y ABO-CSP, que son otras implementaciones
recientes del ABO para resolver el 1D-CSP. Los resultados
del algoritmo ABO-1DCSP se tomaron de (Montiel-Arrieta,
et al, 2023) y los resultados del ABO-CSP, de
(Montiel-Arrieta, Barragan-Vite, Hernandez-Romero, &
Gonzalez-Hernandez, 2022). El algoritmo ABO-CSP emplea
en su funcién objetivo Unicamente el niimero de stocks
usados, mientras que el algoritmo ABO-1DCSP emplea el
desperdicio total. Ambos algoritmos usan el método de
discretizacion Ranked Order Value. El algoritmo ABO-CSP
reinicializa la poblacion de bufalos (soluciones) cada diez
iteraciones. El algoritmo ABO-1DCSP realiza un
procedimiento adicional antes de reinicializar la poblacion,
que consiste en formar un nuevo bgmax con base en las
mejores soluciones de la Gltima iteracion antes de la reiniciar
toda la poblacion. La comparacion de los resultados muestra
que el ABO-1DCSP obtiene los mejores resultados en todas
las instancias bajo prueba. Solamente en la instancia la el
algoritmo DABO-1DCSP con la funciéon FO3 iguala al
resultado del ABO-1DCSP. Sin embargo, el DABO-1DCSP-
FO3 supera ligeramente al ABO-CSP en todas las instancias,
aunque las diferencias entre las soluciones no son muy
marcadas.

Tabla 9: Comparacion del Stock Promedio S con otras
implementaciones del algoritmo ABO.

DABO-1DCS ABO-CSP ABO-1DCSP
Instancia P-FO3

S S S
la 9 9.26 9
2a 23.4 24.52 23
3a 15.96 16 15
4a 19.64 20 19
S5a 55.7 56.62 53
6a 88.2 89.46 79.08
Ta 74.8 75.62 68
8a 162.58 162.76 144.9
9a 170.52 172.4 150
10a 249.22 250.4 217.2

3.2 Experimentos y resultados del escenario dos

Los experimentos del segundo escenario se realizaron con
un conjunto de cuatro grupos de instancias denominadas

binpackl, binpack2, binpack3 y binpack4. Estas instancias
usan una misma longitud del stock, pero la complejidad
incrementa en los grupos de instancias, como se muestra en la
Tabla 10.

Tabla 10: Detalles de las instancias de prueba del escenario dos.

Grupo de Num. de n L Mo (D.E)
instancias intancias

binpackl 120 11 (2.71)
binpack2 250 8(2.14)
binpack3 20 500 150 2 (0.40)
binpack4 1000 1(0)

Para la ejecucion del DABO-1DCSP, los valores de los
parametros fueron seleccionados de los resultados del método
de Taguchi obtenidos en el escenario uno para cada funcion
objetivo de acuerdo a la clasificacion (Rank) minima de cada
parametro. Por ejemplo, el parametro de Poblacion tuvo un
Rank = 2 en los resultados de FO1, un Rank = 1 para FO2
y un Rank = 3, para FO3, por lo que para los experimentos
se seleccioné una Poblacion de 150. De las misma manera se
obtuvieron los valores del resto de los parametros. Estos
valores se muestran en la Tabla 11. Los resultados para el
stock promedio se muestran en las Tablas B1 a B4 del
Apéndice B. También se muestra el optimo tedrico de cada
instancia en la segunda columna de cada tabla de resultados,
donde este valor se calcula con la Ecuacién (23).

; lidi
opt.= [<—=1 (23)

Los resultados del segundo escenario muestran que la
funcion FO3 es adecuada para resolver todas las instancias
desde binpackl hasta binpack4. La funcion FO3 sobresale de
manera muy evidente para resolver las intancias de estos
grupos, a pesar de que la complejidad incrementa de manera
muy marcada. No obstante, ninguna de las funciones muestra
tener resultados cercanos al valor optimo tedrico de las
instancias bajo prueba. La funcion FO3 tiene los porcentajes
mas cercanos al valor dptimo tedrico, apenas superando el
10% en las instancias de binpack4; aunque se desearia que
fueran menores al 1% como otros algoritmos logran obtener.

En los resultados de los dos escenarios puede observarse
que la funcién FO3 puede verse afectada por la variabilidad
en el nimero de items diferentes, ya que a pesar de que
existen instancias en ambos escenarios con una cantidad de
items similar, la variabilidad (D. E.) de items diferentes en el
escenario uno es mucho mayor que en las instancias del
escenario dos.

Tabla 11: Valores seleccionados de los parametros para las
funciones fitness para los experimentos del escenario dos.
Pob. Num. iter. Ipl Ip2 A s
150 1000 0.4 0.1 0.25 15
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4. Conclusiones

Resolver problemas como el 1D-CSP de manera eficiente
tiene beneficios importantes para las empresas, como la
reduccion de costos de material, disminucion de residuos
optimizacion del tiempo de produccién y una mejor gestion
de recursos, ademas desde una perspectiva ambiental,
optimizar los problemas de corte contribuye a la
sostenibilidad al minimizar el desperdicio y promover el uso
eficiente de los materiales. En este trabajo se utilizo el
DABO-1DCSP para resolver el 1D-CSP utilizando tres
funciones objetivo que minimizan el desperdicio, el nimero
de stocks usados o ambas métricas de manera conjunta. El
propésito fue determinar con qué tipo de funcion es mas
efectivo el DABO-1DCSP. Los resultados de dos escenarios
desarrollados muestran que las funciones con una sola medida
de desempefio son mas efectivas con instancias de moderada
y alta complejidad, mientras que la funciéon con dos medidas
de desempefio es idonea para instancias de baja, media y alta
complejidad, en términos generales, aunque la diversidad en
el tipo items puede afectar su desempefio.

En conclusion, el presente documento ofrece un analisis
exhaustivo del problema de corte unidimensional, destacando
al Algoritmo Discreto del Bufalo Africano como una
herramienta innovadora en el campo de la optimizacion
industrial. La evaluacion de las funciones objetivo
(minimizacion del desperdicio, reduccion del uso de stocks y
su combinacion), permite concluir que la combinacion de las
dos funciones con un unico objetivo es mas efectiva en la
solucion del problema 1DCSP aunque su desempefio se aleja
un poco mas de los valores oOptimos tedricos cuando la
cantidad de los items se incrementa y su heterogeneidad
disminuye. Por lo tanto, este estudio no solo profundiza en la
comprension tedrica y la aplicabilidad practica del DABO en
problemas combinatorios, sino que también fortalece su
utilidad al integrar ajustes y estrategias adaptativas orientadas
a mejorar su desempefo. Los hallazgos obtenidos aportan
contribuciones significativas tanto al ambito teérico como a la
implementacion practica en la resolucion de problemas
industriales de alta complejidad. En un trabajo futuro se
planea explorar otros procedimientos de cruza y mutacion, asi
como de reinicio de la manada que pudieran mejorar el
desempeiio del DABO-1DCSP con el uso de la funcion FO3,
y al mismo tiempo ampliar las comparaciones mediante un
conjunto mas grande de instancias y con algoritmos diferentes
al ABO o basados en otro tipo de dindmica de busqueda.
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Apéndice A. Graficas de convergencia de los experimentos del escenario uno
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Figura A1l: Graficas de convergencia de las funciones fitness para las instancias de los experimentos del escenario uno.
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Tabla B1: Resultados de Stock Promedio (E) para las instancias binpackl.
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. FO1 FO2 FO3
Instancia Opt. S %>Opt. S %>Opt. 3 %>Opt.
ul20 00 48 52.4 9.17 52.48 9.33 49.56 3.25
ul20 01 49 53.06 8.29 53.08 8.33 49.92 1.88
ul20 02 46 50.12 8.96 50.06 8.83 47.38 3.00
ul20 03 49 54.04 10.29 53.88 9.96 50.8 3.67
ul20 04 50 54.32 8.64 54.28 8.56 51.4 2.80
ul20 05 48 52.64 9.67 52.4 9.17 49.8 3.75
ul20 06 48 52.52 9.42 52.54 9.46 49.52 3.17
ul20 07 49 53.72 9.63 53.9 10.00 50.72 3.51
ul20 08 50 553 10.60 55.4 10.80 52.02 4.04
ul20 09 46 50.68 10.17 50.44 9.65 47.98 4.30
ul20 10 52 56.92 9.46 57.04 9.69 53.8 3.46
ul20 11 49 53.6 9.39 53.54 9.27 50.72 3.51
ul20 12 48 52.78 9.96 52.78 9.96 50.04 4.25
ul20 13 49 53.12 8.41 53.08 8.33 50.1 2.24
ul20 14 50 54.34 8.68 54.48 8.96 51.36 2.72
ul20 15 48 52.66 9.71 52.6 9.58 49.86 3.88
ul20 16 52 56.94 9.50 56.92 9.46 53.84 3.54
ul20 17 52 56.96 9.54 57.02 9.65 53.94 3.73
ul20 18 49 53.5 9.18 53.36 8.90 50.38 2.82
ul20 19 49 54.16 10.53 53.96 10.12 51.0 4.08
Elvalor en negrita indica el mejor resultado obtenido entre las funciones comparadas.
Tabla B2: Resultados de Stock Promedio (S) para las instancias binpack?2.
. FO1 FO2 FO3
Instancia Opt. 5 %>Opt. 3 %>Opt. 3 %>Opt.
u250 00 99 110.06 11.17 110.2 11.31 104.94 6.00
u250 01 100 110.98 10.98 110.9 10.90 105.6 5.60
u250 02 102 113.66 11.43 113.64 11.41 108.22 6.10
u250 03 100 110.74 10.74 110.82 10.82 105.52 5.52
u250 04 101 112.4 11.29 112.16 11.05 106.92 5.86
u250 05 101 113.0 11.88 112.9 11.78 107.32 6.26
u250 06 102 112.94 10.73 113.08 10.86 107.42 5.31
u250_07 103 115.7 12.33 115.66 12.29 109.82 6.62
u250 08 105 117.12 11.54 117.32 11.73 111.7 6.38
u250 09 101 112.46 11.35 112.0 10.89 106.96 5.90
u250 10 105 117.04 11.47 117.16 11.58 111.28 5.98
u250 11 101 112.96 11.84 112.74 11.62 107.16 6.10
u250 12 105 117.86 12.25 117.8 12.19 112.06 6.72
u250 13 102 114.1 11.86 114.26 12.02 108.72 6.59
u250 14 100 110.78 10.78 110.76 10.76 105.84 5.84
u250 15 105 117.7 12.10 117.36 11.77 111.9 6.57
u250 16 97 107.64 10.97 107.62 10.95 102.82 6.00
u250 17 100 110.94 10.94 110.68 10.68 105.3 5.30
u250 18 100 111.42 11.42 111.46 11.46 106.08 6.08
u250 19 102 113.3 11.08 113.36 11.14 107.48 5.37

Elvalor en negrita indica el mejor resultado obtenido entre las funciones comparadas.
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i FO1 FO2 FO3
Instancia Opt. S %>Opt. S %>Opt. 3 %>Opt.
u500_00 198 222.96 12.61 222.96 12.61 214.88 8.53
u500 01 201 227.04 12.96 226.48 12.68 218.02 8.47
u500 02 202 227.42 12.58 227.56 12.65 218.94 8.39
u500 03 204 231.28 13.37 2314 13.43 222.22 8.93
u500 04 206 232.36 12.80 232.32 12.78 223.84 8.66
u500 05 206 232.58 12.90 232.8 13.01 223.66 8.57
u500 06 207 234.24 13.16 233.9 13.00 225.5 8.94
u500 07 204 230.68 13.08 231.08 13.27 222.56 9.10
u500 08 196 220.44 12.47 220.76 12.63 212.04 8.18
u500 09 202 227.08 12.42 227.24 12.50 218.6 8.22
u500 10 200 224.6 12.30 224.74 12.37 216.62 8.31
us00 11 200 226.14 13.07 226.2 13.10 217.62 8.81
us00_12 199 224.48 12.80 224.12 12.62 215.82 8.45
u500 13 196 220.48 12.49 220.54 12.52 212.38 8.36
us00 14 204 229.92 12.71 229.86 12.68 221.34 8.50
us00 15 201 225.44 12.16 225.72 12.30 217.54 8.23
u500 16 202 227.58 12.66 227.52 12.63 218.56 8.20
us00 17 198 223.2 12.73 222.94 12.60 214.32 8.24
u500 18 202 227.6 12.67 227.76 12.75 219.18 8.50
us500 19 196 220.94 12.72 220.6 12.55 213.62 8.99
Elvalor en negrita indica el mejor resultado obtenido entre las funciones comparadas.
Tabla B4: Resultados de Stock Promedio (S) para las instancias binpack4.
i FO1 FO2 FO3
Instancia Opt. 5 %>Opt. 3 %>Opt. 3 %>Opt.
ul000_00 399 455.5 14.16 455.74 14.22 444.34 11.36
ul000 01 406 464.24 14.34 464.42 14.39 453.66 11.74
ul000 02 411 470.92 14.58 470.16 14.39 458.94 11.66
ul000 03 411 470.78 14.55 470.9 14.57 459.68 11.84
ul000 04 397 452.94 14.09 452.66 14.02 441.36 11.17
ul000_05 399 456.38 14.38 456.18 14.33 445.76 11.72
ul000 06 395 450.36 14.02 450.4 14.03 439.92 11.37
ul000 07 404 461 14.11 460.82 14.06 449.7 11.31
ul000 08 399 456.16 14.33 456.46 14.40 445.52 11.66
ul000 09 397 453.98 14.35 454.06 14.37 443.78 11.78
ul000_10 400 456.82 14.21 456.86 14.22 446.02 11.51
ul000 11 401 457.42 14.07 457.58 14.11 446.66 11.39
ul000 12 393 448.08 14.02 447.12 13.77 436.82 11.15
ul000 13 396 450.66 13.80 450.64 13.80 440.04 11.12
ul000 14 394 449.08 13.98 448.96 13.95 438.18 11.21
ul000 15 402 459.98 14.42 460.24 14.49 449.8 11.89
ul000 16 404 462.38 14.45 462 14.36 451.16 11.67
ul000 17 404 463.5 14.73 463.36 14.69 452.5 12.00
ul000 18 399 454.84 13.99 455.78 14.23 445.06 11.54
ul000 19 400 456.48 14.12 457.02 14.26 446 11.50

Elvalor en negrita indica el mejor resultado obtenido entre las funciones comparadas.



	 

