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Resumen

En este trabajo se analiza la seccion transversal de dispersion cldsica del agujero negro de Schwarzschild mediante una solucién
numérica que no hace uso del cambio de variable tradicional. Se introduce el nuevo cambio de variable con el objetivo de evitar
singularidades y optimizar el uso de recursos computacionales. La implementacién, desarrollada en Python, emplea el método de
cuadratura de Gauss junto con interpolacién polindmica. Los resultados obtenidos demuestran que el cambio propuesto mejora
significativamente la precision y la eficiencia del cdlculo, reduciendo los requerimientos computacionales en comparacién con el
enfoque convencional.
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Abstract

This work analyzes the classical scattering cross section of the Schwarzschild black hole through a numerical approach that
does not rely on the traditional change of variable. A new transformation is introduced with the aim of avoiding singularities and
optimizing the use of computational resources. The implementation, developed in Python, employs the Gauss quadrature method
in conjunction with polynomial interpolation. The results demonstrate that the proposed change significantly improves both the
accuracy and efficiency of the computation, while reducing the computational requirements compared to the conventional approach.

Keywords: Black hole, Scattering, Python, Numerical methods.

1. Introducciéon

A principios del Siglo XX con el nacimiento de la Relati-
vidad General, el ser humano descubrid la existencia de uno de
los objetos mads interesantes de los que se tenia registro hasta la
fecha, los Agujeros Negros. El primer aporte que se hizo sobre
este tema, fue realizado por Karl Schwarzschild en su articu-
lo titulado “Sobre el campo gravitacional de un punto de masa
segun la teoria de Einstein” (Schwarzschild (1916)), en el cual
describe una solucién de las ecuaciones de campo de Einstein
alrededor de una masa con simetria esférica sin rotacion.

Por otra parte, la importancia del estudio de los agujeros ne-
gros, ha jugado un papel fundamental en la caracterizacién de
sefiales de ondas gravitacionales como las detectadas por LIGO
y VIRGO (Abbott et al. (2016)). Tambien colaboraciones inter-
nacionales como Telescopio del Horizonte de Eventos (Akiya-
ma et al. (2022)) han logrado obtener la primera imagen de un
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agujero negro en 2022.

Para obtener propiedades fisicas de los agujeros negros,
es posible analizar los campos de prueba que los rodean. Por
ejemplo, un aspecto importante es el estudio de las trayectorias
geodésicas alrededor de los agujeros negros como en (Pedra-
za et al. (2021)) y ((Cer(’)n-Angeles et al., 2025)). También se
han estudiado la absorcién y dispersion de materia y campos,
dichos trabajos han aportado importantes aspectos sobre la fe-
nomenologia de los agujeros negros, dado que se han estudiado
en diversas configuraciones como por ejemplo agujeros negros
rodeados de quintaesencia estudiados por (Lépez-Suarez et al.
(2025)) y Ramirez et al. (2022).

El estudio de la dispersion en el contexto de los agujeros ne-
gros constituye un rea de interés relevante dentro de la fisica
tedrica y computacional, dado que para obtener la seccion dife-
rencial de dispersion de ondas parciales es aplicado el método
Runge-Kutta de cuarto a quinto orden o en el caso de la seccién
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diferencial clasica de dispersién se aplica integraciéon numérica
en muchos casos.

Como se sabe para un problema de dispersién clasica, las
ecuaciones resultantes son susceptibles a indeterminaciones
matemadticas en los puntos de retorno, para lo cual resulta con-
veniente aplicar cambios de variable adecuados para su solu-
cidn, para asi evitar esas singularidades puramente matematicas
y facilitar su solucién numérica. Tradicionalmente en la litera-
tura se usa el cambio de variable de u = % que facilita el manejo
de la integral a calcular para el dngulo de dispersion.

El cambio de variable estandar no es el tnico que se pue-
de implementar, es posible proponer otros como por ejemplo el
propuesto por Gezerlis (2023) para el caso de dispersion clasica
con el potencial de Yukawa. De manera andloga, en relatividad
general los cambios de coordenadas de Kruskal-Szekeres y de
Eddington-Finkelstein eliminan las singularidades de coorde-
nadas presentes en la métrica de Schwarzschild, lo cual, desde
el punto de vista de los métodos numéricos, facilita el trata-
miento computacional de soluciones cerca del horizonte.

Por lo anteriormente mencionado se propone hacer uso del

cambio de variable v =

A1 - % donde ry es un punto de re-
torno, para la resolucién numérica del problema de dispersion
cldsica de un agujero negro de Schwarzschild y contrastar los
resultados obtenidos con el cambio de variable usual, ademas
de discutir la conveniencia del uso de cada cambio de variable.
El trabajo estd organizado de la siguiente manera: En la sec-
cién 2 se presenta un breve resumen que permite obtener la
seccién de dispersion cldsica. En la seccion 3 se introduce y
analiza el cambio de variable estandar u = 1/r. Posteriormente,
en la seccion 4, se propone un nuevo cambio de variable v. La
seccién 5 describe la metodologia utilizada para implementar
ambos cambios de variable y obtener la seccién de dispersion
correspondiente. Los resultados se muestran en la seccién 6.
Finalmente, se presentan las conclusiones generales.

2. Dispersion clasica

Un método ampliamente utilizado para el andlisis de la sec-
cién transversal de dispersion es la aproximacion clasica. En es-
te marco, se considera que, en el régimen de altas frecuencias la
propagacion de la onda incidente concuerda con las geodésicas
nulas del espacio-tiempo, conforme al tratamiento presentado
por Collins et al. (1973). Tambien, el potencial efectivo gene-
rado por el agujero negro tendrd que cumplir forzosamente que
en el infinito, los efectos gravitacionales que ejerce sean nulos,
teniendo al menos un maximo de potencial.

Para geodésicas nulas, la densidad Lagrangiana que las des-
cribe estd dada de la forma

L= —%X”Xﬂ =0. 0]

Aqui la notacién X representa una derivada con respecto a T,
donde 7 representa un pardmetro afin a la geodésica. Conside-
rando también que se trata de un espacio-tiempo con simetria
esférica y estacionario entonces su diferencial de linea tiene la
siguiente forma:

ds® = —f(nde® + f(r)"'dr + r(d6* + sin*6dg),  (2)

y al obtener los momentos generalizados se puede observar la
existencia de constantes de movimiento. Al obtener el momento
con respecto a ¢ y con respecto a ¢, resulta evidente que corres-
ponden a la energia E' y al momento angular L respectivamente.

P = f(nNi=E. 3

P, = rzsenz&p =L. (€]

Considerando el movimiento en un plano con § = /2 y es-
cribiendo el lagrangiano (1) en términos de (3) y (4) se obtiene:

E? = % + Vopp(r), )
donde V,s7(r) se define como el potencial efectivo:
L2
Vers(r) = (ﬁ)f(rl (6)
Por lo que si se considera una relacién angular con r, (5)
adopta la forma
Lory 1 1
| == - = 7
(ﬂw) 5= =0, ()

donde el parametro de impacto estd definido como b = %
Si se asume que la interaccién entre la geodésica y el agujero
negro va disminuyendo con la distancia, entonces el movimien-
to se acerca asintoticamente a una linea recta, donde el 4ngulo

entre la direccidn inicial y final de movimiento se describe por

(®).

O(b) = 2¢(b) — . ®)

Aqui ¢ es el angulo que forma la direccién de la asintota
incidente con la direccion del peridpside, como se observa en la
Figura 1.

Figura 1: Dispersién de un potencial atractor

Dada las relaciones anteriores, es posible obtener la seccién
diferencial de dispersién o(®), que mide tanto se ha desviado
el haz original respecto a un angulo sélido (dQ2) por unidad de
tiempo por unidad de intensidad y estd definido por (9) donde b
es el pardmetro de impacto (ver Goldstein (1994)).

b; |db
0) = —_— == 9
79 Zsin@‘d@‘i ©)

La sumatoria en (9) considera el caso en el que la geodési-

ca nula rota varias veces alrededor del agujero negro antes de

dispersarse.
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3. Cambio de Variable u = %

Para poder calcular la seccion diferencial de dispersion (9),
es necesario obtener una relacién entre ® y b como se mues-
tra en (8). Usualmente, una forma de obtenerla es realizando el
cambio de variable u = % como es mostrado por Macedo et al.

(2015). Aplicando este cambio de variable en (7), se tiene

u\* 1 5
(%) = f(u). (10)

Se busca encontrar el dngulo de dispersion, por lo que inte-
grando respecto a u en (10), se tiene:

uo

o= f L (11)
0 +1/b%2—u2f(u)
donde 1 y O representan las condiciones de frontera, las cuales
se establecen a partir de observar el movimiento de la geodé-
sica. Ya que, como se sabe, esta viaja desde el infinito y llega
hasta una cierta distancia que garantiza dispersion al interactuar
con el agujero negro; si ambas condiciones de frontera se apli-
can considerando el cambio de variable, resultan en los limites
de integracién de (11).

Para encontrar el rango de valores adecuado de uy hay que
buscar el valor mdximo de u. Dado que en su punto maximo
el potencial efectivo garantiza Orbitas circulares inestables (ver
Figura 2), implica que en ese punto u# = u,, teniendo asi que
ug € (0, u.]. Entonces, para la obtencién de u, se minimiza (10)
por lo que tomando la segunda derivada e igualando a cero se
obtiene

d*u _ w? df(1/u)
de> 2 du
Por medio de (12) se puede obtener una u = u., la cual
al ser considerada en (11) se obtiene el valor del pardmetro de
impacto critico (b.).
Ahora bien, fijando u = ug en (10) es posible obtener una
relacién entre ugy y by de la siguiente forma:

—uf(1/u) = 0. (12)

1o(b) du
= (13)

0 uo(b) fuo(b)) — u? f (u)
Analizando (13) es notorio que el cambio de variable, si
bien ayuda en algunos aspectos como una convergencia mas
temprana, arrastra una singularidad cuando u tiende a uy.

4. Cambio de variablev = \/ - ’—r“

Cuando se desea calcular una integral definida de forma nu-
mérica, una de las complicaciones que pueden presentarse es
que el integrando tenga una singularidad en uno o en ambos li-
mites de integracién (como en la integral dada en (13). En tales
casos, para poder calcular la integral es necesario emplear un
cambio de variable adecuado que elimine la o las singularidades
presentes, el cual, por supuesto, depende fuertemente de la es-
tructura del integrando. Particularmente, en Gezerlis (2023) se
estudian varios ejemplos de este tipo de integrales y se propo-
nen distintos cambios de variable para su tratamiento. Especifi-
camente, en problemas de dispersion se sugiere la introduccion
del cambio de variable v.

El cambio de variable propuesto para solucionar el proble-

ma de dispersiénesv = /1 — r;”, esta version de cambio de va-

riable simplifica la integral pues se usan limites de integracién
fijos y también evita indeterminaciones cuando r toma valores
cercanos a ry, facilitando asf la resolucién numérica del proble-
ma. El punto de retorno (ver Figura 2) que se presenta en este
cambio de variable toma sus valores en el rango de ry € [r,, 00).
Al aplicar el cambio de variable v sobre (7), nuevamente se
obtiene ¢, en este caso debido a la forma de la variable.

1
dv
0= f : : (14)
0 " (1=

22 T T a2 f(V)

esta integral (14) se puede simplificar més al escribir el pardme-
tro de impacto en términos del punto de retorno ry, obteniendo

1
dv
so=f — (15)
O VAR - )

Noétese que en este caso no es necesario minimizar ningu-
na expresion, ya que el propio cambio de variable exige que se
sepa desde el principio el valor de ry, por lo que es necesario to-
mar un camino alternativo para obtener dicho valor. El camino
mds adecuado es partiendo del potencial efectivo (6), que debe
de cumplir la condicién V,rr(rp) = E? para un valor de b dado.

Para este trabajo se considera la solucién de un agujero ne-
gro de Schwarzschild, con elemento de linea dado por (2) donde
la funcién f(r) es:

frn=1- 27M (16)

donde M es la masa del agujero negro.

Remplazando f(r) en (6) se puede obtener el comporta-
miento del potencial efectivo. En la Figura (2), se observa los
valores que puede tomar r segtin su nivel energfa. El maximo de
potencial es aquel que representa a las orbitas circulares inesta-
bles con radio ., a todas las demads r’s después de este punto se
les denomina los puntos de retorno ry.

E=0.594

0.6

05

E=0.400

0.2

0.1

0.0

e o

Figura 2: Potencial efectivo para Schwarzschild, con M = 1y
L=4

Para la solucion de Schwarzschild es posible obtener que
u. = 1/3M y b, = 3V3M , pero no es asi para soluciones mas
complejas.
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5. Metodologia

Debido a la posible dificultad que puede implica obtener
una solucién analitica para las expresiones mencionadas pre-
viamente, la exploracién de distintos métodos numéricos resul-
ta necesaria, ya que permiten aproximaciones precisas.

En este trabajo, el problema central radica en la integracién
numérica, para la cual la cuadratura de Gauss - Legendre se
presenta como una opcidn altamente viable, puesto que se basa
en la aproximacién del valor de la integral por medio de una
suma ponderada de una funcién evaluada en puntos dentro del
intervalo de integracién y ha demostrado eficacia en investiga-
ciones relacionadas a gravitacion, ofreciendo resultados de alta
precision.

Si bien la solucién numérica facilita la resolucién de in-
tegrales complejas, no quita el hecho de tener que cuidar as-
pectos como la singularidad o convergencia, ya que, si la in-
tegral presenta una singularidad en algtin punto del intervalo
de integracién o exhibe una tasa de convergencia lenta puede
causar que el programa tenga salidas no numéricas en conjun-
to con advertencias tipo “Runt imeWarning” o errores tipo
“ZeroDivisionError” entre muchos otros. Existen distin-
tos tipos de singularidades como: singularidad en el limite su-
perior, singularidad en el limite inferior, singularidad en algin
punto del intervalo. De acuerdo a los diferentes tipos de sin-
gularidades expresadas, es necesario recurrir a un cambio de
variable especifico.

5.1.  Cambio de Variable u = %
Para la solucién numérica de la integral de (13) es necesario
obtener una lista de los valores maximos de la variable u para
asf evaluar el limite superior uy de integracién. Como ya se ha
mencionado, se parte de (10), definiendo asi la ecuacion cubi-
ca a resolver 2Mb*u? + b*u®> — 1 = 0, es necesario fijar a b en
funcién de M con el valor inicial de 3 V3M vy se puede variar
hasta un valor final de 10M, para cada valor de b se resuelve la
ecuacioén cubica usando la funcién de Numpy: np . roots.

5.2.  Cambio de Variablev = 1 = 2

r

A diferencia del cambio de variable anterior donde es nece-
sario obtener ug, para este caso es necesario hacer un anélisis de
los puntos de retorno ry desde (5) obteniendo 7> —b?r +2Mb* =
0, en la que andlogamente al caso anterior se defini6é a b en tér-
minos de M con los mismos valores iniciales y finales, y de
igual forma se resolvié haciendo uso de np . roots.

5.3. Integracion por Cuadratura de Gauss

Para la resolucién de las integrales planteadas (13) y (15),
se hace uso del método conocido como Cuadratura de Gauss
ya que éste, a diferencia de otros, como el método del trapecio o
el de Simpson, no requiere que los puntos de evaluacién se dis-
tribuyan uniformemente ya que éste utiliza nodos optimizados
y pesos asociados maximizando la exactitud del resultado.

En general el método permite una aproximacién de alta pre-
cision de integrales definidas, tal que;

1 n
f fodx= [ foodes Ywe. - an
¢ - i=1

Lo que se consigue realizando un cambio de variable tal que el
intervalo de integracién sea [-1,1] como se muestra en la segun-
da parte de (17), una vez llevado a este intervalo es necesario
establecer los nodos, los cuales se calculan usando las raices de
los polinomios de Legendre de grado n (P,(x)). El cambio de
variable que logra llevar la integral al intervalo [-1,1] estd dado
de la forma:

d-c

2

d+c
2 9’

X =

&+ (18)

lo cual implica que

d d-—c (" (d-c d+c
fcf(X)dx= 3 Ilf( > &+ 2 )d§~ (19)

En este trabajo se utiliza la funcién quad que se encuentra
en la libreria SciPy, donde en dicha funcién es posible defi-
nir elementos como los limites de integracidn, los pardmetros
del integrando asi como la funcién de peso entre otros. Dada la
naturaleza del problema no fue necesaria la implementacién de
una funcién de peso para la ponderacién del problema, asi mis-
mo se consideraron nodos igualmente espaciados determinados
por el paso implementado.

5.4. Derivada

Para poder obtener la seccion diferencial de dispersion (9),
es necesario obtener a %, para ello se usa el método de ajuste
polinémico.

Para el método, se realiza un ajuste polinémico ponderado
de grado trece, a los datos de b y ® obtenidos de la Integracion
por Cuadratura de Gauss (ya sea para u o v), el cual da un con-
junto de datos (x;,y;) con errores asociados o; puede estimar
los coeficientes a; de un polinomio de grado n — 1 minimizando
la suma de los errores cuadraticos ponderados de la forma:

N n—1 2
1
S(a) = E _'lyi_E axk| . (20)
iz1 7 k=0

Minimizando respecto a cada pardmetro a; y forzando que el
gradiente tome el valor de cero, es posible obtener un sistema
de ecuaciones lineales como se muestra (21).

n—1
ZAkjaj = bk, (21)
Jj=0

donde los elementos de Ay, denominada como la matriz de
disefio y by un vector independiente estan dados

s
N xiﬂ N y;Xf

Ag=2) “—, bkzzz—. (22)
’ c T - i

i=1 i=1

Este sistema se resuelve haciendo uso de la funcién de

numpy: linalg.solve (A, b) lacual en esencia utiliza el

método de factorizacién A = LU, con L una matriz triangular

inferior y U una matriz tridngular superior, con las cuales sim-

plifica el problema solucionando en su lugar:

= Lc = b por sustitucién hacia adelante.

» Ua = c por sustitucion hacia atrés.
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Finalmente se aplica una derivacién parcialmente simbélica
utilizando los coeficientes del polinomio ajustado usando reglas
normales de derivacién y evaluando en los mismos puntos.

También es posible hacer uso del método de diferencia cen-
4b " sin embargo no da el mejor

tral para obtener la derivada ol
resultado puesto que solo se evaldan las diferencias de los va-

lores de ® calculados, por lo que existe un rango donde este
método no proporciona informacién, lo cual exige considerar
un mayor niimero de puntos para su mejor aplicacion.

5.5.  Niimero de puntos tomados y tiempo de ejecucion

Dado que en el célculo se obtiene ® para cada b y en con-
secuencia la seccion diferencial, es importante tener en cuenta
que el nimero de puntos elegido para la ejecucién del célculo
repercute directamente en la forma de las soluciones obtenidas.

Con intencién de obtener la seccién de dispersion se ejecu-
t6 el programa Schwarchild_u con los pasos 0.1, 0.01, 0.001,
0.0001. Al obtener un buen resultado para la variable u con el

paso 0.0001 se probaron los mismos pasos para la variable v con
el programa Schwarchild_v midiendo el tiempo total de ejecu-
cion del programa y la calidad de la curva de la seccion diferen-
cial de dispersion segtin se aumentaba o disminuia el nimero de
puntos para comparar dichos resultados con los dos cambios de

variable.

o(©)

Una vez obtenida la comparacién directa punto a punto se
tomé como referencia la mejor gréfica producida por el progra-
ma Schwarchild_u para la automatizacién de todo el proceso
para la variable v tomando un espectro de nimero de puntos
mucho mds grande con pasos: 0.n, 0.0n, 0.00n y 0.000n con
1 < n < 9 (ver programa Automatizacion), con la intencién
de obtener aquel paso con el cual el proceso fuese optimizado
comparando las graficas, midiendo tanto el error relativo pro-

medio como el tiempo total de ejecucién y generando gréficas

de error relativo alrededor de toda la curva.

6. Resultados

En las Figuras 3 y 4 se muestran las secciones de disper-
sion obtenidas mediante los cambios de variable u y v, respec-
tivamente. Es posible denotar que un incremento en el niimero
de pasos conduce a una representacion mas suave de la curva
que representa la seccién de dispersion, lo cual es particular-
mente mas notorio en la regién correspondiente a los dngulos
140° < ©® < 180, donde las divergencias presentan un com-
portamiento mas pronunciado a menor nimero de pasos. No
fue hasta el paso de 0,0001 que se presenta en ambas variables

una curva suave similar a las reportadas por otros autores, por
ejemplo Lopez and Pedraza (2023) o Macedo et al. (2015)

Seccién diferencial de dispersién con cambio de variable u

10°

—— Paso: 0.0001
=== Paso: 0.1 =
10° T T T
20 40 60 80 100 120
©

140 160

Figura 3: Seccién diferencial de dispersién con un paso de 0.1
y 0.0001 para el cambio de variable u.

Seccién diferencial de dispersiéon con cambio de variable v

10°

102

oa(0)

10t

—— Paso: 0.0001
=== Paso: 0.1 H

10° f T r T - T
20 40 60 80 100 120 140
S]

Figura 4: Seccion diferencial de dispersién con un paso de 0.1
y 0.0001 para el cambio de variable v.

En la tabla 1 se muestra el tiempo de ejecucion para ambas
variables, con diferentes pasos. Es posible observar que en el
caso de cambio de v el tiempo es menor. Por lo que se puede
considerar que el cambio de variable v puede ser una adecuada
eleccién para estudiar soluciones con mayor nimero de pari-
metros como carga, parametro del estado de quintaesencia, de

materia oscura, etc.

variable u | variable v
Paso Tiempo (s)

0.1 1.4986 1.4267
0.01 1.8413 1.4354
0.001 6.7539 2.3165

0.0001 53.6730 11.0706

Tabla 1: Tiempos de ejecucion para ambos cambios de variable.
Obtenidos con un procesador Intel Core i5 13, 13500H, RAM

16 GB.

Finalmente, se realizé un andlisis considerando diferentes
valores del nimero de pasos n (véase Tabla 2) siendo n = 4 el
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que muestra menor error. Utilizando la variable u como refe-
rencia, se calcul6 el error relativo promedio entre las secciones
de dispersion obtenidas a partir de las variables u y v. Como se
muestra en la Figura 5, el error relativo tiende a incrementarse
para dngulos grandes, pero en términos generales, dicho error
es menor al 0.5 %.

[ Paso [ Error (%) | Tiempo(s) ||

0.004 0.16 0.8459
0.005 0.26 0.7724
0.0007 0.30 1.9254

Tabla 2: Mejores ejecuciones de la variable v con respecto a u.
Obtenidos con un procesador Intel Core i5 13¢, 13500H, RAM
16 GB.

Error relativo cambio v con respecto al cambio u con paso 0.004

—— Error relativo

Error relativo (%)
5
8

Figura 5: Grafica de error relativo con n = 4.

7. Conclusiones

En esta contribucién se ha obtenido la seccién de dispersion
clasica de un agujero negro de Schwarzschild mediante un en-
foque numérico que incorpora un cambio de variable denotado
por v, con el propésito de evaluar una alternativa al cambio de
variable estdndar u. La implementacion se realiz6 en Python,
utilizando el método de cuadratura de Gauss combinado con
interpolacién polinémica.

Los resultados muestran que el cambio de variable v, per-
mite calcular la integral de ® (8) (necesaria para determinar la
seccion de dispersion) de forma maés eficiente que el cambio tra-
dicional u. En particular, el cambio requiere una menor cantidad

de puntos de integracién para alcanzar resultados adecuados, lo
cual se traduce en una reduccioén significativa del costo compu-
tacional. Por lo anteriormente mencionado, se sugiere que el
cambio de variable v constituye una alternativa robusta al enfo-
que convencional, manteniendo la precision de los resultados y
mejorando la eficiencia del calculo numérico.

Asi este enfoque podria extenderse a otros problemas de
dispersion de diferentes escenarios de agujeros negros con un
mayor nimero de pardmetros, donde la optimizacién de recur-
sos computacionales es de particular interés.

El repositorio de Github con todos los programas referen-
ciados se encuentra en:

https://github.com/Esmeom/Schwarzschild
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