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Resumen

En este trabajo, se ha llevado a cabo un análisis asintótico, hasta el segundo orden en una expansión asintótica regular de la
interacción de ondas largas lineales con un rompeolas flotante impermeable de superficies onduladas. Primero, el oleaje interactua
con una pendiente constante del fondo marino y posteriormente impacta al rompeolas ondulado. Las superficies onduladas están
descritas por perfiles sinusoidales. Se analizan los efectos de tres parámetros geométricos diferentes sobre los coeficientes de
reflexión: La amplitud de las superficies onduladas, la longitud y el ancho de la estructura sumergida y la posición de la misma. Las
ecuaciones de gobierno se expresan en forma adimensional. La solución asintótica obtenida se comparó con las soluciones teóricas
reportadas en la literatura especializada.

Palabras Clave: Oleaje, Rompeolas flotante, Métodos Asintóticos, Parámetros adimensionales, Coeficiente de reflexión.

Abstract

In this work, an asymptotic analysis, up to the second order in a regular asymptotic expansion of the interaction of linear long
waves with an impermeable floating breakwater with undulating surfaces was carried out. First, the waves interact with a constant
slope seabed and then impact the undulating breakwater. The undulating surfaces are described by sinusoidal profiles. The effects
of three different geometric parameters on the reflection coefficients are analyzed: the amplitude of the undulating surfaces, the
length and width of the submerged structure, and its position. The governing equations are expressed in dimensionless form. The
asymptotic solution obtained was compared with theoretical solutions reported in the specialized literature.

Keywords: Water waves, Floating breakwater, Asymptotic method, Dimensionless parameters, Reflection coefficients.

1. Introducción

A lo largo de la lı́nea de costa existen numerosos asenta-
mientos humanos donde se realizan diversas actividades como
la pesca, el turismo y las actividades industriales, las cuales de-
ben ser protegidas con rompeolas debido a la acción erosiva del
oleaje. Los rompeolas se consideran estructuras costeras que
reducen la energı́a del oleaje aguas abajo de la estructura y,
por lo tanto, reducen la erosión costera y evitan el transporte
de sedimento proporcionando un refugio seguro. Los rompeo-
las se clasifican en: Plataformas marinas, muelles, islas, rom-
peolas y estructuras flotantes, (Wiegel, 1964). En particular las
ultimas estructuras tienen un rol importante en la hidráulica
marı́tima porque no deterioran el medio ambiente ya que pre-
sentan una mı́nima interferencia con la circulación del agua y
también pueden ser aprovechados como estructuras converti-

doras de energı́a WEC, por sus siglas en inglés (Wave Energy
Converter). En la literatura especializada se han propuesto di-
ferentes estructuras flotantes para mitigar la energı́a del olea-
je, enfocadas en las fuerzas inducidas por la propagación del
oleaje sobre la estructura flotante, (During y Shiau, 1956). Pa-
ra los rompeolas flotantes, la geometrı́a más utilizada es la de
un prisma rectangular. En este contexto, se han reportado varias
investigaciones analı́ticas, numéricas y experimentales relevan-
tes. Algunos estudios pioneros de la interacción entre el oleaje
y obstáculos rı́gidos fueron realizados por Stoker (1957), quien
analizó los coeficientes de reflexión y transmisión de la pro-
pagación del oleaje sobre una placa sumergida. Considerando
flujo potencial lineal Newman (1965), estudió la propagación
del oleaje sobre obstáculos largos y obtuvo los coeficientes de
reflexión y transmisión. Por otro lado, Mei y Black (1969) ana-
lizaron la dispersión de ondas de superficie infinitesimales que
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inciden sobre obstáculos rectangulares en un canal de profun-
didad finita, donde fueron considerados dos casos particulares:
1) Un obstáculo en el fondo marino y 2) un obstáculo en la su-
perficie. Además, Patarapanich (1984) estudió los coeficientes
de reflexión inducido por la interacción de ondas largas lineales
sobre una placa sumergida identificando que los coeficientes de
reflexión crecen alternativamente alcanzando un valor máximo
y posteriormente decrecen hasta llegar a cero. (Kanoria, 1999)
analizó la dispersión de ondas de agua superficial generada por
una pared gruesa sumergida con forma rectangular en un cuer-
po de agua de una profundidad finita. Las estructuras flotantes
también se utilizan como puentes provisionales, que se cono-
cen como pontones. En este contexto, basados en teorı́a lineal
del oleaje, (Drimer et al., 1992) estudiaron analı́ticamente el
comportamiento hidrodinámico debajo de un rompeolas flotan-
te tipo pontón, tambien conocidas como rompeolas tipo WEC.
Otros autores analizaron la hidrodinámica inducida por la inter-
acción del oleaje con un grupo de rompeolas. En esta dirección,
(Cheong y Patarapanich, 1992) usaron una técnica de descom-
posición espectral para obtenerlos coeficientes de reflexión y
transmisión para un sistema de doble placa horizontal. En el
análisis de la interacción entre el oleaje y rompeolas estudia-
ron fundamentalmente el fenómeno hidrodinámico de los co-
eficientes de reflexión y transmisión junto con la evolución en
el espacio y tiempo de la elevación de la superficie libre del
oleaje. En cuanto a la reflexión del oleaje, se ha identificado
que los fondos marinos ondulados pueden inducir resonancia en
el oleaje, condición que ocurre cuando la longitud de onda del
oleaje es el doble de la longitud de onda de la superficie ondula-
da, este interesante fenómeno es conocido como la resonancia
de Bragg y fue descubierto por primera vez por Bragg y Bragg
(1913), donde identificaron que la mayor reflexión de los rayos
X se produce cuando las ondas de rayos X se reflejan a través
de dos cristales paralelos, ya que el espacio entre los cristales
es múltiplo de la mitad de la longitud de las ondas de los ra-
yos X. En la hidráulica marı́tima se ha estudiado la reflexión de
Bragg para la interacción de las ondas de agua con fondos mari-
nos sinusoidales . Con respecto a la ondulación en el fondo del
mar, la dispersión resonante de Bragg de las ondas superficiales
también ha traı́do considerable atención como uno de los me-
canismos fundamentales que impulsan el desarrollo de barras
múltiples paralelas en lı́nea de costa, ya que estas superficies
onduladas pueden generar máximos valores del coeficiente de
reflexión. Con base en lo anterior, en la literatura especializada
se ha reportado la implementación de estructuras sumergidas
periódicas para la reflexión del oleaje. Según el conocimien-
to de los autores, solo hay cinco trabajos que estudiaron la in-
teracción del oleaje con rompeolas flotantes y sumergidos de
superficies onduladas. En este sentido, (Koraim, 2013) estudio
experimentalmente la eficiencia hidrodinámica de uno o más fi-
las horizontales de tubos divididos suspendidos sobre pilotes de
soporte. (Yueh et al., 2016) llevaron a cabo estudios numéricos
y experimentales para investigar las caracterı́sticas de la refle-
xión causada por rompeolas sumergidos compuestos de placas
onduladas. (Medina-Rodrı́guez et al., 2016) estudiaron la in-
teracción entre un rompeolas flotante sumergido de superficie
ondulada y ondas largas. Implementado el método de elemen-
to de frontera, (Yueh et al., 2018) determinaron el coeficiente
de reflexión de un rompeolas de placa ondulada impermeable

sumergida modelado como una estructura delgada o sin espe-
sor. Identificaron que, para el caso de rompeolas flotantes, la
geometrı́a más utilizada para reflejar el oleaje son las estructu-
ras rectangulares sumergidas con superficies planas. Para me-
jorar la capacidad de reflexión de los rompeolas sumergidas a
la acción del oleaje con alto flujo de energı́a se requiere que las
estructuras sumergidas aumenten sus dimensiones geométricas.
Para evitar lo anterior, se han propuesto sistemas de rompeolas
sumergidos de superficies planas, es decir, estructuras robustas
y de placas. En trabajos especializados esta reportado que no es
necesario aumentar las dimensiones geométricas de las estruc-
turas para mejorar su capacidad reflectante. Para lograr una ma-
yor cantidad de energı́a reflejada se debe modificar la relación
espesor y longitud de la estructura y aproximar la superficie lisa
a una superficie ondulada.

Recientemente Bautista. et al. (2022) determinaron los co-
eficientes de reflexión y transmisión de un sistema de dos rom-
peolas de placa ondulada sumergidos considerando un fondo
marino uniforme. Partiendo de ésta condición en la presente in-
vestigación se analiza la interacción de un fondo marino de geo-
metrı́a variable con una estructura rompeolas identificando los
parámetros adimensionales dominantes, en la literatura espe-
cializada esta reportado que el oleaje perturbado por el cambio
geométrico del fondo marino se debe de tomar encuenta para la
optimización de estructuras costeras convertidoras de energı́a.

2. Materiales y Métodos

2.1. Planteamiento del problema

En este trabajo se considera la interacción entre ondas largas
de agua unidimensionales de amplitud incidente AI , frecuen-
cia de onda ω = 2π/Tw, donde Tw es el perı́odo de oleaje. El
oleaje se propaga de izquierda a derecha sobre un suelo rı́gido
impermeable de profundidad variable. En el sistema de coor-
denadas cartesianas seleccionado, la dirección positiva del eje
x es hacia la derecha, con origen en la unión entre las regio-
nes R1 donde la profundidad del tirante de agua es contantes,
h1 con dominio −∞ ≤ x ≤ 0 y la región R2 donde se presenta
el cambio geométrico h(x) del suelo marino con 0 ≤ x ≤ L. La
estructura rompeolas se presenta entre las regiones R3 y R4 don-
de las profundidades h2 y h3 indican la posición del rompeolas,
respectivamente.

h2

h1

h3

h4

h(x)

R1

R2

R3
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x

zAI

AR
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Figura 1: Vista en perfil del modelo fı́sico en estudio.

El oleaje se propaga con una amplitud proveniente del
oceáno, al interactuar con la pendiente y estructuras rompeo-
las parte de la energı́a se refleja con una amplitud AR y parte
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se transmite con una amplitud AT en la región R5 donde la pro-
fundidad es de h4 en el dominio L ≤ x ≤ ∞, como se mues-
tra en la Figura 1. Adicionalmente, se asume que el fondo es
impermeable; sin embargo, los extremos laterales del sistema
están completamente abiertos al flujo del fluido. En particular,
se asume que en la región R1 existe oleaje incidente y refleja-
do, mientras que en la región R5 unicamente hay presencia de
oleaje transmitido.

Las expresiones en variables fı́sicas que definen las ondula-
ciones en las superficies horizontales de las placas en las regio-
nes R3 y R4, están dadas por las siguientes funciones:

d2 = h2 − As sin
[
mπ

(
x − L

L1 − L

)]
(1)

y

d3 = h3 − As sin
[
mπ

(
x − L

L1 − L

)]
. (2)

Donde m representa el numéro de ondulaciones en la super-
ficie del rompeolas

El planteamiento del modelo matemático, considera las si-
guientes hipótesis:

Se usa la teorı́a lineal de ondas largas con amplitu-
des pequeñas, definida por el número de Ursell Ur =

(AI/h1)/(kh2)2 ≪ 1 con AI/h1 ≪ 1 y kh1 ≪ 1.

Debido a que la capa lı́mite que se genera por la interac-
ción del oleaje y la estructura es muy pequeña comparada
con la profundidad, los efectos viscosos se pueden des-
preciar y por lo tanto se asume que el flujo es potencial.

Se asume un fluido incompresible, debido a que no exis-
ten variaciones de la densidad del agua en el espacio y en
el tiempo.

La superficie de la estructura son onduladas adoptando
perfiles sinusoidales con seccón transversal rectangular.

El rompeolas es rı́gido e impermeable.

El cambio geométrico en el lecho marino de la región R2
tiene la forma con respecto a una pendiente constante.

El suelo marino en todas las regiones se consideran rigi-
das e impermeables.

2.2. Ecuaciones de gobierno fisicas

El estudio de ondas largas es de primordial importancia pa-
ra los ingenieros y cientı́ficos en el diseño de puertos y estruc-
turas marı́timas, lo cual permite obtener información relevan-
te de su interacción con estructuras marı́timas. El estudio de
la interacción del oleaje con estructuras, se ha realizado usan-
do diferentes técnicas de análisis como son: Las herramientas
analı́ticas, numéricas y experimentales, está segunda con el uso
de las computadoras han reducido significativamente la dificul-
tad del análisis de la hidrodinámica del oleaje, cuando este se
propaga sobre geometrı́as complejas. Sin embargo las solucio-
nes analı́ticas constituyen una herramienta fundamental para la
comprensión de los diferentes mecanismos hidrodinámicos de
las ondas largas.

2.2.1. Ecuaciones de gobierno para las regiones R1, R2, R3 y
R5

El movimiento del fluido en las regiones R1, R2, R3 y R5
se modelan usando las ecuaciones de flujo somero propuestas
por (Mei. et al., 2005), donde el movimiento es dominante en
el eje x debido a que las velocidades verticales en el eje z son
muy pequeñas comparadas con las horizontales y la ecuación
de gobierno se escribe la siguiente forma,

d
dx

[
h(x)

dψ j

dx

]
+
ω2

g
ψ j = 0; para j = 1 y 5. (3)

Donde g es la constante de gravedad, la relación (3) es váli-
da para ondas largas lineales que se propagan en las regiones
R1,R2,R3 y R5. Como se observa en la ecuación (3), la superfi-
cie libre del oleaje es únicamente una función de la coordenada
x.

La ecuación de gobierno que describe la variación de la su-
perficie libre en la región R2 es la siguiente:

d
dx

[
h(x)

dψ2

dx

]
+
ω2

g
ψ2 = 0, para 0 ≤ x ≤ L (4)

y para la región R3 es

d
dx

[
d2(x)

dψ3

dx

]
+
ω2

g
ψ3 = 0, para −d2(x) < z < 0 y L ≤ x ≤ L1.

(5)
Los potenciales de velocidad en la regiones R1 y R5 se es-

criben de la siguiente forma,

ψ1 = −i
gAI

ω

[
eik1 x + Re−ik1 x

]
(6)

y

ψ5 = −i
gAI

ω
Teik2(x−L1). (7)

Donde R = AR/AI y T = AT /AI son los coeficientes de re-
flexión y transmisión del oleaje, respectivamente. La amplitud
del oleaje reflejado está descrito por AR. La solución analı́tica
de la región R2 se muestra a continuación.

2.3. Ecuaciones de gobierno para las regiones R2 y R4

Para la región R2 se incluye el cambio del fondo marino a
tráves de la siguiente función definida por partes,

h (x) =


h1 si x = 0[

h4−h1
L

]
x + h1 si 0 ≤ x ≤ L

h4 si L ≤ x ≤ L1.

(8)

De la relación anterior cuando x = 0 se tiene un fondo con-
tante h1, para el caso de la región donde hay un cambio de va-
riable h(x) incluye una pendiente constante. Sustituyendo (8)
en (3) se obtiene la siguiente relación,

d
dx

[[(
h4 − h1

L

)
x + h1

]
dψ2

dx

]
+
ω2

g
ψ2 = 0, con 0 ≤ x ≤ L.

(9)
La ecuación diferencial ordinaria, (9) describe el comporta-

miento hidrodinámico de la región R2 incluyendo el cambio en
la batimetrı́a del suelo marino.

Por otro lado para la región R4, se asume que existen varia-
ciones de la velocidad vertical como una consecuencia de las
ondulaciones en las paredes del rompeolas.Tomando en cuenta
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que el flujo es no viscoso, incompresible e irrotacional, en el
presente trabajo se usa la teoriá de flujo potencial. La ecuación
de gobierno en el dominio de flujo de la region R4 es la ecuación
de Laplace

∂2ϕ4(x, z, t)
∂x2 +

∂2ϕ4(x, z, t)
∂z2 = 0, con R4. (10)

Para un flujo irrotacional y oleaje armónico, las componen-
tes de velocidad del flujo pueden expresarse en términos de la
siguiente función escalar

ϕ4(x, z, t) = ℜ[ψ4(x, z)e−iωt]. (11)

Incluyendo (11) en (10) el potencial de velocidad ψ4, el cual
es valido en el intervalo L ≤ x ≤ L1, satisface la ecuación de
Laplace

∂2ψ4(x, z)
∂x2 +

∂2ψ4(x, z)
∂z2 = 0, para R4, −h4 ≤ z ≤ −d3. (12)

Las condiciones de frontera en las paredes rı́gidas conteni-
das en la región R4 son las siguientes

∂ψ4

∂z
+
∂d3(x)
∂x

∂ψ4

∂x
= 0, en z = −d3(x) (13)

y
∂ψ4

∂z
= 0, en z = −h4. (14)

En la relación (13), el segundo termino del lado izquierdo
de la igualdad representa el efecto de la ondulación de la super-
ficie. Para un valor constante de d3 se obtiene la condición de
frontera para una placa sumergida de superficie uniforme.

2.4. Condiciones de frontera laterales

Para resolver el sistema de ecuaciones diferenciales (3), (6),
(7) y (12), se requiere de condiciones de frontera de acopla-
miento. Las condiciones de frontera de acoplamiento se dedu-
cen apartir de la ecuaciones de conservación de presión y masa
en la interfaz entre regiones. El acoplamiento de las regiones R1
y R2 con x = 0 se expresa como:

dψ1

dx
=

dψ2

dx
. (15)

Y para las regiones R2,R3 y R4 en x = L se tiene∫ 0

−h4

dψ2

dx
dz =

∫ 0

−h2

dψ3

dx
dz +

∫ −h3

−h4

dψ4

dx
dz, (16)

de forma semejante, la conservación de masa en el acoplamien-
to de las regiones R3,R4 y R5 en x = L1 se expresa de la si-
guiente manera∫ 0

−h4

dψ5

dx
dz =

∫ 0

−h2

dψ3

dx
dz +

∫ −h3

−h4

dψ4

dx
dz. (17)

Y de la continuidad de la presión, entre las regiones R1 y R2
es

ψ1 |x=0= ψ2 |x=0 . (18)

De manera similar a la condición de frontera (18), la con-
tinuidad de la presión entre las regiones R2,R3 y R4 en x = L,
resulta

ψ2 |x=L= ψ3 |x=L (19)

y
ψ2 |x=L= ψ4 |x=L . (20)

Siguiendo el mismo procedimiento de (20) la continuidad
de la presión en las regiones R3,R4 y R5 en x = L1 se obtiene

ψ3 |x=L1= ψ5 |x=L1 (21)

y
ψ4 |x=L1= ψ5 |x=L1 . (22)

En la siguiente sección se presenta la versión adimensional
de las ecuaciones de gobierno con sus respectivas condiciones
de frontera.

2.5. Ecuaciones de gobierno adimensionales

Con la finalidad de disminuir el numéro de combinaciones
posibles de las variables fı́sicas involucradas, las ecuaciones de
gobierno se presentan en forma adimensional. Para llevar a cabo
lo anterior, se proponen las escalas caracterı́sticas pertinentes.
En las regiones R1 y R5, las escalas espaciales en la dirección
x es la longitud de onda λ1 y λ2, las cuales están relacionadas
con los numéros de onda k1 = 2π/λ1 y k2 = 2π/λ2. Para la re-
gión R2 la escala caracterı́stica horizontal es la longitud L. Por
otro lado la escala caracterı́stica horizontal en las regiones R3 y
R4 esta dada por L1 − L, mientras que la correspondiente para
la superficie libre del oleaje, es la amplitud del oleaje incidente
AI . Con base en lo anterior, las variables adimensionales estan
relacionadas y son obtebidas con los valores caracterı́sticos del
modelo.

χ1 = k1x, χ4 = k2x, χ2 =
x
L
, χ3 =

x − L
L1 − L

, (23)

Z1 =
z

h1
, Z3 =

z
h2
, Z4 =

z + h3

h4 − h3
, Z5 =

z
h4

H(x) =
h(x)
h1

, ϕ j =
ψ j(x, z)

gAI
ω

for j = 1 − 5.

Los perfiles sinosuidales (1) y (2) en términos de las varia-
bles adimensionales se expresan de la siguiente forma:

D2 = 1 − ε2 sin(αχ3) (24)

y
D3 = ε3 sin(αχ3). (25)

Donde,

ε2 =
As

h2
, ε3 =

As

h4 − h3
y α = mπ. (26)

El término As corresponde a la amplitud de la ondulación de
la superficie de la estructura rompeolas. Para llevar a cabo un
análisis asintótico, se considera que el parámetro ε ≪ 1 y que
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ε2 ∼ O(ε), ε3 ∼ O(ε). El significado fı́sico de ε ≪ 1 es con-
siderar que la amplitud de la pared ondulada As es mucho más
pequeña que la profundidad h2, de manera similar la amplitud
As es mucho más pequeña de las separación entre el bloque y el
fondo marino.

2.6. Ecuación de gobierno adimensional para la región R2

Introduciendo las variables adimensionales (23) en (9) y
realizando el algebra correspondiente se obtiene la siguiente re-
lación

κ
d2ϕ2

dχ2
2

+ κ

[
(γ − 1)

(γ − 1)χ2 + 1

]
dϕ2

dχ2
+

1
[(γ − 1)χ2 + 1]

ϕ2 = 0, (27)

donde el parámetro adimensional

κ =
1

k2
1L2

. (28)

Donde k1 es el numero de onda y equivale a k1 = 2π/λ1
donde λ1 es la longitud de onda, por otro lado el parámetro
γ = h4/h1. El término (27) es una ecuación diferencial ordi-
naria de segundo orden , lineal y homogénea que corresponde
a la ecuación de gobierno que describe la hidrodinámica de la
región R2.

2.7. Ecuación de gobierno adimensional para la región R3

De manera similar para adimensionalizar la ecuación de go-
bierno de la región R3 se incluyen las variables adimensionales
(23) en (5) donde se obtiene la ecuación diferencial de gobierno
para la región R3 como sigue,

d
dχ3

[
D2

dϕ3

dχ3

]
+
µ2

2

Γ2
ϕ3 = 0. (29)

Donde Γ2 = h2/h4 y µ2 = k2(L1 − L), son parámetros adi-
mensionales y k2 = 2π/λ es el número de onda y λ equivale a
la longitud de onda, el rango (L1 − L) es dominio sobre el cual
se encuentra la estructura rompeolas flotante.

2.8. Ecuación de gobierno adimensional para la región R4

Siguiendo el procedimiento anterior, (23) se sustituye en los
términos (12), (13) y (14) determinando la ecuación diferencial
adimensional de la región R4 y sus respectivas condiciones de
frontera

[
Γ4φ

µ2

]2
∂2ϕ4

∂χ2
3

+
∂2ϕ4

∂Z2
4

= 0 con − 1 ≤ Z4 ≤ D3 y 0 ≤ χ3 ≤ 1.

(30)
Donde el parámetro Γ4 = (h4 − h3)/h4 y φ = k2h4. La ecua-

ción diferencial (30) se debe resolver con las siguientes condi-
ciones de frontera adimensionales:

∂ϕ4

∂Z4
−

[
Γ4φ

µ2

]2
∂D3

∂χ3

∂ϕ4

∂χ3
= 0 con Z4 = D3 (31)

y
∂ϕ4

∂Z4
= 0 con Z4 = −1. (32)

Por otro lado tomando en cuenta las variables adimensiona-
les (23) en (6) y (7), se obtienen las soluciones analı́ticas que
modelan la propagación del oleaje en las regiones R1 y R5, las
cuales están dadas por los siguientes terminos, para la región R1

ϕ1 = −i[eiχ1 + Re−iχ1 ] (33)

y para la región R2 se tiene

ϕ5 = −iTei(χ4−µ4). (34)

Respectivamente, donde µ4 = k2L1.

2.9. Condiciones de frontera de conservación de masa

La versión adimensional de las condiciones de frontera de
conservación de masa (16) y (17), están dadas por las siguientes
ecuaciones:

∫ 0

−1

dϕ2

dχ2
|χ2=1 dZ5 =

Γ2µ3

µ2

∫ 0

−1

∂ϕ3

∂χ3
|χ3=0 dZ3 +

Γ4µ3

µ2

∫ 0

−1

dϕ4

dχ3
|χ3=0 dZ4 (35)

y ∫ 0

−1

dϕ5

dχ2
|χ4=k2L1 dZ5 =

Γ2

µ2

∫ 0

−1

∂ϕ3

∂χ3
|χ3=1 dZ3 +

Γ4

µ2

∫ 0

−1

dϕ4

dχ3
|χ3=1 dZ4. (36)

2.10. Condiciones de frontera de continuidad de presiones

Las condiciones de frontera de la continuidad de presiones
(15), (18), (19), (20), (21) y (22), se expresan en la forma si-
guiente:

dϕ1

dχ1
(0) =

1
µ

dϕ2

dχ2
(0), ϕ1(0) = ϕ2(0), (37)

ϕ2(1) = ϕ3(0), ϕ2(1) = ϕ4(0) (38)

y
ϕ3(1) = ϕ5(k2L1), ϕ4(1) = ϕ5(k2L1). (39)

Donde µ = k1L.

2.11. Métodogı́a de solución

A continuación se presentan las diferentes metodologı́as
analı́ticas para obtener las soluciones de las ecuaciones de go-
bierno de las regiones R2, R3 y R4. Para resolver la ecuación
diferencial de la region R2 se usa el método asintótico conoci-
do en la literatura especializada como WKB, esto debido a la
forma que tiene la ecuación diferencial donde una de las prin-
cipales caracterı́sticas es que la derivada de mayor orden de la
ecuación diferencial multiplique un parámetro de orden menor
que la unidad.
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2.12. Solución analı́tica aproximada

En este trabajo se busca una solución para el potencial de
velocidades ϕ j, para j = 1, 2, 3, 4, 5 y para el coeficiente de re-
flexión R y el coeficiente de transmisión T las expansiones se
llevan a cabo como sigue

ϕ = ϕ0 + εϕ1 + ε
2ϕ2, (40)

R = R0 + εR1 + ε
2R2 (41)

y
T = T0 + εT1 + ε

2T2. (42)

Las correciones R1,R2, T1 y T2 se determinan de forma es-
calonada obteniendo la primera aproximacı́on R0 y T0.

2.13. Soluciones asintóticas para las regiones R1 y R5

Sustituyendo (41) y (42) en los potenciales de la región R1
y R5, (33) y (34) respectivamente, se obtienen las siguientes
ecuaciones:

Para el orden O(ε0)

ϕ1,0 = −i[eiχ1 + R0e−iχ1 ] (43)

y
ϕ5,0 = −iT0ei(χ4−µ4). (44)

Para el orden O(ε1)

ϕ1,1 = −iR1e−iχ1 (45)

y
ϕ5,1 = −iT1ei(χ4−µ4). (46)

Para el orden O(ε2)

ϕ1,2 = −iR2e−iχ1 (47)

y
ϕ5,2 = −iT2e−i(χ4−µ4). (48)

Las constantes R0, T0,R1, T1,R2 y T2 se obtienen imple-
mentando las condiciones de frontera de acoplamiento defini-
das por (35)-(39).

2.14. Solución asintótica para la región R2 usando el Método
WKB

Una ecuación diferencial perturbada singularmente es aque-
lla en la que un pequeño parámetro multiplica el término de la
derivada de mayor orden. Esto a menudo conduce a una so-
lución que cambia muy rapidamente en regiones muy estrechas
del dominio, lo que hace que la solución sea muy inestable y di-
ficil de calcular numéricamente. El método de Tikhonov sirve
para estabilizar la solución de este tipo de problemas, Tikhonov
(1963). Otra forma de obtener la solución de la ecuaciones di-
ferenciales es mediante el método de perturbación WKB (Wen-
zel, Kramers y Brillouin) donde la solución aproximada (27)
se determina en el lı́mite asintótico κ ≪ 1. La técnica WKB
puede aplicarse cuando la ecuación diferencial que describe el
fenómeno en estudio es lineal y la derivada de orden superior
está multiplicada por el parámetro κ . Cabe precisar que para

usar esta técnica, no importa si la ecuación diferencial está ex-
presada en variables fı́sicas o en forma adimensional. Desde el
punto de vista fı́sico, el parámetro κ establece que los efectos
gravitatorios son dominados por los efectos cinemáticos. Para
aplicar la técnica de perturbación WKB, (27) se transforma a su
forma canónica, usando la transformación de Liouville, presen-
tada por (Milson, 1998) y se obtiene su solución análitica como
sigue:

ϕ2(χ2) =
1

(χ2(1 − γ) − 1)1/4

[
c ei F(χ2)

√
κ + d e−i F(χ2)

√
κ

]
. (49)

Donde F(χ2) se calcula a partir de la siguiente relación

F(χ2) =
∫

1√
(γ − 1)χ2 + 1

dχ2. (50)

Para obtener los ordenes de la solución de la region R2, se
obtiene sustituyendo (40) en (49) como sigue:

ϕ2,0(χ2) =
1

(χ2(1 − γ) − 1)1/4

[
c0 ei F(χ2)

√
κ + d0 e−i F(χ2)

√
κ

]
, (51)

ϕ2,1(χ2) =
1

(χ2(1 − γ) − 1)1/4

[
c1 ei F1(χ2)

√
κ + d1 e−i F1(χ2)

√
κ

]
(52)

y

ϕ2,2(χ2) =
1

(χ2(1 − γ) − 1)1/4

[
c2 ei F2(χ2)

√
κ + d2 e−i F2(χ2)

√
κ

]
. (53)

2.15. Solución asintótica para la region R3

Sustituyendo (40) en (29) y ordenando algebráicamente los
terminos obtenemos las siguientes relaciones,

para el orden ε0

d2ϕ3,0

dχ2
3

+
µ2

2

Γ2
ϕ3,0 = 0. (54)

Para el orden ε1

d2ϕ3,1

dχ2
3

+
µ2

2

Γ2
ϕ3,1 =

d
dχ3

[
sin θ

dϕ3,0

dχ3

]
(55)

y para el orden ε2

d2ϕ3,2

dχ2
3

+
µ2

2

Γ2
ϕ3,2 =

d
dχ3

[
sin θ

dϕ3,1

dχ3

]
. (56)
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2.16. Solución asintótica para la región R4

Una de las complicaciones para obtener la solución asintóti-
ca del problema que se estudia, es que las condiciones de fron-
tera son uniformes, debido a que las paredes de los rompeolas
tienen un perfil sinusoidal. Para resolver esta condición, se pro-
pone una linealización de las condiciones de frontera, la cual
se hace mediante la aplicación del método de perturbacióon del
dominio. La idea básica de este método es reemplazar las con-
diciones de frontera (31) y (32) con una condición de frontera
aproximada que es asintóticamente equivalente para ε ≪ 1, pe-
ro ahora aplicada en las superficies de las coordenadas Z4 = 0
y Z4 = −1. El método de perturbación del dominio conduce a
una expansión regular en el parámetro ε ≪ 1. Para llevar a ca-
bo lo anterior, primero se utiliza una aproximación en series de
Taylor para ϕ4 obteniéndose las siguientes ecuaciones:

ϕ4 |Z3=−D3= ϕ2 |Z4=0 +εc(χ)
∂ϕ4

∂Z3
|Z4=−1 +

ε2c2(χ)
2

∂2ϕ4

∂Z2
4

|Z4=−1 +O(ε3).

(57)
Sustituyendo (57) en (31) y (32) y agrupando las ecuaciones

con sus respectivos ordenes, resultan las siguientes expresiones
matemáticas.

Para el orden ε0 se tiene,

[
Γ4φ

µ2

]2
∂2ϕ4,0

∂χ2
3

+
∂2ϕ4,0

∂Z2
4

= 0 − 1 < Z4 < 0 0 ≤ χ3 ≤ 1, (58)

ϕ4,0

∂Z4
= 0 en Z4 = 0 (59)

y
ϕ4,0

∂Z4
= 0 en Z4 = −1. (60)

Para el orden ε1 se tiene[
Γ4φ

µ2

]2
∂2ϕ4,1

∂χ2
3

+
∂2ϕ4,1

∂Z2
4

= 0 − 1 < Z4 < 0 0 ≤ χ3 ≤ 1, (61)

∂ϕ4,1

∂Z4
+ sin θ

∂2ϕ4,0

∂Z2
4

−

[
Γ4φ

µ2

]2
∂ sin θ
∂χ3

∂ϕ4,0

∂χ3
= 0 en z4 = 0 (62)

y
∂ϕ4,1

∂Z4
= 0 en Z4 = −1. (63)

Por ultimo para el orden ε2 resultaron las siguientes relacio-
nes,[
Γ4φ

µ2

]2
∂2ϕ4,2

∂χ2
3

+
∂2ϕ4,2

∂Z2
4

= 0 − 1 < Z4 < 0 0 ≤ χ3 ≤ 1, (64)

∂ϕ4,2

∂Z4
+ sin θ

∂2ϕ4,1

∂Z2
4

+
sin2 θ

2
∂3ϕ4,0

∂Z3
4

−

[
Γ4φ

µ2

]2
∂ sin θ
∂χ3

∂ϕ4,1

∂χ3

−

[
Γ4φ

µ2

]2
∂ sin θ
∂χ3

∂

∂χ3

(
sin θ

∂ϕ4,0

∂Z4

)
= 0 en Z4 = 0 (65)

y

∂2ϕ4,2

∂Z2
4

= 0 en Z4 = −1. (66)

Para la aproximación de ondas largas, la solución analı́tica
(58)-(60), para el problema del orden O(ε0), la cual se obtiene
usando el método de separación de variables, está dada como
sigue

ϕ4,0 = S 40χ3 + J40. (67)

Donde S 40 y J40 son constantes desconocidas que se obtie-
nen con las condiciones de frontera de acoplamiento horizontal.
Como puede verse en (67), éstas tienen un comportamiento li-
neal y no dependen del eje vertical Z.

La aproximación para el problema del orden O(ε1), se obie-
ne sustituyendo (67) en (62) transformandose en la siguiente
ecuación

∂ϕ4,1

∂Z4
= S 40

[
Γ4φ

µ2

]2
∂ sin θ
∂χ3

en z4 = 0. (68)

Resolviendo (68) se obtiene la solución de ϕ4,1. Tomando
en cuenta los valores de ϕ4,0 y ϕ4,1 y sustituyendo las solucio-
nes en (64), (65) y (66) se obtiene el valor de ϕ4,2. Una vez
calculando los diferentes ordenes del potencial de velocidad ϕ j

desde j = 1, 2, 3, 4 y 5, los ordenes de R j = 1, 2, 3, 4 y 5 con sus
repectivas condiciones de fronteras, se obtendra el potencial de
velocidad ϕ y el coeficiente de reflexión R partiendo de un sis-
tema simultáneo de ecuaciones algebráicas, lo anterior se logró
implementando técnicas de programación computacional.

3. Resultados

A continuación se analizan los efectos que tienen los dis-
tintos parámetros fı́sicos adimensionales en la reflexión de la
energı́a del oleaje, generada por su interacción con un rom-
peolas flotante de superficies onduladas incluyendo el efecto
de una batimetria con pendiente constante. Primeramente, se
presenta la comparación de los resultados del presente modelo
matemático contra los obtenidos por Patarapanich (1984). Pos-
teriormente, se muestran resultados de los efectos de las dife-
rentes condiciones de oleaje, longitud de la estructura, sumer-
gimiento, número y amplitud de las ondulaciones incluyendo el
efecto de una superficie del fondo marino no uniforme, está ul-
tima es una de la aportaciones ingenieriles del presente trabajo.

3.1. Comparación del presente modelo matemático con resul-
tados analı́ticos de Patarapanich (1984)

En la Tabla 1 se presentan los valores fı́sicos del oleaje y
de la geometrı́a del rompeolas utilizados para el cálculo de los
parámetros adimensionales del modelo matemático propuesto:
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Tabla 1: Valores fı́sicos del oleaje y rompeolas

Profundidad en R1 (h1) 20m
Profundidad (Posición del rompeolas) (h2) 10m
Profundidad (Posición del rompeolas) (h3) 11m

Profundidad en R5 (h4) 15m
Longitud horizontal de la pendiente (L) 3500m

Aceleración de la gravedad (g) 9.81m/s2

Número de ondulaciones del rompeolas (m) 8
Longitud de onda (λ) 500m
Longitud de onda (λ1) 703.7m

La solución del presente modelo matemático se comparó
con los resultados reportados por Patarapanich (1984). Patara-
panich analizó la reflexión del oleaje generada por la interac-
ción de ondas largas lineales con una placa lisa horizontal muy
delgada y sumergida. Para el presente modelo matemático el va-
lor del parámetro de perturbación que permite recobrar el pro-
blema de una placa lisa sumergida, implica que ε = 0, lo cual
fı́sicamente significa que no existen ondulaciones y h3 se apro-
xima a h2, y para un fondo constante la profundidad h4 tiende a
h1.
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(Patarapanich, 1984)

Figura 2: Comparación de la solución del modelo matemático con respecto a
Patarapanich (1984).

En la Figura 2 se muestra la aproximación de la solución
del modelo matemático propuesto con respecto al estudio de
(Patarapanich, 1984) y en donde se puede identificar que am-
bas soluciones tienen una buena aproximación. Por otro lado
en la misma figura se muestra el efecto que tiene el paráme-
tro de posición Γ2 = h2/h1, se observa que conforme decrece
el parámetro Γ2 la energı́a reflejada aumenta, esto quiere decir
que se presenta una mayor reflexión conforme la estructura se
acerca a la superficie libre.

3.2. Comparación de estructuras de superficie lisa y super-
icies onduladas incluyendo el cambio batimétrico

En las Figura 3 se presenta la comparación de dos casos.
Caso 1 : Un rompeolas de superficie lisa donde ε = 0 y m = 0

incluyendo un fondo marino variable y Caso 2 : Un rompeo-
las de superficie ondulada con ε = 0.1 y m = 5 incluyendo un
fondo marino de superficie variable.
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Figura 3: Comparación de los coeficientes de reflexión R de un rompeolas liso
y un rompeolas ondulado.

En la Figura 3 se muestra que para una batimetrı́a con pen-
diente constante cuando µ → 0 el coeficiente de reflexión para
un rompeolas de superficie lisa es R = 0.0987 y para un rom-
peolas de superficie ondulada R = 0.0994, lo cual quiere decir
que se presenta una mayor reflexión cuando el rompeolas tie-
ne una superficie ondulada. En la misma grafica se aprecia que
cuando µ → 0.14 el coeficiente de reflexión aumenta para una
superficie ondulada, por otro lado para una estructura de super-
ficie lisa el coeficiente de reflexión decrece.

4. Discución y Conclusiones

Con base en la teorı́a lineal de ondas largas, se analizó la
interacción del oleaje con una estructura sumergida de superfi-
cie ondulada incluyendo el efecto de un fondo marino variable,
misma que es una aportación del presente trabajo. Para la super-
ficie ondulada el cambio obedece a una distribución sinusoidal.
La solución del modelo matemático se comparo con las solu-
ciones analı́ticas de Patarapanich (1984), mostrando una buena
aproximación.

Las conclusiones principales se pueden resumir en la forma
siguiente:

Cuando aumenta en magnitud el parámetro de perturba-
ción ε, se puede observar que los coeficientes de reflexión
crecen de manera importante. Esto fı́sicamente indica que
habrá más oleaje reflejado, en caso de una zona portuaria,
ayudarı́a a disipar los efectos del oleaje sobre las estruc-
turas en el puerto. Por otro lado para estructuras flotantes
con dispositivos integrados de conversión de energı́a el
cambio geométrico de la superficie de la estructura po-
dria aumentar su eficiencia energética.

Se aprecia en la soluciones que antes que interactue el
oleaje con la estructura, el oleaje ya presenta una refle-
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xión del orden de R = 0.1, esto se debe al cambio del fon-
do marino. En esta condición cuando el oleaje se propaga
sobre la pendiente constante sus propiedades cinemáticas
cambian aumentando la energı́a potencial del oleaje que
podra ser captado por el convertidor de energı́a.

En los resultados se observa que el número de ondulacio-
nes presenta un efecto muy importante en la reflexión del
oleaje, cuando el parámetro m crece el coefciente de re-
flexión R va en aumento, esto quiere decir que para tener
una mayor reflexión es necesario aumentar el número de
ondulaciones condiciones que pueden ser aprovechadas
para aumentar la eficiencia energética en las estructuras
convertidoras de energı́a.

El modelo matemático que se propone en este trabajo pue-
de usarse como una referencia práctica para identificar, como
primera aproximación, las caracteristicas geometricas que debe
presentar el rompeolas para una mayor cantidad de energı́a re-
flejada tomando en cuenta el efecto de cambio geométrico del
fondo marino.
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