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Modelo de regresion basado en redes neuronales artificiales para la estimacion de la
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Resumen

El fitoplancton es un microorganismo marino que aporta mas del 50 % del oxigeno del planeta y constituye el eslabén primario
en las cadenas tréficas marinas. Sin embargo, la actividad antropogénica ha generado el vertido de grandes volimenes de conta-
minantes en los océanos, alterando la abundancia y distribucidn de estos organismos, en un contexto donde atin se desconoce la
magnitud de su relacién con el cambio climdtico. Con el objetivo de aportar herramientas para abordar esta problematica, en este
trabajo se desarroll6 un modelo computacional basado en redes neuronales artificiales para predecir la concentracién de bioma-
sa fitoplancténica (clorofila-a) a partir de variables fisicoquimicas y fisicas. El modelo fue entrenado con datos de la plataforma
Copernicus Marine Service, correspondientes al Pacifico Tropical Oriental frente a Perd. Los resultados muestran un excelente
desempefio, con una precision del 98.5 %, un coeficiente de determinacion (R?) de 0.9994, un error cuadritico medio de 0.0005
mol/m? y un error absoluto medio de 0.0100 mol/m?. Estos resultados confirman la efectividad del modelo propuesto, cumpliendo
con el objetivo planteado y ofreciendo una herramienta ttil para el monitoreo ambiental marino.

Palabras Clave: clorofila, fitoplancton, modelos predictivos, redes neuronales, inteligencia artificial.

Abstract

Phytoplankton is a marine microorganism that contributes more than 50 % of the planet?s oxygen and represents the primary link
in marine trophic chains. However, anthropogenic activity has led to the discharge of large volumes of pollutants into the oceans,
altering the abundance and distribution of these organisms, within a context where the extent of their relationship with climate
change remains uncertain. To provide tools to address this issue, this study developed a computational model based on artificial
neural networks to predict phytoplankton biomass concentration (chlorophyll-a) from physicochemical and physical variables. The
model was trained with data from the Copernicus Marine Service, corresponding to the Eastern Tropical Pacific off the coast of
Peru. The results show excellent performance, with an accuracy of 98.5 %, a coefficient of determination (R?) of 0.9994, a mean
squared error of 0.0005 mol/m?, and a mean absolute error of 0.0100 mol/m?. These findings confirm the effectiveness of the
proposed model, fulfilling the objective of the study and providing a useful tool for marine environmental monitoring.

Keywords: chlorophyll, phytoplankton, predictive models, neural networks, artificial intelligence.

1. Introducciéon te la mitad de la produccién global de oxigeno mediante la
fotosintesis, un proceso mediado por pigmentos fotosintéticos
como la clorofila-a, la cual actiia como catalizador en la con-
version de energia solar en energia quimica (Behrenfeld y Fal-
kowski, 1997). La clorofila-a ha sido histéricamente usada co-

El fitoplancton, organismos autétrofos microscépicos pre-
sentes en ecosistemas costeros y marinos, constituyen un com-
ponente fundamental para el sostenimiento de la vida en el pla-
neta. Estos organismos son responsables de aproximadamen-
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mo un indicador cuantitativo de la biomasa fitoplancténica en
los ecosistemas acuaticos dada su correlacion con la actividad
fotosintética y abundancia celular (Rizzuto et al., 2020).

No obstante, el equilibrio de estas comunidades depende
criticamente de factores biogeoquimicos como la disponibili-
dad de nutrientes, estratificacion térmica, regimenes de luz y
turbulencia, cuyos desajustes pueden alterar su productividad
primaria y desencadenar proliferaciones algales nocivas (Ti-
wari et al., 2022; Chai et al., 2020). Para monitorear estas
dinamicas, los sensores satelitales de color oceanico (MODIS-
Aqua, Sentinel-3, VIIRS) han complementado los métodos in
situ, proporcionando cobertura sindptica y continua de pardme-
tros biogeoquimicos mediante el andlisis de la reflectancia es-
pectral (Rrs (1)) en miiltiples longitudes de onda. Esta capa-
cidad permite derivar no solo la concentracién de clorofila-a,
sino también indicadores de materia orgédnica disuelta croméfo-
ra (CDOM), particulas suspendidas (SPM) y nutrientes traza
como nitritos y hierro (Hu er al., 2012; Kostadinov et al., 2010;
Sun et al., 2022; Adhikary et al., 2022), ofreciendo una visién
integral de la estructura de la comunidad.

Estos avances han impulsado innovaciones en el modela-
do bio-6ptico. Un ejemplo destacado es la aplicacién de regre-
sién por componentes principales optimizada a datos hiperes-
pectrales de Rrs(1), técnica que permite reconstruir simultanea-
mente perfiles de pigmentos accesorios (fucoxantina, zeaxan-
tina) vinculados a grupos funcionales especificos como diato-
meas y cianobacterias (Vandermeulen et al., 2020; Kramer et
al., 2022). Sin embargo, la naturaleza no lineal y multivariable
de los procesos biogeoquimicos exige metodologias analiticas
mas sofisticadas. En este escenario, las redes neuronales artifi-
ciales (RNA) destacan por su capacidad para procesar grandes
volimenes de datos satelitales y modelar interacciones comple-
jas entre variables bidticas y abidticas superando las limitacio-
nes de enfoques lineales como la regresién por componentes
principales. Por ejemplo, arquitecturas de Deep Learning han
logrado mayor precisién en la prediccién del fitoplancton al
combinar datos hiperespectrales de reflectancia remota (Rrs(1))
con mediciones oceanograficas in sifu, como perfiles verticales
de nitrégeno y estratificacion térmica (Bracher et al., 2009; Pah-
levan et al., 2020). Estudios recientes, utilizando técnicas de
aprendizaje supervisado (Random Forest, Gradient Boosting,
etc.) aplicadas a datos de reandlisis de variables biogeoquimi-
cas, han predicho niveles de fitoplancton a través del coeficiente
de determinacién (R?) de hasta 0.96, proponiendo su uso para
complementar mediciones in situ y monitorear su rol critico en
ecosistemas marinos (Adhikary et al., 2024a).

La integracion sinérgica de informacidn satelital y datos de
campo promete no solo mejorar la modelizacién de ecosiste-
mas acudticos, sino también facilitar la identificacion de patro-
nes espacio-temporales criticos del fitoplancton. El desarrollo
de modelos predictivos basados en esta aproximacion ofreceria
un soporte cientifico sélido para disefiar estrategias de gestion
costera adaptativa, como la prediccién temprana de floraciones
algales nocivas o la optimizacién de zonas de conservacién ma-
rina.

Dado que el fitoplancton es la base de la cadena tréfica, esti-
mar su concentracion en términos de clorofila-a, es fundamen-
tal para comprender su productividad oceédnica. Los recientes
avances en modelos de inteligencia artificial, como las redes

neuronales, ofrecen una oportunidad sin precedentes para pre-
decir su comportamiento a corto y mediano plazo utilizando
la compleja interaccién de las variables oceanograficas. Por lo
que, se esperaria que un modelo de regresidon basado en redes
neuronales artificiales sea capaz de predecir con un alto grado
de precision la variabilidad de la clorofila-a, al utilizar un con-
junto de variables oceanogréficas clave como predictores, dada
la influencia directa de estas variables en la abundancia del fi-
toplancton.

2. Materiales y Métodos

2.1. Coleccion de datos

El 4rea de estudio abarca la regién del Pacifico Tropical
Oriental frente a la costa peruana (0.8-12 °S; 76°-87 °O; Figura
1). El anélisis comprende el periodo entre el 31 de diciembre de
1999 y el 31 de diciembre de 2005; esta ventana temporal per-
mite observar las condiciones posteriores al evento de El Nifio
(Wang y Weisberg, 2000).

Para el desarrollo del modelo (entrenamiento y validacién),
se emplearon dos conjuntos de datos de acceso abierto en for-
mato NetCDF, obtenidos de la plataforma Copernicus Marine
Service. Variables biogeoquimicas provenientes del producto
Global Ocean Biogeochemistry Hindcast: (https://data.
marine.copernicus.eu/product/GLOBAL_MULTIYEAR_
BGC_001_029/description, Tabla 1). Variables fisicas
obtenidas del Global Ocean Ensemble Physics Reanaly-
sis  (https://data.marine.copernicus.eu/product/
GLOBAL_MULTIYEAR_PHY_ENS_001_031/description, Ta-
bla 2). Ambos conjuntos presentaron una resoluciéon espacial
de 1/4° (4 km/pixel). Adicionalmente, se incorporaron datos de
irradiancia superficial del proyecto NASA Prediction of World-
wide Energy Resources (https://power.larc.nasa.gov/),
esenciales para el andlisis de productividad primaria. La va-
riable objetivo seleccionada para el entrenamiento del modelo
fue la concentracién de clorofila-a (g/L), un proxy clave de la
biomasa fitoplancténica en estudios biogeoquimicos marinos.

Area de Estudio

Cotomisia

N

Ecuador

5

90°W BT°W B4ew B1owW TEUW 75w T2°W

Figura 1: Pacifico Tropical-Subtropical frente a Perd
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Tabla 1: Variables biogeoquimicas obtenidas desde la plataforma de Coperni-
cus Marine Service

Parametros Descripcion Unidades

Fe Hierro disuelto mmol m=>

NOs  Nitratos mmol m=3
nppv  Produccién neta de biomasa expresada como carbono  mg m™>

0, Oxigeno disuelto mmol m™3

pH Potencial de hidrogeno -
phyc  Concentracién de fitoplancton expresada como carbonommol m™>

POy Fosfatos mmol m™3
Si  Silicatos mmol m~3
CO,  Presion parcial de dioxido de carbono Pa

Tabla 2: Variables fisicas obtenidas desde la plataforma de Copernicus Marine
Service

Parametros Descripcion

Unidades

mlotst  Espesor de la capa mixta ocednica definido por sigma theta ~ m
S0 Salinidad del agua de mar psu

thetao  Temperatura potencial del agua de mar C
uo Velocidad del agua del mar hacia el este m/s
Vo Velocidad del agua del mar hacia el norte m/s
208 altura de la superficie del mar sobre el geoide m

2.2. Relevancia de cada variable

La seleccion de variables se fundament6 en el rol de ca-
da pardmetro biogeoquimico y fisico para modular la distribu-
cién, crecimiento y productividad fitoplancténica, considerados
pardmetros clave en los ecosistemas marinos. Estas variables
actiian como proxis del estado ecolégico ocednico y se integran
en mecanismos de retroalimentacién con procesos globales, in-
cluyendo el secuestro de carbono, la acidificacién ocednica y
los patrones de variabilidad climatica (IPCC, 2021). Por ejem-
plo, nutrientes como el nitrato (NO3), el hierro disuelto (Fe), el
fosfato (POy) y el silicato (Si) son macronutrientes esenciales
para la sintesis de biomoléculas en el fitoplancton (Sathyendra-
nath S. et al., 2019), la biomasa de carbono (nppv) y carbono
fitoplancténico (phyc) como indicadores clave de la fijacién de
CO, durante la fotosintesis (Behrenfeld y Falkowski, 1997), el
oxigeno disuelto (O;) es un indicador de balance entre la pro-
duccién (fotosintesis) y el consumo (respiracién microbiana),
con declives asociados al calentamiento oceanico (Lueker et al.,
2000). El pH y la presién parcial de diéxido de carbono (pCO5)
tienen un impacto significativo en la fisiologia del fitoplancton
y en la acidificacién de los océanos (Doney et al., 2009; Siegel
et al., 2014). Por otro lado, las variables fisicas como la tem-
peratura (thetao) regulan la tasa de crecimiento del fitoplancton
(Van Heukelem y Thomas, 2001), la salinidad tiene un impacto
significativo en la tasa de crecimiento del fitoplancton y en la
composicién de su comunidad, afectando procesos bioldgicos y
ecoldgicos clave. Por otra parte, los forzantes atmosféricos co-
mo las corrientes (uo, vo) impulsan la adveccién de nutrientes
en sistemas de afloramiento, siendo un factor clave en la hetero-
geneidad espacial del fitoplancton. Mientras que el espesor de
la capa mixta (mlotst) determina la disponibilidad de nutrientes
en la zona euf6tica (Soranno P.A. et al., 2017). La altura superfi-
cial del mar (zos) determinada por el promedio de la superficie
del océano entre la marea alta y la marea baja, sus anomalias

se correlacionan con eventos ENSO, mostrando una relacion
inversa con la productividad primaria durante fases cdlidas de
“El Nifo” (Bates et al., 2014) y la irradiancia es un factor de-
terminante en la profundidad 6ptima para la fotosintesis (Kirk,
1994).

2.3.  Preprocesado de datos

El preprocesado de datos se realizé en tres etapas a par-
tir del disefio e implementacién de algoritmos secuenciales pa-
ra exportar, validar y consolidar los datos en un tnico archivo
estructurado. El conjunto de datos resultante consta de 17,140
registros, cada uno de los cuales incluye la fecha, latitud y lon-
gitud correspondientes a una lectura especifica, junto con nueve
variables biogeoquimicas, seis variables fisicas y la irradiancia,
utilizadas como variables de entrada en el modelo. Ademas, se
incorpord la variable de concentracidn de clorofila-a como va-
riable de salida. A continuacién, se muestran los algoritmos uti-
lizados:

2.3.1.  Algoritmo 1: Conversion de datos NetCDF a CSV

Se desarroll6 el Algoritmo 1 para extraer, validar y trans-
formar los datos almacenados en formato NetCDF a un archivo
estructurado en formato CSV.

Algoritmo 1: Conversion de documentos en formato

.nc a formato .csv
Entrada: Archivo en formato NetCDF con datos de las variables
Rango de fechas de las lecturas (DIAS')
Rango de latitudes de las lecturas (LATS)
Rango de longitudes de las lecturas (LONS)
: Archivo estructurado con las variables en formato .CSV

Salida

data_in < apertura del archivo NetCDF a través de la librearfa HSPY
data_out «creacion y apertura del archivo de salida en formato .CSV

for dia in range(DIAS ) do
for lat in range(LATS) do
for lon in range(LONS ) do
// se extraen datos del archivo NetCDF:
«variables» <« data_in.get("«variable»”)[dia, lat, lon]
// se validan datos:
if all([es_valido(«variables»)]) then
// se almacena un registro:
data_out.write(date, latitude, longitude,
«variables»)

end

end
end
return data_out

2.3.2.  Algoritmo 2: Combinacion de variables biogeoquimi-
casy fisicas

A partir de los archivos independientes en formato CSV ge-
nerados previamente, se implementd el Algoritmo 2 para reali-
zar la fusién espacio-temporal de registros mediante una opera-
cidén ’innerjoin’ basada en claves primarias compuestas (fecha,
latitud, longitud).
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Algoritmo 2: Unién de los conjuntos de datos de va-
riables fisicas y biogeoquimicas
Entrada: Archivo de variables biogeoquimicas (bio_file)
Archivo de variables fisicas (phy-_file)
Tamaio de bloque de mezcla (chunk_size)
: Archivo con variables biogeoquimicas y fisicas mezcladas

Salida

data_out «creacion y apertura del archivo de salida
data_out.write(Fecha, Latitud, Longitud, «Variables mezcladas»”)
for chunk_bio in pd.read_csv(bio_file, chunksize=chunk_size,
usecols=["Fecha’, ’Latitud’, ’Longitud’, "«Variables
biogeoquimicas»’]) do
chunk_bio[’ Fecha’]«<convierte a formato yyyy-mm-dd
for chunk_phy in pd.read_csv(phy_file, chunksize=chunk_size,
usecols=["Fecha’, ’Latitud’, ’Longitud’, "« Variables
fisicas»’]) do
chunk_phy|’ Fecha’]«convierte a formato yyyy-mm-dd
merged_chunk «— pd.merge(chunk_bio, chunk_phy,
on=["Fecha’,’ Latitud’,’ Longitud’], how="inner’)
merged_chunk «— merged_chunk[[’ Fecha’,’ Latitud’,
’Longitud’,’«Variables reordenadas»’]]
merged_chunk.to_csv(data_out, header = False,
index = False)
delete merged_chunk
ge.collect()

end
end
return data_out

2.3.3. Algoritmo 3: Incorporacion de la variable irradiancia

Una vez integradas las variables biogeoquimicas y fisicas,
se implementd el Algoritmo 3 para incorporar la variable irra-
diancia al conjunto de datos. A diferencia de los registros bio-
geoquimicos y fisicos, que comparten una resolucién espacial
compatible, los datos de irradiancia descargados de la platafor-
ma NASA POWER presentan una resolucién espacial distinta a
los datos de Copernicus. Debido a esta discrepancia, no fue po-
sible realizar una combinacién basada en coincidencias exactas
de fecha, latitud y longitud. En su lugar, se establecié un margen
arbitrario de + 0.25° en ambas direcciones, permitiendo asignar
un valor de irradiancia a cada registro mediante interpolacion
espacial.

Adicionalmente, la plataforma NASA POWER genera un
archivo independiente por cada dia de lecturas, lo que resulté
en una extensa coleccion de archivos para cubrir el periodo de
estudio (1999-2005). Para abordar este desafio, el algoritmo:
(i) Carga y recorre secuencialmente todos los archivos de irra-
diancia, (ii) identifica y promedia las lecturas dentro del margen
predefinido previamente, de tal manera que la fecha coincida en
cada registro, y (iii) asigna el valor resultante a la base de datos
unificada. Este enfoque garantiza la integracién precisa de la
irradiancia como variable adicional, respetando las limitaciones
impuestas por la heterogeneidad en la resolucién espacial de las
fuentes de datos.

Algoritmo 3: Incorporacién de la variable de irradian-
cia al conjunto de datos de variables fisicas y biogeo-
quimicas
Input : Archivo de variables biogeoquimicas y fisicas (input_file)
Lista de archivos con datos de irradiancia (irra_file_N)

Cantidad de archivos de irradiancia (contlrraFiles)
Output: Archivo con variables biogeoquimicas, fisicas e irradiancia

output_file «creacién y apertura del archivo de salida

output_file.write(Fecha’, ’Latitud’, "Longitud’, ’«Variables con
irradiancia»’)

data_frame «— pd.read_csv(input_file, usecols=["Fecha’, "Latitud’,
’Longitud’, "« Variables»’])

for registro in data_frame do
numlrraFiles = 1

contlrradiance = 0
sumlrradiance = 0
while numlrraFiles <= contlrraFiles do

for reg_irra in data_irra do
lat_irra « reg_irral’latitude’]
lon_irra « reg_irra[’longitude’]
fecha « reg_fechal’ fecha’]
irradiance « reg_irral’irradiance’]
coordRange = 0,25

end
numlrraFiles += 1

end
if contlrradiance > 0 then
| output_file.write(«variables»+str(averagelrradiance))

end
return output_file

3. Desarrollo del modelo para la prediccion de fitoplanc-
ton (Chla-a)

La implementacién del disefio y entrenamiento del modelo
se realizé en el lenguaje de programacién Python, utilizando la
biblioteca PyTorch, reconocida por su flexibilidad y eficiencia
en el entrenamiento de redes neuronales. La arquitectura pro-
puesta para la red neuronal se detalla en la Tabla 3. La capa de
entrada consta de un nimero de neuronas igual a la cantidad
de variables biogeoquimicas y fisicas incluyendo la irradiancia,
que son recibidas como entradas para cada muestra de entrena-
miento. Por su parte, la capa de salida consta de una tnica neu-
rona, que regresa el valor predicho de concentraciéon de Chla-a.
El nimero de capas ocultas y neuronas por capa se optimiza
mediante experimentacion iterativa, buscando un equilibrio en-
tre precision predictiva y eficiencia computacional.

Tabla 3: Arquitectura de la red neuronal utilizada

Capa Tipo Neuronas  Activacion
Entrada  Totalmente conectada 16 ReLU
Oculta Totalmente conectada 1000 ReLU
Oculta Totalmente conectada 1000 ReLU
Salida Totalmente conectada 1 No Lineal

3.1. Entrenamiento del modelo

El proceso de entrenamiento se implementd en el Algorit-
mo 4, que sigue un enfoque basado en lotes (batch processing),
donde una vez definidos los pardmetros de entrenamiento, el
algoritmo ejecuta un ciclo principal que controla el nimero de



J. M. Talamantes-Murillo et al. / Publicacion Semestral Péidi Vol. 13 No. 26 (2025) 111-118 115

épocas a realizar. Dentro de este ciclo, se activa el modo de en-
trenamiento, e inicia un ciclo interno donde el conjunto de datos
es recorrido en lotes de 512 muestras. En este primer ciclo in-
terno, el algoritmo realiza los cuatro pasos fundamentales del
proceso de entrenamiento: 1) procesado de los lotes de muestra
y obtencion de las predicciones de la concentracién de Chla-a;
2) calculo del error a partir de las predicciones obtenidas y los
valores reales de concentracién de Chla-a, 3) pasos hacia atras
o backward propagation donde el error calculado se propaga
hacia atras a través de la red neuronal, desde la capa de salida
hasta la capa de entrada 4) actualizacién de pesos y bias uti-
lizando los gradientes calculados para ajustar los pesos de las
conexiones entre las neuronas.

Tras cada iteracidn, el algoritmo monitorea el desempefio
del modelo. Para ello, calcula y acumula el error promedio so-
bre los datos de validacion, evalida si dicho error disminuye res-
pecto a iteraciones anteriores. Si el error disminuye, el conta-
dor paciencia se reinicia y almacena el modelo actual como el
mejor obtenido. En caso contrario, el contador de paciencia se
incrementa y si supera el umbral predefinido, finaliza el entre-
namiento para evitar el sobre entrenamiento.

Algoritmo 4: Entrenamiento del modelo

Input : Conjunto de datos de entrenamiento
Output: Mejor modelo generado

learning_rate < 0,001

loss_function «— MSE _Loss()

optimizer «— Adam(lr = learning_rate)

num_epochs « 1000

best_test_loss «— float('inf")

patience «— 0

for epoch in range( 1, num_epochs) do

model.train()

for (data_train,chla_train) in train_database do
chla_pred «— model(data_train)
loss_train < loss_function(chla_pred, chla_train)
loss_train.backward()
optimizer.step()

end

model.eval()

total_loss_test — 0

for (data_test,chla_test) in test_database do
chal_pred < model(data_test)
loss_test « loss_function(chla_pred, chla_test)

total_loss_test « total_loss_test + loss_test
end

current_test_loss « total_loss_test/len(test_database)
if current_test_loss < best_test_loss then
patience «— 0
best_test_loss « current_test_loss
save(model,”model.pth”)
else
patience « patience + 1
if patience > 100 then
| break
end

end
end

El modelo se entrené con el 70 % del conjunto de datos, re-
servando el 30 % restante para su evaluacion final. El entrena-
miento finaliz6 en la época 686, utilizando un criterio de parada
temprana con una paciencia de 100 épocas. Los pardimetros em-
pleados durante el entrenamiento del modelo se describen en la
Tabla 4.

Tabla 4: Parametros del entrenamiento del modelo

Valor
12,000
Standard Scaler

Parametro
Nimero de muestras
Tipo de normalizacion

Tamaiio de Lote 512
Tasa de aprendizaje 0.001
Funcién de pérdida MSE Loss
Funcién de optimizacién Adam
Nimero miximo de épocas 1000
Epocas de paciencia 100

4. Resultados

4.1. Evaluacion del modelo

Para evaluar el desempefio del modelo, se generaron pre-
dicciones de concentracién de clorofila-a sobre el conjunto de
prueba y se compararon con los valores de referencia. En la Fi-
gura 2 se muestra la dispersion entre los valores observados y
predichos de clorofila-a, los cuales varfan en un rango de O y 1
mol/m?, con un error maximo de 0.2875 mol/m?>.

MSE:0.000503 MAE: 0.010001 Error Méximo: 0.287574

® Valores reales
Valores predichos

Concentracion de Clorofila-a (pmol/mz)

T T T T
2000 3000 4000 5000

o4
—
(=
o
[=]

fndice de muestra

Figura 2: Concentracién de clorofila-a (mol/m?). Valores obser-
vados (puntos azules) y valores predichos (puntos naranja).

La Figura 3 muestra la grafica de correlacion entre los valo-
res reales de clorofila-a y los valores predichos por el modelo.
Cada punto de la gréfica corresponde a una muestra de prueba,
su posicion en el eje X representa el valor de clorofila-a predi-
cho, y su posicién en el eje Y el valor real. Mientras mas cer-
canos se encuentren los puntos a la diagonal, representada con
la linea en color rojo, més precisa es la prediccion del modelo.
En la Figura se muestra también el coeficiente de determina-
cién R? de las pruebas del modelo, con un valor de 0,9994. Este
coeficiente es un indicador que mide de forma cuantitativa la
precisiéon de un modelo y la calidad de sus predicciones. Un
valor cercano a cero indica que un modelo no tiene capacidad
predictiva, mientras que un valor cercano a uno indica un alto
nivel predictivo del mismo.
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® R?=10.9994 %

Valores observados (umel/m?)

1 2 3 4 5 6
Valores predichos (umol/m?)

Figura 3: Correlacién de los valores observados vs predichos de
la concentracién de clorofila-a (mol/m?). Coeficiente de corre-
lacién (R2 = 0.9994).

El andlisis de errores del modelo se realiza mediante ma-
pas de calor, que permiten visualizar de manera clara las dis-
crepancias entre los valores predichos y observados, asi como
identificar Falsos Positivos (FP) y/o Falsos Negativos (FN). Los
valores de concentracion de clorofila-a del conjunto de prueba
se segmentaron en intervalos especificos, dividiendo los datos
en dos grupos segun su rango de concentracién. El primer gru-
po incluye muestras de valores de clorofila-a de 0 a 1 mol/m?,
representando el 83 % del total de datos de prueba. Debido a la
alta densidad de muestras en este intervalo, los valores se cla-
sificaron en intervalos de 0.1 mol/m?. En contraste, el segundo
grupo abarca muestras con valores > 1mol/m?, correspondiente
al 17 % restante del conjunto de prueba, y se agrupan en inter-
valos de 0.5 mol/m?.

El mapa de calor revela un desempefio detallado del modelo
al comparar los valores predichos con los observados. En la Fi-
gura 4 se representa el primer grupo, el eje X corresponde a los
valores discretizados, usando intervalos de 0.1 mol/m?, predi-
chos por el modelo y el eje Y a los valores discretizados reales.
Los valores en las celdas de la diagonal principal representan la
cantidad de muestras con una prediccidn correcta. Por ejemplo,
la celda con el valor 529 indica que 529 muestras con valor real
de 0.1 mol/m?, fueron predichas correctamente con ese valor.
En el caso de la celda que se encuentra a un lado, con el valor
16, indica que 16 muestras con valor real de 0.1 mol/m? se pre-
dijeron con un valor de 0.2. La celda por debajo, con valor 8§,
indica que 8 muestras con valor real de 0.2 mol/m* se predije-
ron con valor de 0.1. De esta forma, tomando como referencia
el valor real de 0.1 mol/m?, el mapa muestra 529 predicciones
Positivas Verdaderas (TP), 16 Falsos Negativos (FN) y 8 Falsos
Positivos (FP). Estos valores corresponden a una precision del
modelo del 98.5% (1) y una sensibilidad del 97.1 % (2) para
este rango de valores.

Precision = — - (1)
recision = TP+ FP
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- _ 5
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Figura 4: Grupo de muestras con valores de clorofila-a en el
rango de 0 a 1 mol/m? discretizados en intervalos de 0.1. Entre
mads concentrado esté el color en la diagonal, mejor es el rendi-
miento del modelo.

La Figura 5 presenta el mapa de calor correspondiente al se-
gundo grupo (valores > 1mol/m?), donde se observa una mar-
cada precision predictiva. Los errores registrados (tanto FP co-
mo FN) se localizaron exclusivamente en celdas adyacentes a la
diagonal, lo que indica que las discrepancias no superaron los
0.5 mol/m?* para ambos grupos.
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Figura 5: Grupo de muestras con valores de clorofila-a mayor a
1 mol/m? discretizados en intervalos de 0.5. Entre mds concen-
trado esté el color en la diagonal, mejor es el rendimiento del
modelo.

En la Tabla 5 se muestra la estadistica de las pruebas de
prediccion del modelo y de otros modelos del estado del arte
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presentados en (Adhikary et al., 2024b). Las métricas reporta-
das son: Error Absoluto Medio (MAE) (3), Error Cuadratico
Medio (MSE) (4), Coeficiente de Determinacién (R?) (5) y el
Error Mdximo. Como se puede observar, en las cuatro métricas
consideradas, el modelo generado en este trabajo logra mejo-
res resultados. En cuanto al error absoluto medio se obtuvo un
valor de 0.0100 mol/m* superando por mds del doble al mejor
resultado de los otros métodos que reportan un error de 0.0255
mol/m?. Un error cuadritico medio de 0.0005 que mejora por
mds de seis veces al mejor resultado reportado de 0.0033. Un
coeficiente de determinacién de 0.9994 contra 0.9631 del mejor
resultado reportado. Finalmente, un error médximo del modelo
para la prediccién de cualquier muestra de 0.2875 mol/m?, que
supera al mejor resultado de los otros métodos que reportan un
error maximo de 1.0773 mol/m?.

1}1

MAE=—§ = P 3
",«zlly il 3)
ln

MSE=—§ = )2 4
”i=1(y i) 4

R Zie 09 )
S 0=

Tabla 5: Resultados estadisticos de las pruebas de prediccion de la concentra-
cién de clorofila-a del modelo propuesto y de otros modelos del estado del arte

Métrica Modelo Random Bagging Extra HGBR
Propuesto  Forest Trees
Error Absoluto Medio (MAE) 0.010 0.0261  0.0279 0.0255 0.0395

Error Cuadratico Medio (MSE) ~ 0.0005 0.0035  0.0039 0.0033 0.0058
Coeficiente Determinacién (R?) ~ 0.9994 09612  0.9569 0.9631 0.9366
Error Maximo 0.2875 1.3965  1.2638 1.0773 1.4917

5. Conclusion

El modelo obtuvo un desempeifio relevante con un coeficien-
te de determinacién de 0.9994, una media del error cuadrado de
0.0005 y un porcentaje de precision predictivo del 98.5 %.

Estos resultados sugieren que el modelo es factible de ser
empleado como una herramienta de monitoreo de la producti-
vidad biolégica en ecosistemas marinos particularmente en es-
cenarios de cambio climdtico. No obstante, su aplicacioén practi-
ca requiere considerar la disponibilidad y calidad de los datos
de entrada. Bajo estas condiciones, el modelo puede contribuir
a un monitoreo eficiente y de bajo costo de la biomasa fito-
plancténica y servir como apoyo en la toma de decisiones para
la gestién y conservacion de los recursos marinos.

Futuras lineas de trabajo contemplan la evaluacion del mo-
delo en distintas regiones y periodos, y el andlisis con conjun-
tos de datos més heterogéneos. Estas acciones fortalecerdn su
capacidad de generalizacion y consolidaran su utilidad como
herramienta de monitoreo ambiental marino.
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