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Resumen

El fitoplancton es un microorganismo marino que aporta más del 50 % del oxı́geno del planeta y constituye el eslabón primario
en las cadenas tróficas marinas. Sin embargo, la actividad antropogénica ha generado el vertido de grandes volúmenes de conta-
minantes en los océanos, alterando la abundancia y distribución de estos organismos, en un contexto donde aún se desconoce la
magnitud de su relación con el cambio climático. Con el objetivo de aportar herramientas para abordar esta problemática, en este
trabajo se desarrolló un modelo computacional basado en redes neuronales artificiales para predecir la concentración de bioma-
sa fitoplanctónica (clorofila-a) a partir de variables fisicoquı́micas y fı́sicas. El modelo fue entrenado con datos de la plataforma
Copernicus Marine Service, correspondientes al Pacı́fico Tropical Oriental frente a Perú. Los resultados muestran un excelente
desempeño, con una precisión del 98.5 %, un coeficiente de determinación (R2) de 0.9994, un error cuadrático medio de 0.0005
mol/m2 y un error absoluto medio de 0.0100 mol/m2. Estos resultados confirman la efectividad del modelo propuesto, cumpliendo
con el objetivo planteado y ofreciendo una herramienta útil para el monitoreo ambiental marino.

Palabras Clave: clorofila, fitoplancton, modelos predictivos, redes neuronales, inteligencia artificial.

Abstract

Phytoplankton is a marine microorganism that contributes more than 50 % of the planet?s oxygen and represents the primary link
in marine trophic chains. However, anthropogenic activity has led to the discharge of large volumes of pollutants into the oceans,
altering the abundance and distribution of these organisms, within a context where the extent of their relationship with climate
change remains uncertain. To provide tools to address this issue, this study developed a computational model based on artificial
neural networks to predict phytoplankton biomass concentration (chlorophyll-a) from physicochemical and physical variables. The
model was trained with data from the Copernicus Marine Service, corresponding to the Eastern Tropical Pacific off the coast of
Peru. The results show excellent performance, with an accuracy of 98.5 %, a coefficient of determination (R2) of 0.9994, a mean
squared error of 0.0005 mol/m2, and a mean absolute error of 0.0100 mol/m2. These findings confirm the effectiveness of the
proposed model, fulfilling the objective of the study and providing a useful tool for marine environmental monitoring.

Keywords: chlorophyll, phytoplankton, predictive models, neural networks, artificial intelligence.

1. Introducción

El fitoplancton, organismos autótrofos microscópicos pre-
sentes en ecosistemas costeros y marinos, constituyen un com-
ponente fundamental para el sostenimiento de la vida en el pla-
neta. Estos organismos son responsables de aproximadamen-

te la mitad de la producción global de oxı́geno mediante la
fotosı́ntesis, un proceso mediado por pigmentos fotosintéticos
como la clorofila-a, la cual actúa como catalizador en la con-
versión de energı́a solar en energı́a quı́mica (Behrenfeld y Fal-
kowski, 1997). La clorofila-a ha sido históricamente usada co-
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mo un indicador cuantitativo de la biomasa fitoplanctónica en
los ecosistemas acuáticos dada su correlación con la actividad
fotosintética y abundancia celular (Rizzuto et al., 2020).

No obstante, el equilibrio de estas comunidades depende
crı́ticamente de factores biogeoquı́micos como la disponibili-
dad de nutrientes, estratificación térmica, regı́menes de luz y
turbulencia, cuyos desajustes pueden alterar su productividad
primaria y desencadenar proliferaciones algales nocivas (Ti-
wari et al., 2022; Chai et al., 2020). Para monitorear estas
dinámicas, los sensores satelitales de color oceánico (MODIS-
Aqua, Sentinel-3, VIIRS) han complementado los métodos in
situ, proporcionando cobertura sinóptica y continua de paráme-
tros biogeoquı́micos mediante el análisis de la reflectancia es-
pectral (Rrs (λ)) en múltiples longitudes de onda. Esta capa-
cidad permite derivar no solo la concentración de clorofila-a,
sino también indicadores de materia orgánica disuelta cromófo-
ra (CDOM), partı́culas suspendidas (SPM) y nutrientes traza
como nitritos y hierro (Hu et al., 2012; Kostadinov et al., 2010;
Sun et al., 2022; Adhikary et al., 2022), ofreciendo una visión
integral de la estructura de la comunidad.

Estos avances han impulsado innovaciones en el modela-
do bio-óptico. Un ejemplo destacado es la aplicación de regre-
sión por componentes principales optimizada a datos hiperes-
pectrales de Rrs(λ), técnica que permite reconstruir simultánea-
mente perfiles de pigmentos accesorios (fucoxantina, zeaxan-
tina) vinculados a grupos funcionales especı́ficos como diato-
meas y cianobacterias (Vandermeulen et al., 2020; Kramer et
al., 2022). Sin embargo, la naturaleza no lineal y multivariable
de los procesos biogeoquı́micos exige metodologı́as analı́ticas
más sofisticadas. En este escenario, las redes neuronales artifi-
ciales (RNA) destacan por su capacidad para procesar grandes
volúmenes de datos satelitales y modelar interacciones comple-
jas entre variables bióticas y abióticas superando las limitacio-
nes de enfoques lineales como la regresión por componentes
principales. Por ejemplo, arquitecturas de Deep Learning han
logrado mayor precisión en la predicción del fitoplancton al
combinar datos hiperespectrales de reflectancia remota (Rrs(λ))
con mediciones oceanográficas in situ, como perfiles verticales
de nitrógeno y estratificación térmica (Bracher et al., 2009; Pah-
levan et al., 2020). Estudios recientes, utilizando técnicas de
aprendizaje supervisado (Random Forest, Gradient Boosting,
etc.) aplicadas a datos de reanálisis de variables biogeoquı́mi-
cas, han predicho niveles de fitoplancton a través del coeficiente
de determinación (R2) de hasta 0.96, proponiendo su uso para
complementar mediciones in situ y monitorear su rol crı́tico en
ecosistemas marinos (Adhikary et al., 2024a).

La integración sinérgica de información satelital y datos de
campo promete no solo mejorar la modelización de ecosiste-
mas acuáticos, sino también facilitar la identificación de patro-
nes espacio-temporales crı́ticos del fitoplancton. El desarrollo
de modelos predictivos basados en esta aproximación ofrecerı́a
un soporte cientı́fico sólido para diseñar estrategias de gestión
costera adaptativa, como la predicción temprana de floraciones
algales nocivas o la optimización de zonas de conservación ma-
rina.

Dado que el fitoplancton es la base de la cadena trófica, esti-
mar su concentración en términos de clorofila-a, es fundamen-
tal para comprender su productividad oceánica. Los recientes
avances en modelos de inteligencia artificial, como las redes

neuronales, ofrecen una oportunidad sin precedentes para pre-
decir su comportamiento a corto y mediano plazo utilizando
la compleja interacción de las variables oceanográficas. Por lo
que, se esperarı́a que un modelo de regresión basado en redes
neuronales artificiales sea capaz de predecir con un alto grado
de precisión la variabilidad de la clorofila-a, al utilizar un con-
junto de variables oceanográficas clave como predictores, dada
la influencia directa de estas variables en la abundancia del fi-
toplancton.

2. Materiales y Métodos

2.1. Colección de datos

El área de estudio abarca la región del Pacı́fico Tropical
Oriental frente a la costa peruana (0.8-12 °S; 76°-87 °O; Figura
1). El análisis comprende el perı́odo entre el 31 de diciembre de
1999 y el 31 de diciembre de 2005; esta ventana temporal per-
mite observar las condiciones posteriores al evento de El Niño
(Wang y Weisberg, 2000).

Para el desarrollo del modelo (entrenamiento y validación),
se emplearon dos conjuntos de datos de acceso abierto en for-
mato NetCDF, obtenidos de la plataforma Copernicus Marine
Service. Variables biogeoquı́micas provenientes del producto
Global Ocean Biogeochemistry Hindcast: (https://data.
marine.copernicus.eu/product/GLOBAL_MULTIYEAR_

BGC_001_029/description, Tabla 1). Variables fı́sicas
obtenidas del Global Ocean Ensemble Physics Reanaly-
sis (https://data.marine.copernicus.eu/product/
GLOBAL_MULTIYEAR_PHY_ENS_001_031/description, Ta-
bla 2). Ambos conjuntos presentaron una resolución espacial
de 1/4° ( 4 km/pı́xel). Adicionalmente, se incorporaron datos de
irradiancia superficial del proyecto NASA Prediction of World-
wide Energy Resources (https://power.larc.nasa.gov/),
esenciales para el análisis de productividad primaria. La va-
riable objetivo seleccionada para el entrenamiento del modelo
fue la concentración de clorofila-a (g/L), un proxy clave de la
biomasa fitoplanctónica en estudios biogeoquı́micos marinos.

Figura 1: Pacı́fico Tropical-Subtropical frente a Perú

https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_BGC_001_029/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_ENS_001_031/description
https://data.marine.copernicus.eu/product/GLOBAL_MULTIYEAR_PHY_ENS_001_031/description
https://power.larc.nasa.gov/
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Tabla 1: Variables biogeoquı́micas obtenidas desde la plataforma de Coperni-
cus Marine Service

Parámetros Descripción Unidades
Fe Hierro disuelto mmol m−3

NO3 Nitratos mmol m−3

nppv Producción neta de biomasa expresada como carbono mg m−3

O2 Oxigeno disuelto mmol m−3

pH Potencial de hidrogeno −

phyc Concentración de fitoplancton expresada como carbonommol m−3

PO4 Fosfatos mmol m−3

S i Silicatos mmol m−3

CO2 Presión parcial de dioxido de carbono Pa

Tabla 2: Variables fı́sicas obtenidas desde la plataforma de Copernicus Marine
Service

Parámetros Descripción Unidades
mlotst Espesor de la capa mixta oceánica definido por sigma theta m

so Salinidad del agua de mar psu
thetao Temperatura potencial del agua de mar C

uo Velocidad del agua del mar hacia el este m/s
vo Velocidad del agua del mar hacia el norte m/s
zos altura de la superficie del mar sobre el geoide m

2.2. Relevancia de cada variable

La selección de variables se fundamentó en el rol de ca-
da parámetro biogeoquı́mico y fı́sico para modular la distribu-
ción, crecimiento y productividad fitoplanctónica, considerados
parámetros clave en los ecosistemas marinos. Estas variables
actúan como proxis del estado ecológico oceánico y se integran
en mecanismos de retroalimentación con procesos globales, in-
cluyendo el secuestro de carbono, la acidificación oceánica y
los patrones de variabilidad climática (IPCC, 2021). Por ejem-
plo, nutrientes como el nitrato (NO3), el hierro disuelto (Fe), el
fosfato (PO4) y el silicato (Si) son macronutrientes esenciales
para la sı́ntesis de biomoléculas en el fitoplancton (Sathyendra-
nath S. et al., 2019), la biomasa de carbono (nppv) y carbono
fitoplanctónico (phyc) como indicadores clave de la fijación de
CO2 durante la fotosı́ntesis (Behrenfeld y Falkowski, 1997), el
oxı́geno disuelto (O2) es un indicador de balance entre la pro-
ducción (fotosı́ntesis) y el consumo (respiración microbiana),
con declives asociados al calentamiento oceánico (Lueker et al.,
2000). El pH y la presión parcial de dióxido de carbono (pCO2)
tienen un impacto significativo en la fisiologı́a del fitoplancton
y en la acidificación de los océanos (Doney et al., 2009; Siegel
et al., 2014). Por otro lado, las variables fı́sicas como la tem-
peratura (thetao) regulan la tasa de crecimiento del fitoplancton
(Van Heukelem y Thomas, 2001), la salinidad tiene un impacto
significativo en la tasa de crecimiento del fitoplancton y en la
composición de su comunidad, afectando procesos biológicos y
ecológicos clave. Por otra parte, los forzantes atmosféricos co-
mo las corrientes (uo, vo) impulsan la advección de nutrientes
en sistemas de afloramiento, siendo un factor clave en la hetero-
geneidad espacial del fitoplancton. Mientras que el espesor de
la capa mixta (mlotst) determina la disponibilidad de nutrientes
en la zona eufótica (Soranno P.A. et al., 2017). La altura superfi-
cial del mar (zos) determinada por el promedio de la superficie
del océano entre la marea alta y la marea baja, sus anomalı́as

se correlacionan con eventos ENSO, mostrando una relación
inversa con la productividad primaria durante fases cálidas de
”El Niño” (Bates et al., 2014) y la irradiancia es un factor de-
terminante en la profundidad óptima para la fotosı́ntesis (Kirk,
1994).

2.3. Preprocesado de datos

El preprocesado de datos se realizó en tres etapas a par-
tir del diseño e implementación de algoritmos secuenciales pa-
ra exportar, validar y consolidar los datos en un único archivo
estructurado. El conjunto de datos resultante consta de 17,140
registros, cada uno de los cuales incluye la fecha, latitud y lon-
gitud correspondientes a una lectura especı́fica, junto con nueve
variables biogeoquı́micas, seis variables fı́sicas y la irradiancia,
utilizadas como variables de entrada en el modelo. Además, se
incorporó la variable de concentración de clorofila-a como va-
riable de salida. A continuación, se muestran los algoritmos uti-
lizados:

2.3.1. Algoritmo 1: Conversión de datos NetCDF a CSV

Se desarrolló el Algoritmo 1 para extraer, validar y trans-
formar los datos almacenados en formato NetCDF a un archivo
estructurado en formato CSV.

Algoritmo 1: Conversión de documentos en formato
.nc a formato .csv

Entrada: Archivo en formato NetCDF con datos de las variables
Rango de fechas de las lecturas (DIAS )
Rango de latitudes de las lecturas (LATS )
Rango de longitudes de las lecturas (LONS )

Salida : Archivo estructurado con las variables en formato .CSV

data in← apertura del archivo NetCDF a través de la librearı́a H5PY
data out ←creación y apertura del archivo de salida en formato .CSV

for dia in range(DIAS ) do
for lat in range(LATS ) do

for lon in range(LONS ) do
// se extraen datos del archivo NetCDF:

((variables))← data in.get(”((variable))”)[dia, lat, lon]
// se validan datos:

if all([es valido(((variables)))]) then
// se almacena un registro:

data out.write(date, latitude, longitude,
((variables)))

end
end

end
return data out

2.3.2. Algoritmo 2: Combinación de variables biogeoquı́mi-
cas y fı́sicas

A partir de los archivos independientes en formato CSV ge-
nerados previamente, se implementó el Algoritmo 2 para reali-
zar la fusión espacio-temporal de registros mediante una opera-
ción ’innerjoin’ basada en claves primarias compuestas (fecha,
latitud, longitud).
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Algoritmo 2: Unión de los conjuntos de datos de va-
riables fı́sicas y biogeoquı́micas

Entrada: Archivo de variables biogeoquı́micas (bio f ile)
Archivo de variables fı́sicas (phy f ile)
Tamaño de bloque de mezcla (chunk size)

Salida : Archivo con variables biogeoquı́micas y fı́sicas mezcladas

data out ←creación y apertura del archivo de salida
data out.write(”Fecha, Latitud, Longitud, ((Variables mezcladas))”)
for chunk bio in pd.read csv(bio f ile, chunksize=chunk size,

usecols=[’Fecha’, ’Latitud’, ’Longitud’, ’((Variables
biogeoquı́micas))’]) do

chunk bio[’Fecha’]←convierte a formato yyyy-mm-dd
for chunk phy in pd.read csv(phy f ile, chunksize=chunk size,

usecols=[’Fecha’, ’Latitud’, ’Longitud’, ’((Variables
fı́sicas))’]) do

chunk phy[’Fecha’]←convierte a formato yyyy-mm-dd
merged chunk ← pd.merge(chunk bio, chunk phy,

on=[’Fecha’, ’Latitud’, ’Longitud’], how=’inner’)
merged chunk ← merged chunk[[’Fecha’, ’Latitud’,

’Longitud’, ’((Variables reordenadas))’]]
merged chunk.to csv(data out, header = False,

index = False)
delete merged chunk
gc.collect()

end
end
return data out

2.3.3. Algoritmo 3: Incorporación de la variable irradiancia

Una vez integradas las variables biogeoquı́micas y fı́sicas,
se implementó el Algoritmo 3 para incorporar la variable irra-
diancia al conjunto de datos. A diferencia de los registros bio-
geoquı́micos y fı́sicos, que comparten una resolución espacial
compatible, los datos de irradiancia descargados de la platafor-
ma NASA POWER presentan una resolución espacial distinta a
los datos de Copernicus. Debido a esta discrepancia, no fue po-
sible realizar una combinación basada en coincidencias exactas
de fecha, latitud y longitud. En su lugar, se estableció un margen
arbitrario de ± 0.25° en ambas direcciones, permitiendo asignar
un valor de irradiancia a cada registro mediante interpolación
espacial.

Adicionalmente, la plataforma NASA POWER genera un
archivo independiente por cada dı́a de lecturas, lo que resultó
en una extensa colección de archivos para cubrir el periodo de
estudio (1999-2005). Para abordar este desafı́o, el algoritmo:
(i) Carga y recorre secuencialmente todos los archivos de irra-
diancia, (ii) identifica y promedia las lecturas dentro del margen
predefinido previamente, de tal manera que la fecha coincida en
cada registro, y (iii) asigna el valor resultante a la base de datos
unificada. Este enfoque garantiza la integración precisa de la
irradiancia como variable adicional, respetando las limitaciones
impuestas por la heterogeneidad en la resolución espacial de las
fuentes de datos.

Algoritmo 3: Incorporación de la variable de irradian-
cia al conjunto de datos de variables fı́sicas y biogeo-
quı́micas

Input : Archivo de variables biogeoquı́micas y fı́sicas (input f ile)
Lista de archivos con datos de irradiancia (irra f ile N)
Cantidad de archivos de irradiancia (contIrraFiles)

Output: Archivo con variables biogeoquı́micas, fı́sicas e irradiancia

output f ile←creación y apertura del archivo de salida
output f ile.write(’Fecha’, ’Latitud’, ’Longitud’, ’((Variables con

irradiancia))’)
data f rame← pd.read csv(input f ile, usecols=[’Fecha’, ’Latitud’,

’Longitud’, ’((Variables))’])
for registro in data f rame do

numIrraFiles = 1
contIrradiance = 0
sumIrradiance = 0
while numIrraFiles <= contIrraFiles do

for reg irra in data irra do
lat irra← reg irra[’latitude’]
lon irra← reg irra[’longitude’]
f echa← reg f echa[’ f echa’]
irradiance← reg irra[’irradiance’]
coordRange = 0,25

end
numIrraFiles += 1

end
if contIrradiance > 0 then

output f ile.write(((variables))+str(averageIrradiance))
end
return output f ile

3. Desarrollo del modelo para la predicción de fitoplanc-
ton (Chla-a)

La implementación del diseño y entrenamiento del modelo
se realizó en el lenguaje de programación Python, utilizando la
biblioteca PyTorch, reconocida por su flexibilidad y eficiencia
en el entrenamiento de redes neuronales. La arquitectura pro-
puesta para la red neuronal se detalla en la Tabla 3. La capa de
entrada consta de un número de neuronas igual a la cantidad
de variables biogeoquı́micas y fı́sicas incluyendo la irradiancia,
que son recibidas como entradas para cada muestra de entrena-
miento. Por su parte, la capa de salida consta de una única neu-
rona, que regresa el valor predicho de concentración de Chla-a.
El número de capas ocultas y neuronas por capa se optimiza
mediante experimentación iterativa, buscando un equilibrio en-
tre precisión predictiva y eficiencia computacional.

Tabla 3: Arquitectura de la red neuronal utilizada

Capa Tipo Neuronas Activación
Entrada Totalmente conectada 16 ReLU
Oculta Totalmente conectada 1000 ReLU
Oculta Totalmente conectada 1000 ReLU
Salida Totalmente conectada 1 No Lineal

3.1. Entrenamiento del modelo

El proceso de entrenamiento se implementó en el Algorit-
mo 4, que sigue un enfoque basado en lotes (batch processing),
donde una vez definidos los parámetros de entrenamiento, el
algoritmo ejecuta un ciclo principal que controla el número de
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épocas a realizar. Dentro de este ciclo, se activa el modo de en-
trenamiento, e inicia un ciclo interno donde el conjunto de datos
es recorrido en lotes de 512 muestras. En este primer ciclo in-
terno, el algoritmo realiza los cuatro pasos fundamentales del
proceso de entrenamiento: 1) procesado de los lotes de muestra
y obtención de las predicciones de la concentración de Chla-a;
2) cálculo del error a partir de las predicciones obtenidas y los
valores reales de concentración de Chla-a, 3) pasos hacia atrás
o backward propagation donde el error calculado se propaga
hacia atrás a través de la red neuronal, desde la capa de salida
hasta la capa de entrada 4) actualización de pesos y bias uti-
lizando los gradientes calculados para ajustar los pesos de las
conexiones entre las neuronas.

Tras cada iteración, el algoritmo monitorea el desempeño
del modelo. Para ello, calcula y acumula el error promedio so-
bre los datos de validación, evalúa si dicho error disminuye res-
pecto a iteraciones anteriores. Si el error disminuye, el conta-
dor paciencia se reinicia y almacena el modelo actual como el
mejor obtenido. En caso contrario, el contador de paciencia se
incrementa y si supera el umbral predefinido, finaliza el entre-
namiento para evitar el sobre entrenamiento.

Algoritmo 4: Entrenamiento del modelo
Input : Conjunto de datos de entrenamiento
Output: Mejor modelo generado

learning rate← 0,001
loss f unction←MSE Loss()
optimizer ← Adam(lr = learning rate)
num epochs← 1000
best test loss← f loat(′in f ′)
patience← 0
for epoch in range(1, num epochs) do

model.train()
for (data train,chla train) in train database do

chla pred ← model(data train)
loss train← loss f unction(chla pred, chla train)
loss train.backward()
optimizer.step()

end
model.eval()
total loss test ← 0
for (data test,chla test) in test database do

chal pred ← model(data test)
loss test ← loss f unction(chla pred, chla test)
total loss test ← total loss test + loss test

end
current test loss← total loss test/len(test database)
if current test loss < best test loss then

patience← 0
best test loss← current test loss
save(model, ”model.pth”)

else
patience← patience + 1
if patience > 100 then

break
end

end
end

El modelo se entrenó con el 70 % del conjunto de datos, re-
servando el 30 % restante para su evaluación final. El entrena-
miento finalizó en la época 686, utilizando un criterio de parada
temprana con una paciencia de 100 épocas. Los parámetros em-
pleados durante el entrenamiento del modelo se describen en la
Tabla 4.

Tabla 4: Parámetros del entrenamiento del modelo

Parámetro Valor
Número de muestras 12,000
Tipo de normalización Standard Scaler
Tamaño de Lote 512
Tasa de aprendizaje 0.001
Función de pérdida MSE Loss
Función de optimización Adam
Número máximo de épocas 1000
Épocas de paciencia 100

4. Resultados

4.1. Evaluación del modelo
Para evaluar el desempeño del modelo, se generaron pre-

dicciones de concentración de clorofila-a sobre el conjunto de
prueba y se compararon con los valores de referencia. En la Fi-
gura 2 se muestra la dispersión entre los valores observados y
predichos de clorofila-a, los cuales varı́an en un rango de 0 y 1
mol/m2, con un error máximo de 0.2875 mol/m2.

Figura 2: Concentración de clorofila-a (mol/m2). Valores obser-
vados (puntos azules) y valores predichos (puntos naranja).

La Figura 3 muestra la gráfica de correlación entre los valo-
res reales de clorofila-a y los valores predichos por el modelo.
Cada punto de la gráfica corresponde a una muestra de prueba,
su posición en el eje X representa el valor de clorofila-a predi-
cho, y su posición en el eje Y el valor real. Mientras más cer-
canos se encuentren los puntos a la diagonal, representada con
la lı́nea en color rojo, más precisa es la predicción del modelo.
En la Figura se muestra también el coeficiente de determina-
ción R2 de las pruebas del modelo, con un valor de 0,9994. Este
coeficiente es un indicador que mide de forma cuantitativa la
precisión de un modelo y la calidad de sus predicciones. Un
valor cercano a cero ı́ndica que un modelo no tiene capacidad
predictiva, mientras que un valor cercano a uno ı́ndica un alto
nivel predictivo del mismo.
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Figura 3: Correlación de los valores observados vs predichos de
la concentración de clorofila-a (mol/m2). Coeficiente de corre-
lación (R2 = 0.9994).

El análisis de errores del modelo se realiza mediante ma-
pas de calor, que permiten visualizar de manera clara las dis-
crepancias entre los valores predichos y observados, ası́ como
identificar Falsos Positivos (FP) y/o Falsos Negativos (FN). Los
valores de concentración de clorofila-a del conjunto de prueba
se segmentaron en intervalos especı́ficos, dividiendo los datos
en dos grupos según su rango de concentración. El primer gru-
po incluye muestras de valores de clorofila-a de 0 a 1 mol/m2,
representando el 83 % del total de datos de prueba. Debido a la
alta densidad de muestras en este intervalo, los valores se cla-
sificaron en intervalos de 0.1 mol/m2. En contraste, el segundo
grupo abarca muestras con valores > 1mol/m2, correspondiente
al 17 % restante del conjunto de prueba, y se agrupan en inter-
valos de 0.5 mol/m2.

El mapa de calor revela un desempeño detallado del modelo
al comparar los valores predichos con los observados. En la Fi-
gura 4 se representa el primer grupo, el eje X corresponde a los
valores discretizados, usando intervalos de 0.1 mol/m2, predi-
chos por el modelo y el eje Y a los valores discretizados reales.
Los valores en las celdas de la diagonal principal representan la
cantidad de muestras con una predicción correcta. Por ejemplo,
la celda con el valor 529 indica que 529 muestras con valor real
de 0.1 mol/m2, fueron predichas correctamente con ese valor.
En el caso de la celda que se encuentra a un lado, con el valor
16, indica que 16 muestras con valor real de 0.1 mol/m2 se pre-
dijeron con un valor de 0.2. La celda por debajo, con valor 8,
indica que 8 muestras con valor real de 0.2 mol/m2 se predije-
ron con valor de 0.1. De esta forma, tomando como referencia
el valor real de 0.1 mol/m2, el mapa muestra 529 predicciones
Positivas Verdaderas (TP), 16 Falsos Negativos (FN) y 8 Falsos
Positivos (FP). Estos valores corresponden a una precisión del
modelo del 98.5 % (1) y una sensibilidad del 97.1 % (2) para
este rango de valores.

Precisión =
T P

T P + FP
(1)

S ensibilidad =
T P

T P + FN
(2)

Figura 4: Grupo de muestras con valores de clorofila-a en el
rango de 0 a 1 mol/m2 discretizados en intervalos de 0.1. Entre
más concentrado esté el color en la diagonal, mejor es el rendi-
miento del modelo.

La Figura 5 presenta el mapa de calor correspondiente al se-
gundo grupo (valores > 1mol/m2), donde se observa una mar-
cada precisión predictiva. Los errores registrados (tanto FP co-
mo FN) se localizaron exclusivamente en celdas adyacentes a la
diagonal, lo que indica que las discrepancias no superaron los
0.5 mol/m2 para ambos grupos.

Figura 5: Grupo de muestras con valores de clorofila-a mayor a
1 mol/m2 discretizados en intervalos de 0.5. Entre más concen-
trado esté el color en la diagonal, mejor es el rendimiento del
modelo.

En la Tabla 5 se muestra la estadı́stica de las pruebas de
predicción del modelo y de otros modelos del estado del arte
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presentados en (Adhikary et al., 2024b). Las métricas reporta-
das son: Error Absoluto Medio (MAE) (3), Error Cuadrático
Medio (MSE) (4), Coeficiente de Determinación (R2) (5) y el
Error Máximo. Como se puede observar, en las cuatro métricas
consideradas, el modelo generado en este trabajo logra mejo-
res resultados. En cuanto al error absoluto medio se obtuvo un
valor de 0.0100 mol/m2 superando por más del doble al mejor
resultado de los otros métodos que reportan un error de 0.0255
mol/m2. Un error cuadrático medio de 0.0005 que mejora por
más de seis veces al mejor resultado reportado de 0.0033. Un
coeficiente de determinación de 0.9994 contra 0.9631 del mejor
resultado reportado. Finalmente, un error máximo del modelo
para la predicción de cualquier muestra de 0.2875 mol/m2, que
supera al mejor resultado de los otros métodos que reportan un
error máximo de 1.0773 mol/m2.

MAE =
1
n

n∑
i=1

|yi − ŷi| (3)

MS E =
1
n

n∑
i=1

(yi − ŷi)2 (4)

R2 = 1 −
∑n

i=1 (yi − ŷi)2∑n
i=1 (yi − ȳ)2 (5)

Tabla 5: Resultados estadı́sticos de las pruebas de predicción de la concentra-
ción de clorofila-a del modelo propuesto y de otros modelos del estado del arte

Métrica Modelo Random Bagging Extra HGBR
Propuesto Forest Trees

Error Absoluto Medio (MAE) 0.010 0.0261 0.0279 0.0255 0.0395
Error Cuadrático Medio (MS E) 0.0005 0.0035 0.0039 0.0033 0.0058
Coeficiente Determinación (R2) 0.9994 0.9612 0.9569 0.9631 0.9366
Error Máximo 0.2875 1.3965 1.2638 1.0773 1.4917

5. Conclusión

El modelo obtuvo un desempeño relevante con un coeficien-
te de determinación de 0.9994, una media del error cuadrado de
0.0005 y un porcentaje de precisión predictivo del 98.5 %.

Estos resultados sugieren que el modelo es factible de ser
empleado como una herramienta de monitoreo de la producti-
vidad biológica en ecosistemas marinos particularmente en es-
cenarios de cambio climático. No obstante, su aplicación prácti-
ca requiere considerar la disponibilidad y calidad de los datos
de entrada. Bajo estas condiciones, el modelo puede contribuir
a un monitoreo eficiente y de bajo costo de la biomasa fito-
planctónica y servir como apoyo en la toma de decisiones para
la gestión y conservación de los recursos marinos.

Futuras lı́neas de trabajo contemplan la evaluación del mo-
delo en distintas regiones y periodos, y el análisis con conjun-
tos de datos más heterogéneos. Estas acciones fortalecerán su
capacidad de generalización y consolidarán su utilidad como
herramienta de monitoreo ambiental marino.
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