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Resumen

En este trabajo se analiza la sección transversal de dispersión clásica del agujero negro de Schwarzschild mediante una solución
numérica que no hace uso del cambio de variable tradicional. Se introduce el nuevo cambio de variable con el objetivo de evitar
singularidades y optimizar el uso de recursos computacionales. La implementación, desarrollada en Python, emplea el método de
cuadratura de Gauss junto con interpolación polinómica. Los resultados obtenidos demuestran que el cambio propuesto mejora
significativamente la precisión y la eficiencia del cálculo, reduciendo los requerimientos computacionales en comparación con el
enfoque convencional.
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Abstract

This work analyzes the classical scattering cross section of the Schwarzschild black hole through a numerical approach that
does not rely on the traditional change of variable. A new transformation is introduced with the aim of avoiding singularities and
optimizing the use of computational resources. The implementation, developed in Python, employs the Gauss quadrature method
in conjunction with polynomial interpolation. The results demonstrate that the proposed change significantly improves both the
accuracy and efficiency of the computation, while reducing the computational requirements compared to the conventional approach.

Keywords: Black hole, Scattering, Python, Numerical methods.

1. Introducción

A principios del Siglo XX con el nacimiento de la Relati-
vidad General, el ser humano descubrió la existencia de uno de
los objetos más interesantes de los que se tenía registro hasta la
fecha, los Agujeros Negros. El primer aporte que se hizo sobre
este tema, fue realizado por Karl Schwarzschild en su artícu-
lo titulado “Sobre el campo gravitacional de un punto de masa
según la teoría de Einstein” (Schwarzschild (1916)), en el cual
describe una solución de las ecuaciones de campo de Einstein
alrededor de una masa con simetría esférica sin rotación.

Por otra parte, la importancia del estudio de los agujeros ne-
gros, ha jugado un papel fundamental en la caracterización de
señales de ondas gravitacionales como las detectadas por LIGO
y VIRGO (Abbott et al. (2016)). Tambien colaboraciones inter-
nacionales como Telescopio del Horizonte de Eventos (Akiya-
ma et al. (2022)) han logrado obtener la primera imagen de un

agujero negro en 2022.
Para obtener propiedades físicas de los agujeros negros,

es posible analizar los campos de prueba que los rodean. Por
ejemplo, un aspecto importante es el estudio de las trayectorias
geodésicas alrededor de los agujeros negros como en (Pedra-
za et al. (2021)) y ((Cerón-Ángeles et al., 2025)). También se
han estudiado la absorción y dispersión de materia y campos,
dichos trabajos han aportado importantes aspectos sobre la fe-
nomenología de los agujeros negros, dado que se han estudiado
en diversas configuraciones como por ejemplo agujeros negros
rodeados de quintaesencia estudiados por (López-Suárez et al.
(2025)) y Ramírez et al. (2022).

El estudio de la dispersión en el contexto de los agujeros ne-
gros constituye un área de interés relevante dentro de la física
teórica y computacional, dado que para obtener la sección dife-
rencial de dispersión de ondas parciales es aplicado el método
Runge-Kutta de cuarto a quinto orden o en el caso de la sección
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diferencial clásica de dispersión se aplica integración numérica
en muchos casos.

Como se sabe para un problema de dispersión clásica, las
ecuaciones resultantes son susceptibles a indeterminaciones
matemáticas en los puntos de retorno, para lo cual resulta con-
veniente aplicar cambios de variable adecuados para su solu-
ción, para así evitar esas singularidades puramente matemáticas
y facilitar su solución numérica. Tradicionalmente en la litera-
tura se usa el cambio de variable de u = 1

r que facilita el manejo
de la integral a calcular para el ángulo de dispersión.

El cambio de variable estándar no es el único que se pue-
de implementar, es posible proponer otros como por ejemplo el
propuesto por Gezerlis (2023) para el caso de dispersión clásica
con el potencial de Yukawa. De manera análoga, en relatividad
general los cambios de coordenadas de Kruskal–Szekeres y de
Eddington–Finkelstein eliminan las singularidades de coorde-
nadas presentes en la métrica de Schwarzschild, lo cual, desde
el punto de vista de los métodos numéricos, facilita el trata-
miento computacional de soluciones cerca del horizonte.

Por lo anteriormente mencionado se propone hacer uso del

cambio de variable v =
√

1 − r0
r , donde r0 es un punto de re-

torno, para la resolución numérica del problema de dispersión
clásica de un agujero negro de Schwarzschild y contrastar los
resultados obtenidos con el cambio de variable usual, además
de discutir la conveniencia del uso de cada cambio de variable.

El trabajo está organizado de la siguiente manera: En la sec-
ción 2 se presenta un breve resumen que permite obtener la
sección de dispersión clásica. En la sección 3 se introduce y
analiza el cambio de variable estándar u = 1/r. Posteriormente,
en la sección 4, se propone un nuevo cambio de variable v. La
sección 5 describe la metodología utilizada para implementar
ambos cambios de variable y obtener la sección de dispersión
correspondiente. Los resultados se muestran en la sección 6.
Finalmente, se presentan las conclusiones generales.

2. Dispersión clásica

Un método ampliamente utilizado para el análisis de la sec-
ción transversal de dispersión es la aproximación clásica. En es-
te marco, se considera que, en el régimen de altas frecuencias la
propagación de la onda incidente concuerda con las geodésicas
nulas del espacio-tiempo, conforme al tratamiento presentado
por Collins et al. (1973). Tambien, el potencial efectivo gene-
rado por el agujero negro tendrá que cumplir forzosamente que
en el infinito, los efectos gravitacionales que ejerce sean nulos,
teniendo al menos un máximo de potencial.

Para geodésicas nulas, la densidad Lagrangiana que las des-
cribe está dada de la forma

L = −
1
2

ẊµẊµ = 0. (1)

Aquí la notación Ẋ representa una derivada con respecto a τ,
donde τ representa un parámetro afín a la geodésica. Conside-
rando también que se trata de un espacio-tiempo con simetria
esférica y estacionario entonces su diferencial de línea tiene la
siguiente forma:

ds2 = − f (r)dt2 + f (r)−1dr + r2(dθ2 + sin2θdφ), (2)

y al obtener los momentos generalizados se puede observar la
existencia de constantes de movimiento. Al obtener el momento
con respecto a t y con respecto a φ, resulta evidente que corres-
ponden a la energía E y al momento angular L respectivamente.

Pt = f (r)ṫ = E. (3)

Pφ = r2sen2θφ̇ = L. (4)

Considerando el movimiento en un plano con θ = π/2 y es-
cribiendo el lagrangiano (1) en términos de (3) y (4) se obtiene:

E2 = ṙ2 + Ve f f (r), (5)

donde Ve f f (r) se define como el potencial efectivo:

Ve f f (r) =
(

L2

r2

)
f (r). (6)

Por lo que si se considera una relación angular con r, (5)
adopta la forma (

1
r2

∂r
∂φ

)2

=
1
b2 −

1
r2 f (r), (7)

donde el parámetro de impacto está definido como b = L
E .

Si se asume que la interacción entre la geodésica y el agujero
negro va disminuyendo con la distancia, entonces el movimien-
to se acerca asintoticamente a una línea recta, donde el ángulo
entre la dirección inicial y final de movimiento se describe por
(8).

Θ(b) = 2φ(b) − π. (8)

Aquí φ es el ángulo que forma la dirección de la asíntota
incidente con la dirección del periápside, como se observa en la
Figura 1.

Figura 1: Dispersión de un potencial atractor

Dada las relaciones anteriores, es posible obtener la sección
diferencial de dispersión σ(Θ), que mide tanto se ha desviado
el haz original respecto a un ángulo sólido (dΩ) por unidad de
tiempo por unidad de intensidad y está definido por (9) donde b
es el parámetro de impacto (ver Goldstein (1994)).

σ(Θ) =
∑

i

bi

sinΘ

∣∣∣∣∣ db
dΘ

∣∣∣∣∣
i

(9)

La sumatoria en (9) considera el caso en el que la geodési-
ca nula rota varias veces alrededor del agujero negro antes de
dispersarse.
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3. Cambio de Variable u = 1
r

Para poder calcular la sección diferencial de dispersión (9),
es necesario obtener una relación entre Θ y b como se mues-
tra en (8). Usualmente, una forma de obtenerla es realizando el
cambio de variable u = 1

r como es mostrado por Macedo et al.
(2015). Aplicando este cambio de variable en (7), se tiene(

∂u
∂φ

)2

=
1
b2 − u2 f (u). (10)

Se busca encontrar el ángulo de dispersión, por lo que inte-
grando respecto a u en (10), se tiene:

φ =

∫ u0

0

du√
1/b2 − u2 f (u)

, (11)

donde u0 y 0 representan las condiciones de frontera, las cuales
se establecen a partir de observar el movimiento de la geodé-
sica. Ya que, como se sabe, esta viaja desde el infinito y llega
hasta una cierta distancia que garantiza dispersión al interactuar
con el agujero negro; si ambas condiciones de frontera se apli-
can considerando el cambio de variable, resultan en los límites
de integración de (11).

Para encontrar el rango de valores adecuado de u0 hay que
buscar el valor máximo de u. Dado que en su punto máximo
el potencial efectivo garantiza órbitas circulares inestables (ver
Figura 2), implica que en ese punto u = uc, teniendo así que
u0 ∈ (0, uc]. Entonces, para la obtención de uc se minimiza (10)
por lo que tomando la segunda derivada e igualando a cero se
obtiene

d2u
dφ2 = −

u2

2
d f (1/u)

du
− u f (1/u) = 0. (12)

Por medio de (12) se puede obtener una u = uc, la cual
al ser considerada en (11) se obtiene el valor del parámetro de
impacto crítico (bc).

Ahora bien, fijando u = u0 en (10) es posible obtener una
relación entre u0 y b0 de la siguiente forma:

φ =

∫ u0(b)

0

du√
u0(b)2 f (u0(b)) − u2 f (u)

. (13)

Analizando (13) es notorio que el cambio de variable, si
bien ayuda en algunos aspectos como una convergencia más
temprana, arrastra una singularidad cuando u tiende a u0.

4. Cambio de variable v =
√

1 − r0
r

Cuando se desea calcular una integral definida de forma nu-
mérica, una de las complicaciones que pueden presentarse es
que el integrando tenga una singularidad en uno o en ambos lí-
mites de integración (como en la integral dada en (13). En tales
casos, para poder calcular la integral es necesario emplear un
cambio de variable adecuado que elimine la o las singularidades
presentes, el cual, por supuesto, depende fuertemente de la es-
tructura del integrando. Particularmente, en Gezerlis (2023) se
estudian varios ejemplos de este tipo de integrales y se propo-
nen distintos cambios de variable para su tratamiento. Específi-
camente, en problemas de dispersión se sugiere la introducción
del cambio de variable v.

El cambio de variable propuesto para solucionar el proble-

ma de dispersión es v =
√

1 − r0
r , esta versión de cambio de va-

riable simplifica la integral pues se usan limites de integración
fijos y también evita indeterminaciones cuando r toma valores
cercanos a r0, facilitando así la resolución numérica del proble-
ma. El punto de retorno (ver Figura 2) que se presenta en este
cambio de variable toma sus valores en el rango de r0 ∈ [rc,∞).

Al aplicar el cambio de variable v sobre (7), nuevamente se
obtiene φ, en este caso debido a la forma de la variable.

φ =

∫ 1

0

dv√
r2

0
4b2v2 −

(1−v2)2

4v2 f (v)
, (14)

esta integral (14) se puede simplificar más al escribir el paráme-
tro de impacto en términos del punto de retorno r0, obteniendo

φ =

∫ 1

0

dv√
f (r0)
4v2 −

(1−v2)2

4v2 f (v)
. (15)

Nótese que en este caso no es necesario minimizar ningu-
na expresión, ya que el propio cambio de variable exige que se
sepa desde el principio el valor de r0, por lo que es necesario to-
mar un camino alternativo para obtener dicho valor. El camino
más adecuado es partiendo del potencial efectivo (6), que debe
de cumplir la condición Ve f f (r0) = E2 para un valor de b dado.

Para este trabajo se considera la solución de un agujero ne-
gro de Schwarzschild, con elemento de línea dado por (2) donde
la función f (r) es:

f (r) = 1 −
2M

r
, (16)

donde M es la masa del agujero negro.
Remplazando f (r) en (6) se puede obtener el comporta-

miento del potencial efectivo. En la Figura (2), se observa los
valores que puede tomar r según su nivel energía. El máximo de
potencial es aquel que representa a las orbitas circulares inesta-
bles con radio rc, a todas las demás r′s después de este punto se
les denomina los puntos de retorno r0.

Figura 2: Potencial efectivo para Schwarzschild, con M = 1 y
L = 4

Para la solución de Schwarzschild es posible obtener que
uc = 1/3M y bc = 3

√
3M , pero no es así para soluciones más

complejas.
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5. Metodología

Debido a la posible dificultad que puede implica obtener
una solución analítica para las expresiones mencionadas pre-
viamente, la exploración de distintos métodos numéricos resul-
ta necesaria, ya que permiten aproximaciones precisas.

En este trabajo, el problema central radica en la integración
numérica, para la cual la cuadratura de Gauss - Legendre se
presenta como una opción altamente viable, puesto que se basa
en la aproximación del valor de la integral por medio de una
suma ponderada de una función evaluada en puntos dentro del
intervalo de integración y ha demostrado eficacia en investiga-
ciones relacionadas a gravitación, ofreciendo resultados de alta
precisión.

Si bien la solución numérica facilita la resolución de in-
tegrales complejas, no quita el hecho de tener que cuidar as-
pectos como la singularidad o convergencia, ya que, si la in-
tegral presenta una singularidad en algún punto del intervalo
de integración o exhibe una tasa de convergencia lenta puede
causar que el programa tenga salidas no numéricas en conjun-
to con advertencias tipo “RuntimeWarning” o errores tipo
“ZeroDivisionError” entre muchos otros. Existen distin-
tos tipos de singularidades como: singularidad en el límite su-
perior, singularidad en el límite inferior, singularidad en algún
punto del intervalo. De acuerdo a los diferentes tipos de sin-
gularidades expresadas, es necesario recurrir a un cambio de
variable específico.

5.1. Cambio de Variable u = 1
r

Para la solución numérica de la integral de (13) es necesario
obtener una lista de los valores máximos de la variable u para
así evaluar el limite superior u0 de integración. Como ya se ha
mencionado, se parte de (10), definiendo así la ecuación cúbi-
ca a resolver 2Mb2u3 + b2u2 − 1 = 0, es necesario fijar a b en
función de M con el valor inicial de 3

√
3M y se puede variar

hasta un valor final de 10M, para cada valor de b se resuelve la
ecuación cúbica usando la función de Numpy: np.roots.

5.2. Cambio de Variable v =
√

1 − r0
r

A diferencia del cambio de variable anterior donde es nece-
sario obtener u0, para este caso es necesario hacer un análisis de
los puntos de retorno r0 desde (5) obteniendo r3−b2r+2Mb2 =

0, en la que análogamente al caso anterior se definió a b en tér-
minos de M con los mismos valores iniciales y finales, y de
igual forma se resolvió haciendo uso de np.roots.

5.3. Integración por Cuadratura de Gauss

Para la resolución de las integrales planteadas (13) y (15),
se hace uso del método conocido como Cuadratura de Gauss
ya que éste, a diferencia de otros, como el método del trapecio o
el de Simpson, no requiere que los puntos de evaluación se dis-
tribuyan uniformemente ya que éste utiliza nodos optimizados
y pesos asociados maximizando la exactitud del resultado.

En general el método permite una aproximación de alta pre-
cisión de integrales definidas, tal que;∫ d

c
f (x)dx =

∫ 1

−1
f (x)dx ≈

n∑
i=1

wi f (xi). (17)

Lo que se consigue realizando un cambio de variable tal que el
intervalo de integración sea [-1,1] como se muestra en la segun-
da parte de (17), una vez llevado a este intervalo es necesario
establecer los nodos, los cuales se calculan usando las raíces de
los polinomios de Legendre de grado n (Pn(x)). El cambio de
variable que logra llevar la integral al intervalo [-1,1] está dado
de la forma:

x =
d − c

2
ξ +

d + c
2
, (18)

lo cual implica que∫ d

c
f (x)dx =

d − c
2

∫ 1

−1
f
(

d − c
2
ξ +

d + c
2

)
dξ. (19)

En este trabajo se utiliza la función quad que se encuentra
en la librería SciPy, donde en dicha función es posible defi-
nir elementos como los límites de integración, los parámetros
del integrando así como la función de peso entre otros. Dada la
naturaleza del problema no fue necesaria la implementación de
una función de peso para la ponderación del problema, así mis-
mo se consideraron nodos igualmente espaciados determinados
por el paso implementado.

5.4. Derivada

Para poder obtener la sección diferencial de dispersión (9),
es necesario obtener a db

dΘ , para ello se usa el método de ajuste
polinómico.

Para el método, se realiza un ajuste polinómico ponderado
de grado trece, a los datos de b y Θ obtenidos de la Integración
por Cuadratura de Gauss (ya sea para u o v), el cual da un con-
junto de datos (xi, yi) con errores asociados σi puede estimar
los coeficientes ak de un polinomio de grado n−1 minimizando
la suma de los errores cuadráticos ponderados de la forma:

S (a) =
N∑

i=1

1
σi

yi −

n−1∑
k=0

ak xk
i


2

. (20)

Minimizando respecto a cada parámetro ak y forzando que el
gradiente tome el valor de cero, es posible obtener un sistema
de ecuaciones lineales como se muestra (21).

n−1∑
j=0

Ak ja j = bk, (21)

donde los elementos de Ak j, denominada como la matriz de
diseño y bk un vector independiente están dados

Ak j = 2
N∑

i=1

xk+ j
i

σi
, bk = 2

N∑
i=1

yixk
i

σi
. (22)

Este sistema se resuelve haciendo uso de la función de
numpy: linalg.solve(A, b) la cual en esencia utiliza el
método de factorización A = LU, con L una matriz triangular
inferior y U una matriz triángular superior, con las cuales sim-
plifica el problema solucionando en su lugar:

Lc = b por sustitución hacia adelante.

Ua = c por sustitución hacia atrás.
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Finalmente se aplica una derivación parcialmente simbólica
utilizando los coeficientes del polinomio ajustado usando reglas
normales de derivación y evaluando en los mismos puntos.

También es posible hacer uso del método de diferencia cen-
tral para obtener la derivada db

dΘ , sin embargo no da el mejor
resultado puesto que solo se evalúan las diferencias de los va-
lores de Θ calculados, por lo que existe un rango donde este
método no proporciona información, lo cual exige considerar
un mayor número de puntos para su mejor aplicación.

5.5. Número de puntos tomados y tiempo de ejecución

Dado que en el cálculo se obtiene Θ para cada b y en con-
secuencia la sección diferencial, es importante tener en cuenta
que el número de puntos elegido para la ejecución del cálculo
repercute directamente en la forma de las soluciones obtenidas.

Con intención de obtener la sección de dispersión se ejecu-
tó el programa Schwarchild_u con los pasos 0.1, 0.01, 0.001,
0.0001. Al obtener un buen resultado para la variable u con el
paso 0.0001 se probaron los mismos pasos para la variable v con
el programa Schwarchild_v midiendo el tiempo total de ejecu-
ción del programa y la calidad de la curva de la sección diferen-
cial de dispersión según se aumentaba o disminuía el número de
puntos para comparar dichos resultados con los dos cambios de
variable.

Una vez obtenida la comparación directa punto a punto se
tomó como referencia la mejor gráfica producida por el progra-
ma Schwarchild_u para la automatización de todo el proceso
para la variable v tomando un espectro de número de puntos
mucho más grande con pasos: 0.n, 0.0n, 0.00n y 0.000n con
1 ≤ n ≤ 9 (ver programa Automatizacion), con la intención
de obtener aquel paso con el cual el proceso fuese optimizado
comparando las gráficas, midiendo tanto el error relativo pro-
medio como el tiempo total de ejecución y generando gráficas
de error relativo alrededor de toda la curva.

6. Resultados

En las Figuras 3 y 4 se muestran las secciones de disper-
sión obtenidas mediante los cambios de variable u y v, respec-
tivamente. Es posible denotar que un incremento en el número
de pasos conduce a una representación más suave de la curva
que representa la sección de dispersión, lo cual es particular-
mente más notorio en la región correspondiente a los ángulos
140o < Θ < 180o, donde las divergencias presentan un com-
portamiento más pronunciado a menor número de pasos. No
fue hasta el paso de 0,0001 que se presenta en ambas variables
una curva suave similar a las reportadas por otros autores, por
ejemplo López and Pedraza (2023) o Macedo et al. (2015)

Figura 3: Sección diferencial de dispersión con un paso de 0.1
y 0.0001 para el cambio de variable u.

Figura 4: Sección diferencial de dispersión con un paso de 0.1
y 0.0001 para el cambio de variable v.

En la tabla 1 se muestra el tiempo de ejecución para ambas
variables, con diferentes pasos. Es posible observar que en el
caso de cambio de v el tiempo es menor. Por lo que se puede
considerar que el cambio de variable v puede ser una adecuada
elección para estudiar soluciones con mayor número de pará-
metros como carga, parámetro del estado de quintaesencia, de
materia oscura, etc.

variable u variable v
Paso Tiempo (s)
0.1 1.4986 1.4267

0.01 1.8413 1.4354
0.001 6.7539 2.3165

0.0001 53.6730 11.0706

Tabla 1: Tiempos de ejecución para ambos cambios de variable.
Obtenidos con un procesador Intel Core i5 13a, 13500H, RAM
16 GB.

Finalmente, se realizó un análisis considerando diferentes
valores del número de pasos n (véase Tabla 2) siendo n = 4 el
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que muestra menor error. Utilizando la variable u como refe-
rencia, se calculó el error relativo promedio entre las secciones
de dispersión obtenidas a partir de las variables u y v. Como se
muestra en la Figura 5, el error relativo tiende a incrementarse
para ángulos grandes, pero en términos generales, dicho error
es menor al 0.5 %.

Paso Error ( %) Tiempo(s)
0.004 0.16 0.8459
0.005 0.26 0.7724

0.0007 0.30 1.9254

Tabla 2: Mejores ejecuciones de la variable v con respecto a u.
Obtenidos con un procesador Intel Core i5 13a, 13500H, RAM
16 GB.

Figura 5: Gráfica de error relativo con n = 4.

7. Conclusiones

En esta contribución se ha obtenido la sección de dispersión
clásica de un agujero negro de Schwarzschild mediante un en-
foque numérico que incorpora un cambio de variable denotado
por v, con el propósito de evaluar una alternativa al cambio de
variable estándar u. La implementación se realizó en Python,
utilizando el método de cuadratura de Gauss combinado con
interpolación polinómica.

Los resultados muestran que el cambio de variable v, per-
mite calcular la integral de Θ (8) (necesaria para determinar la
sección de dispersión) de forma más eficiente que el cambio tra-
dicional u. En particular, el cambio requiere una menor cantidad

de puntos de integración para alcanzar resultados adecuados, lo
cual se traduce en una reducción significativa del costo compu-
tacional. Por lo anteriormente mencionado, se sugiere que el
cambio de variable v constituye una alternativa robusta al enfo-
que convencional, manteniendo la precisión de los resultados y
mejorando la eficiencia del cálculo numérico.

Así este enfoque podría extenderse a otros problemas de
dispersión de diferentes escenarios de agujeros negros con un
mayor número de parámetros, donde la optimización de recur-
sos computacionales es de particular interés.

El repositorio de Github con todos los programas referen-
ciados se encuentra en:

https://github.com/Esmeom/Schwarzschild
————————————-
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