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Resumen

En este trabajo, se ha llevado a cabo un andlisis asintético, hasta el segundo orden en una expansidn asintética regular de la
interaccion de ondas largas lineales con un rompeolas flotante impermeable de superficies onduladas. Primero, el oleaje interactua
con una pendiente constante del fondo marino y posteriormente impacta al rompeolas ondulado. Las superficies onduladas estdn
descritas por perfiles sinusoidales. Se analizan los efectos de tres pardmetros geométricos diferentes sobre los coeficientes de
reflexién: La amplitud de las superficies onduladas, la longitud y el ancho de la estructura sumergida y la posicién de la misma. Las
ecuaciones de gobierno se expresan en forma adimensional. La solucién asintética obtenida se comparé con las soluciones tedricas
reportadas en la literatura especializada.
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Abstract

In this work, an asymptotic analysis, up to the second order in a regular asymptotic expansion of the interaction of linear long
waves with an impermeable floating breakwater with undulating surfaces was carried out. First, the waves interact with a constant
slope seabed and then impact the undulating breakwater. The undulating surfaces are described by sinusoidal profiles. The effects
of three different geometric parameters on the reflection coefficients are analyzed: the amplitude of the undulating surfaces, the
length and width of the submerged structure, and its position. The governing equations are expressed in dimensionless form. The
asymptotic solution obtained was compared with theoretical solutions reported in the specialized literature.

Keywords: Water waves, Floating breakwater, Asymptotic method, Dimensionless parameters, Reflection coefficients.

1. Introducciéon doras de energia WEC, por sus siglas en inglés (Wave Energy
Converter). En la literatura especializada se han propuesto di-

A lo largo de la linea de costa existen numerosos asenta- ferentes estructuras flotantes para mitigar la energia del olea-
mientos humanos donde se realizan diversas actividades como  je, enfocadas en las fuerzas inducidas por la propagacion del
la pesca, el turismo y las actividades industriales, las cuales de- ~ ©oleaje sobre la estructura flotante, (During y Shiau, 1956). Pa-

ben ser protegidas con rompeolas debido a la accién erosivadel ~ ra los rompeolas flotantes, la geometria mds utilizada es la de
oleaje. Los rompeolas se consideran estructuras costeras que  Un prisma rectangular. En este contexto, se han reportado varias

reducen la energfa del oleaje aguas abajo de la estructura y, investigaciones analiticas, numéricas y experimentales relevan-
por lo tanto, reducen la erosién costera y evitan el transporte tes. Algunos estudios pioneros de la interaccidn entre el oleaje
de sedimento proporcionando un refugio seguro. Los rompeo- Y obstdculos rigidos fueron realizados por Stoker (1957), quien
las se clasifican en: Plataformas marinas, muelles, islas, rom- analiz6 los coeficientes de reflexion y transmision de la pro-

peolas y estructuras flotantes, (Wiegel, 1964). En particular las pagaci(’)n de.l ole.aje sobre una placa sumergi.da. Consideragdo
ultimas estructuras tienen un rol importante en la hidraulica  flujo potencial lineal Newman (1965), estudio la propagacion

maritima porque no deterioran el medio ambiente ya que pre- del oleaje sobre obsticulos largos y obtuvo los coeficientes de
sentan una minima interferencia con la circulacién del agua y  reflexiony transmisién. Por otro lado, Mei y Black (1969) ana-
también pueden ser aprovechados como estructuras converti- lizaron la dispersién de ondas de superficie infinitesimales que
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inciden sobre obsticulos rectangulares en un canal de profun-
didad finita, donde fueron considerados dos casos particulares:
1) Un obstéculo en el fondo marino y 2) un obsticulo en la su-
perficie. Ademads, Patarapanich (1984) estudi6 los coeficientes
de reflexién inducido por la interaccion de ondas largas lineales
sobre una placa sumergida identificando que los coeficientes de
reflexién crecen alternativamente alcanzando un valor maximo
y posteriormente decrecen hasta llegar a cero. (Kanoria, 1999)
analiz6 la dispersion de ondas de agua superficial generada por
una pared gruesa sumergida con forma rectangular en un cuer-
po de agua de una profundidad finita. Las estructuras flotantes
también se utilizan como puentes provisionales, que se cono-
cen como pontones. En este contexto, basados en teoria lineal
del oleaje, (Drimer et al., 1992) estudiaron analiticamente el
comportamiento hidrodindmico debajo de un rompeolas flotan-
te tipo pontén, tambien conocidas como rompeolas tipo WEC.
Otros autores analizaron la hidrodindmica inducida por la inter-
accién del oleaje con un grupo de rompeolas. En esta direccion,
(Cheong y Patarapanich, 1992) usaron una técnica de descom-
posicion espectral para obtenerlos coeficientes de reflexion y
transmision para un sistema de doble placa horizontal. En el
andlisis de la interaccion entre el oleaje y rompeolas estudia-
ron fundamentalmente el fenémeno hidrodindmico de los co-
eficientes de reflexion y transmision junto con la evolucién en
el espacio y tiempo de la elevacion de la superficie libre del
oleaje. En cuanto a la reflexién del oleaje, se ha identificado
que los fondos marinos ondulados pueden inducir resonancia en
el oleaje, condicién que ocurre cuando la longitud de onda del
oleaje es el doble de la longitud de onda de la superficie ondula-
da, este interesante fendmeno es conocido como la resonancia
de Bragg y fue descubierto por primera vez por Bragg y Bragg
(1913), donde identificaron que la mayor reflexién de los rayos
X se produce cuando las ondas de rayos X se reflejan a través
de dos cristales paralelos, ya que el espacio entre los cristales
es multiplo de la mitad de la longitud de las ondas de los ra-
yos X. En la hidrdulica maritima se ha estudiado la reflexion de
Bragg para la interaccion de las ondas de agua con fondos mari-
nos sinusoidales . Con respecto a la ondulacién en el fondo del
mar, la dispersién resonante de Bragg de las ondas superficiales
también ha traido considerable atencién como uno de los me-
canismos fundamentales que impulsan el desarrollo de barras
multiples paralelas en linea de costa, ya que estas superficies
onduladas pueden generar maximos valores del coeficiente de
reflexién. Con base en lo anterior, en la literatura especializada
se ha reportado la implementacién de estructuras sumergidas
periddicas para la reflexién del oleaje. Segtn el conocimien-
to de los autores, solo hay cinco trabajos que estudiaron la in-
teraccion del oleaje con rompeolas flotantes y sumergidos de
superficies onduladas. En este sentido, (Koraim, 2013) estudio
experimentalmente la eficiencia hidrodindmica de uno o més fi-
las horizontales de tubos divididos suspendidos sobre pilotes de
soporte. (Yueh et al., 2016) llevaron a cabo estudios numéricos
y experimentales para investigar las caracteristicas de la refle-
xién causada por rompeolas sumergidos compuestos de placas
onduladas. (Medina-Rodriguez et al., 2016) estudiaron la in-
teraccion entre un rompeolas flotante sumergido de superficie
ondulada y ondas largas. Implementado el método de elemen-
to de frontera, (Yueh et al., 2018) determinaron el coeficiente
de reflexion de un rompeolas de placa ondulada impermeable

sumergida modelado como una estructura delgada o sin espe-
sor. Identificaron que, para el caso de rompeolas flotantes, la
geometria mds utilizada para reflejar el oleaje son las estructu-
ras rectangulares sumergidas con superficies planas. Para me-
jorar la capacidad de reflexion de los rompeolas sumergidas a
la accién del oleaje con alto flujo de energia se requiere que las
estructuras sumergidas aumenten sus dimensiones geométricas.
Para evitar lo anterior, se han propuesto sistemas de rompeolas
sumergidos de superficies planas, es decir, estructuras robustas
y de placas. En trabajos especializados esta reportado que no es
necesario aumentar las dimensiones geométricas de las estruc-
turas para mejorar su capacidad reflectante. Para lograr una ma-
yor cantidad de energia reflejada se debe modificar la relacién
espesor y longitud de la estructura y aproximar la superficie lisa
a una superficie ondulada.

Recientemente Bautista. et al. (2022) determinaron los co-
eficientes de reflexion y transmision de un sistema de dos rom-
peolas de placa ondulada sumergidos considerando un fondo
marino uniforme. Partiendo de ésta condicién en la presente in-
vestigacion se analiza la interaccién de un fondo marino de geo-
metria variable con una estructura rompeolas identificando los
parametros adimensionales dominantes, en la literatura espe-
cializada esta reportado que el oleaje perturbado por el cambio
geométrico del fondo marino se debe de tomar encuenta para la
optimizacién de estructuras costeras convertidoras de energia.

2. Materiales y Métodos

2.1.  Planteamiento del problema

En este trabajo se considera la interaccién entre ondas largas
de agua unidimensionales de amplitud incidente A;, frecuen-
cia de onda w = 2n/T,,, donde T, es el periodo de oleaje. El
oleaje se propaga de izquierda a derecha sobre un suelo rigido
impermeable de profundidad variable. En el sistema de coor-
denadas cartesianas seleccionado, la direccién positiva del eje
x es hacia la derecha, con origen en la unién entre las regio-
nes R; donde la profundidad del tirante de agua es contantes,
h; con dominio —co < x < 0y la region R, donde se presenta
el cambio geométrico h(x) del suelo marinocon 0 < x < L. La
estructura rompeolas se presenta entre las regiones R3 y R4 don-
de las profundidades h, y h3 indican la posicion del rompeolas,
respectivamente.
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Figura 1: Vista en perfil del modelo fisico en estudio.

El oleaje se propaga con una amplitud proveniente del
ocedno, al interactuar con la pendiente y estructuras rompeo-
las parte de la energia se refleja con una amplitud Ag y parte
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se transmite con una amplitud A7 en la regién Rs donde la pro-
fundidad es de /4 en el dominio L < x < co, como se mues-
tra en la Figura 1. Adicionalmente, se asume que el fondo es
impermeable; sin embargo, los extremos laterales del sistema
estdn completamente abiertos al flujo del fluido. En particular,
se asume que en la regién R; existe oleaje incidente y refleja-
do, mientras que en la regién Rs unicamente hay presencia de
oleaje transmitido.

Las expresiones en variables fisicas que definen las ondula-
ciones en las superficies horizontales de las placas en las regio-
nes R3 y R4, estan dadas por las siguientes funciones:

dy = hy — A, sin [mﬂ(Lx]_—LL)] )
d3 = ]’l3 - A_Y sin [mﬂ(zlili‘)} . (2)

Donde m representa el numéro de ondulaciones en la super-
ficie del rompeolas

El planteamiento del modelo matemadtico, considera las si-
guientes hipdtesis:

= Se usa la teoria lineal de ondas largas con amplitu-
des pequeiias, definida por el nimero de Ursell U, =
(Ar/hy)/(khy)* < 1 con Aj/hy < 1ykh < 1.

= Debido a que la capa limite que se genera por la interac-
cién del oleaje y la estructura es muy pequefia comparada
con la profundidad, los efectos viscosos se pueden des-
preciar y por lo tanto se asume que el flujo es potencial.

= Se asume un fluido incompresible, debido a que no exis-
ten variaciones de la densidad del agua en el espacio y en
el tiempo.

= La superficie de la estructura son onduladas adoptando
perfiles sinusoidales con seccon transversal rectangular.

= El rompeolas es rigido e impermeable.

= El cambio geométrico en el lecho marino de la regién R,
tiene la forma con respecto a una pendiente constante.

= El suelo marino en todas las regiones se consideran rigi-
das e impermeables.

2.2.  Ecuaciones de gobierno fisicas

El estudio de ondas largas es de primordial importancia pa-
ra los ingenieros y cientificos en el disefio de puertos y estruc-
turas maritimas, lo cual permite obtener informacién relevan-
te de su interaccién con estructuras maritimas. El estudio de
la interaccién del oleaje con estructuras, se ha realizado usan-
do diferentes técnicas de andlisis como son: Las herramientas
analiticas, numéricas y experimentales, estd segunda con el uso
de las computadoras han reducido significativamente la dificul-
tad del andlisis de la hidrodindmica del oleaje, cuando este se
propaga sobre geometrias complejas. Sin embargo las solucio-
nes analiticas constituyen una herramienta fundamental para la
comprension de los diferentes mecanismos hidrodindmicos de
las ondas largas.

2.2.1.  Ecuaciones de gobierno para las regiones Ry, Ry, R3 y
Rs
El movimiento del fluido en las regiones R;, R,, R3 y Rs
se modelan usando las ecuaciones de flujo somero propuestas
por (Mei. et al., 2005), donde el movimiento es dominante en
el eje x debido a que las velocidades verticales en el eje z son
muy pequeflas comparadas con las horizontales y la ecuacién
de gobierno se escribe la siguiente forma,
dy;

d

W?
+—y;=0; para j=1y 5. 3)
dx g

Donde g es la constante de gravedad, la relacion (3) es vali-
da para ondas largas lineales que se propagan en las regiones
Ri,R>,R3 y Rs. Como se observa en la ecuacion (3), la superfi-
cie libre del oleaje es inicamente una funcién de la coordenada
X.

La ecuacion de gobierno que describe la variacién de la su-
perficie libre en la regién R; es la siguiente:

d d 2
. h(x)ﬂ + 2 yy=0, para 0<x<L “4)
dx dx g
y para la regién R; es
d d 2
|22 +Z gy =0, para —dy(x) <z <0y L<x<Ly.
dx dx g

&)
Los potenciales de velocidad en la regiones R; y Rs se es-
criben de la siguiente forma,

A . .
vy = 5L [er 4 Rk ©)
w
g A
s = —iS2L T pitG-Lo) %)
w

Donde R = Ag/A; y T = Ar/A; son los coeficientes de re-
flexién y transmision del oleaje, respectivamente. La amplitud
del oleaje reflejado estd descrito por Ag. La solucién analitica
de la regién R, se muestra a continuacion.

2.3.  Ecuaciones de gobierno para las regiones R, y R4

Para la regién R, se incluye el cambio del fondo marino a
traves de la siguiente funcion definida por partes,

hy six=0
R =4[22 x+h sio<x<L 8)
hy si L<x<L,.

De la relacién anterior cuando x = 0 se tiene un fondo con-
tante A, para el caso de la regién donde hay un cambio de va-
riable h(x) incluye una pendiente constante. Sustituyendo (8)
en (3) se obtiene la siguiente relacion,

W?
+?¢2:0, con 0<x<L.

d |[{hs— M dir
(T e 2
©)

La ecuacion diferencial ordinaria, (9) describe el comporta-
miento hidrodindmico de la regién R, incluyendo el cambio en
la batimetria del suelo marino.

Por otro lado para la region R4, se asume que existen varia-
ciones de la velocidad vertical como una consecuencia de las
ondulaciones en las paredes del rompeolas. Tomando en cuenta
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que el flujo es no viscoso, incompresible e irrotacional, en el
presente trabajo se usa la teorid de flujo potencial. La ecuacién
de gobierno en el dominio de flujo de la region R4 es la ecuacion
de Laplace

8 pa(x,2,1) N Pa(x,2,1)

Fy o =0, con Ry. (10)

Para un flujo irrotacional y oleaje arménico, las componen-
tes de velocidad del flujo pueden expresarse en términos de la
siguiente funcién escalar

$a(x,2, 1) = R[Pa(x, 2)e”"]. QY

Incluyendo (11) en (10) el potencial de velocidad ¥4, el cual
es valido en el intervalo L < x < L, satisface la ecuacion de
Laplace

PYa(x,2) N Pa(x,2)

2 P —hy <7< —ds. (12)

=0, para Ry,

Las condiciones de frontera en las paredes rigidas conteni-
das en la region R4 son las siguientes

Oy Ods(x) s

= = — 1
o O 0, en z=-d3(x) (13)
g P
Wi 0, en z=—ha (14)
0z

En la relacién (13), el segundo termino del lado izquierdo
de la igualdad representa el efecto de la ondulacién de la super-
ficie. Para un valor constante de d3 se obtiene la condicion de
frontera para una placa sumergida de superficie uniforme.

2.4. Condiciones de frontera laterales

Para resolver el sistema de ecuaciones diferenciales (3), (6),
(7) y (12), se requiere de condiciones de frontera de acopla-
miento. Las condiciones de frontera de acoplamiento se dedu-
cen apartir de la ecuaciones de conservacion de presion y masa
en la interfaz entre regiones. El acoplamiento de las regiones R
y R, con x = 0 se expresa como:

= . 1
dx dx (15

Y para las regiones R, R3 y R4 en x = L se tiene

0 —h3
f“ W2 oo [ W3y f Wiy (6
_hy dx _n, dx

—hy dx ha
de forma semejante, la conservacion de masa en el acoplamien-
to de las regiones R3,R4 y Rs en x = L; se expresa de la si-
guiente manera

d
f £dz=
—hy dx

Y de la continuidad de la presion, entre las regiones R y R,

0 —hg
dﬂdz + f %dz. (17)
_ dx

—hy dx ha

€S

Vi1 |x:0: /53 |x:0 . (18)

De manera similar a la condicién de frontera (18), la con-
tinuidad de la presién entre las regiones Ry, R3 y Ry en x = L,
resulta

o |e=1= Y3 |x=t (19)

1,02 |x=L: 1/14 |x=L . (20)

Siguiendo el mismo procedimiento de (20) la continuidad
de la presion en las regiones R3, R4 y Rs en x = L; se obtiene

!//3 |x:L|= l»bS |x:L1 (21)

U4 =0, = Y5 |x=L, - (22)

En la siguiente seccion se presenta la version adimensional
de las ecuaciones de gobierno con sus respectivas condiciones
de frontera.

2.5.  Ecuaciones de gobierno adimensionales

Con la finalidad de disminuir el numéro de combinaciones
posibles de las variables fisicas involucradas, las ecuaciones de
gobierno se presentan en forma adimensional. Para llevar a cabo
lo anterior, se proponen las escalas caracteristicas pertinentes.
En las regiones R; y Rs, las escalas espaciales en la direccion
x es la longitud de onda A; y A5, las cuales estan relacionadas
con los numéros de onda k| = 2n/A; y k, = 21/ ;. Para la re-
gién R, la escala caracteristica horizontal es la longitud L. Por
otro lado la escala caracteristica horizontal en las regiones R3 y
R, esta dada por L; — L, mientras que la correspondiente para
la superficie libre del oleaje, es la amplitud del oleaje incidente
A;. Con base en lo anterior, las variables adimensionales estan
relacionadas y son obtebidas con los valores caracteristicos del
modelo.

X x—L
= kiX, x4 = kax, Yo = =, y3 = i 23
X1 =kix, xa=kpx, xo = 7. X3 L-L (23)
Z Z 7+ h3 z
Zi= = ==, Zy= , Zs= —
1 e 3 I 4 e — s 5 s
h i(X,
Hixy = ' Viled) a1,

Los perfiles sinosuidales (1) y (2) en términos de las varia-
bles adimensionales se expresan de la siguiente forma:

D, =1 — g sin(ays) (24)
y
D3 =&3 sin(a/\/g). (25)
Donde,
A A,
== = u = mn. 26
& I &3 h4—h3ya mn (26)

El término A, corresponde a la amplitud de la ondulacién de
la superficie de la estructura rompeolas. Para llevar a cabo un
analisis asint6tico, se considera que el pardmetro € <« 1y que
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& ~ O(e), &3 ~ O(¢). El significado fisico de ¢ <« 1 es con-
siderar que la amplitud de la pared ondulada A es mucho mas
pequeiia que la profundidad /,, de manera similar la amplitud
A, es mucho més pequeiia de las separacion entre el bloque y el
fondo marino.

2.6. Ecuacion de gobierno adimensional para la region R,
Introduciendo las variables adimensionales (23) en (9) y
realizando el algebra correspondiente se obtiene la siguiente re-
lacién
d2
K 2 + K
d)(%

-1 ]d¢2 N 4 =0. 27

=Dxa+1]dys [(y—-1x2+1]

donde el pardmetro adimensional
K= ——. (28)

Donde k; es el numero de onda y equivale a k; = 271/4,
donde A; es la longitud de onda, por otro lado el pardmetro
v = hy/hy. El término (27) es una ecuacién diferencial ordi-
naria de segundo orden , lineal y homogénea que corresponde
a la ecuacion de gobierno que describe la hidrodindmica de la
region R;.

2.7.  Ecuacion de gobierno adimensional para la region R

De manera similar para adimensionalizar la ecuacién de go-
bierno de la regién Rj3 se incluyen las variables adimensionales
(23) en (5) donde se obtiene la ecuacion diferencial de gobierno
para la regién R3 como sigue,

d d¢3] 13
— |D— |+ =¢3 =0. (29)
dy;3 [ Yd | T #s

Donde I'; = hy/hy y o = ko(Ly — L), son parametros adi-
mensionales y k; = 27/ es el nimero de onda y A equivale a
la longitud de onda, el rango (L; — L) es dominio sobre el cual
se encuentra la estructura rompeolas flotante.

2.8.  Ecuacion de gobierno adimensional para la region Ry

Siguiendo el procedimiento anterior, (23) se sustituye en los
términos (12), (13) y (14) determinando la ecuacién diferencial
adimensional de la regién R4 y sus respectivas condiciones de
frontera

=0con -1<Z4<D3;y0<y;<1.

(30)

Donde el pardmetro I'y = (hy — h3)/hs y ¢ = kahy. La ecua-

cion diferencial (30) se debe resolver con las siguientes condi-
ciones de frontera adimensionales:

[n_sor Pps  Ps
K2 | 0x3 (3Z2

0y [FM] 0D3 0¢p4
M2

——=0 Zy=D 31
0Z, Ox3 Oxs3 con £ : ©1)

p)
% =0 con Zy = —1. (32)

Por otro lado tomando en cuenta las variables adimensiona-
les (23) en (6) y (7), se obtienen las soluciones analiticas que
modelan la propagacién del oleaje en las regiones R; y Rs, las
cuales estdn dadas por los siguientes terminos, para la region R

¢1 = —ile"! + Re™'] (33)
y para la regién R, se tiene
¢s = —iTe' ), (34)

Respectivamente, donde py = kp L.

2.9. Condiciones de frontera de conservacion de masa

La versidén adimensional de las condiciones de frontera de
conservacion de masa (16) y (17), estdn dadas por las siguientes
ecuaciones:

d D 1—‘2 3 a 3
f dé ly,=1 dZs = 248 il lys=0 dZ3 +
-1

x> e Joi dxs
| Y7 f dey
—_— dz 35
i e, lys=0 dZ4 (35)
y
d¢5 8¢';
L dyy el 4% = ,U_ 0)(3 b1 25 +
Iy d¢4
— dz,. 36
0 d){ |)(3 1 4 ( )

2.10. Condiciones de frontera de continuidad de presiones

Las condiciones de frontera de la continuidad de presiones
(15), (18), (19), (20), (21) y (22), se expresan en la forma si-
guiente:

deé, 1 d¢2

—( )= —=—(0), ¢1(0) = ¢2(0), (37)
1%
#2(1) = ¢3(0), ¢2(1) = ¢4(0) (33)
y
¢3(1) = ¢s(kaL1),  Pa(l) = ¢s(kaLy). (39)

Donde y = kL.

2.11. Meétodogia de solucion

A continuacién se presentan las diferentes metodologias
analiticas para obtener las soluciones de las ecuaciones de go-
bierno de las regiones R, R3; y R4. Para resolver la ecuacion
diferencial de la region R, se usa el método asintético conoci-
do en la literatura especializada como WKB, esto debido a la
forma que tiene la ecuacién diferencial donde una de las prin-
cipales caracteristicas es que la derivada de mayor orden de la
ecuacion diferencial multiplique un pardmetro de orden menor
que la unidad.
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2.12.  Solucion analitica aproximada

En este trabajo se busca una solucién para el potencial de
velocidades ¢, para j = 1,2,3,4,5 y para el coeficiente de re-
flexion R y el coeficiente de transmisién 7 las expansiones se
llevan a cabo como sigue

¢ = o+ &1 + £, (40)

R =Ry + &R, + &R, (41)
y

T =Ty +&Ty +&Ts. (42)

Las correciones Ry, R,, T1 y T, se determinan de forma es-
calonada obteniendo la primera aproximacion Ry y 7.

2.13.  Soluciones asintéticas para las regiones Ry y Rs

Sustituyendo (41) y (42) en los potenciales de la region R,
y Rs, (33) v (34) respectivamente, se obtienen las siguientes
ecuaciones:

Para el orden O(&%)

b10 = —i[eX! + Rye 1] (43)
y A
¢s0 = —iToe" 7). (44)
Para el orden O(g')
¢11 = —iRje™ 45)
y .
ps.1 = —iT e+, (46)
Para el orden O(&?)
P12 = —iRe™ 47
y o
5o = —iTre W H), (48)

Las constantes Ry, To,R1,T1,R, y T> se obtienen imple-
mentando las condiciones de frontera de acoplamiento defini-
das por (35)-(39).

2.14. Solucion asintotica para la region R, usando el Método
WKB

Una ecuacion diferencial perturbada singularmente es aque-
lla en la que un pequefio pardmetro multiplica el término de la
derivada de mayor orden. Esto a menudo conduce a una so-
lucién que cambia muy rapidamente en regiones muy estrechas
del dominio, lo que hace que la solucién sea muy inestable y di-
ficil de calcular numéricamente. El método de Tikhonov sirve
para estabilizar la solucién de este tipo de problemas, Tikhonov
(1963). Otra forma de obtener la solucién de la ecuaciones di-
ferenciales es mediante el método de perturbacién WKB (Wen-
zel, Kramers y Brillouin) donde la solucién aproximada (27)
se determina en el limite asint6tico x < 1. La técnica WKB
puede aplicarse cuando la ecuacion diferencial que describe el
fendmeno en estudio es lineal y la derivada de orden superior
estd multiplicada por el pardmetro x . Cabe precisar que para

usar esta técnica, no importa si la ecuacién diferencial esta ex-
presada en variables fisicas o en forma adimensional. Desde el
punto de vista fisico, el pardmetro k establece que los efectos
gravitatorios son dominados por los efectos cinemdticos. Para
aplicar la técnica de perturbacion WKB, (27) se transforma a su
forma candnica, usando la transformacién de Liouville, presen-
tada por (Milson, 1998) y se obtiene su solucién andlitica como
sigue:

1

[ —= —iM
m[ce VW +de ¥ |. 49)

d2(x2) =

Donde F(x») se calcula a partir de la siguiente relacion

(50)

1
F()():f—d .
? Jo-Dnl v

Para obtener los ordenes de la solucién de la region R;, se
obtiene sustituyendo (40) en (49) como sigue:

1 i) i)
¢2,0(X2)=m[606 ¥ +dye W], (5D
1 iNh) i)
$2.1(x2) = =y — DI [Cl e Vv +die * ] (52)
y
1 i2%) _ih22)
$22(x2) = (=)D [Cz e +dye W ] (53)

2.15.  Solucion asintotica para la region Rs

Sustituyendo (40) en (29) y ordenando algebrdicamente los
terminos obtenemos las siguientes relaciones,

para el orden &°

Para el orden &'
d;fgl + llf—fffm = % [sin HKZZO} (55)
y para el orden &
Pha i, 4 [sinedﬁ]. (56)
dy; 77 dy dys
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2.16.  Solucion asintotica para la region Ry

Una de las complicaciones para obtener la solucién asint6ti-
ca del problema que se estudia, es que las condiciones de fron-
tera son uniformes, debido a que las paredes de los rompeolas
tienen un perfil sinusoidal. Para resolver esta condicidn, se pro-
pone una linealizacién de las condiciones de frontera, la cual
se hace mediante la aplicacién del método de perturbaciéon del
dominio. La idea basica de este método es reemplazar las con-
diciones de frontera (31) y (32) con una condicién de frontera
aproximada que es asintéticamente equivalente para € < 1, pe-
ro ahora aplicada en las superficies de las coordenadas Zy = 0
y Z4 = —1. El método de perturbacién del dominio conduce a
una expansion regular en el pardmetro &£ < 1. Para llevar a ca-
bo lo anterior, primero se utiliza una aproximacion en series de
Taylor para ¢4 obteniéndose las siguientes ecuaciones:

g2 (x) 074
2 or

0
&4 |z,=—D,= $2 |z,=0 +SC(X)£ lz,=—1 +

(57
Sustituyendo (57) en (31) y (32) y agrupando las ecuaciones
con sus respectivos ordenes, resultan las siguientes expresiones
matematicas.
Para el orden £° se tiene,

2 2
ol o K
[ip} P40 0040 g _1<z,<0 0sys< 1. (58)
H2 6/\{3 0z,
f;iz’zzo en Z,=0 (59)
Y ¢
6%’:0 en Z,=-1. (60)

Para el orden &' se tiene

[rzt_<ﬁr Ppay N Ppa
H2 a3 072

=0 -1<Z4<0 0<y3<1, (6]

sy . ag [rwr 0sin 0 ¢4 0
~ +sin 6@ — —|—| ————=0enzz=0 (62
0Z4 ! 0z2 ) Oxs Oxs3 “ (©2)
Y 0
a¢z4: =0en Z =-1. (63)

Por ultimo para el orden & resultaron las siguientes relacio-
nes,

Ty & &
[ip} bra 02 o 1z, c0 0<ys<, (64)
2 2
H2 X3 0Z;
99s2 o 932¢4,1 sin” 0 B¢ [Hsﬁ]z dsinf A4,
624 (323 2 822 M2 (9/\/3 (9X3

[F4<p]2(')sin9 0 ( Odao
- — — |siné@

=0en Z4=0 (65)
Mo | Oxs Oxs 324) ¢

|zi=-1 +O(&).

y

s
0z;

=0en Z; =-1. (66)

Para la aproximacion de ondas largas, la solucién analitica
(58)-(60), para el problema del orden O(&°), la cual se obtiene
usando el método de separacion de variables, estd dada como
sigue

¢a0 = Saox3 + Jao. (67)

Donde S 49 y Ja40 son constantes desconocidas que se obtie-
nen con las condiciones de frontera de acoplamiento horizontal.
Como puede verse en (67), éstas tienen un comportamiento li-
neal y no dependen del eje vertical Z.

La aproximaci6n para el problema del orden O(e'), se obie-
ne sustituyendo (67) en (62) transformandose en la siguiente
ecuacion

en z4 = 0. (68)

6¢4y1 S F4_<p 2 dsin0
0Z, 0

H2 Oxs3

Resolviendo (68) se obtiene la solucién de ¢4 ;. Tomando
en cuenta los valores de ¢4 y ¢4, y sustituyendo las solucio-
nes en (64), (65) y (66) se obtiene el valor de ¢4,. Una vez
calculando los diferentes ordenes del potencial de velocidad ¢;
desde j=1,2,3,4y5,losordenesde R; = 1,2,3,4y 5 con sus
repectivas condiciones de fronteras, se obtendra el potencial de
velocidad ¢ y el coeficiente de reflexion R partiendo de un sis-
tema simultdneo de ecuaciones algebrdicas, lo anterior se logrd
implementando técnicas de programacion computacional.

3. Resultados

A continuacién se analizan los efectos que tienen los dis-
tintos pardmetros fisicos adimensionales en la reflexién de la
energia del oleaje, generada por su interaccién con un rom-
peolas flotante de superficies onduladas incluyendo el efecto
de una batimetria con pendiente constante. Primeramente, se
presenta la comparacién de los resultados del presente modelo
matematico contra los obtenidos por Patarapanich (1984). Pos-
teriormente, se muestran resultados de los efectos de las dife-
rentes condiciones de oleaje, longitud de la estructura, sumer-
gimiento, nimero y amplitud de las ondulaciones incluyendo el
efecto de una superficie del fondo marino no uniforme, estd ul-
tima es una de la aportaciones ingenieriles del presente trabajo.

3.1. Comparacién del presente modelo matematico con resul-
tados analiticos de Patarapanich (1984)

En la Tabla 1 se presentan los valores fisicos del oleaje y
de la geometria del rompeolas utilizados para el célculo de los
parametros adimensionales del modelo matematico propuesto:
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Tabla 1: Valores fisicos del oleaje y rompeolas

Profundidad en R1 (hy) 20m
Profundidad (Posicién del rompeolas) (/) 10m
Profundidad (Posicién del rompeolas)  (h3) 11m

Profundidad en R5 (hy) 15m
Longitud horizontal de la pendiente (L) 3500m
Aceleracion de la gravedad (9) 9.81m/s?
Numero de ondulaciones del rompeolas () 8
Longitud de onda ) 500m
Longitud de onda (1) 703.7m

La solucién del presente modelo matematico se compard
con los resultados reportados por Patarapanich (1984). Patara-
panich analizé la reflexién del oleaje generada por la interac-
cién de ondas largas lineales con una placa lisa horizontal muy
delgada y sumergida. Para el presente modelo matemaético el va-
lor del pardmetro de perturbacién que permite recobrar el pro-
blema de una placa lisa sumergida, implica que £ = 0, lo cual
fisicamente significa que no existen ondulaciones y k3 se apro-
xima a h,, y para un fondo constante la profundidad /4 tiende a
hy.

1‘2 1 1 1 1 1 1 -

1 Solucion Analitica (Patarapanich, 1984)

Iy —r-02 2r=02 F
1.04——1r=04 I r=04

0.9 3 r,=0.6 ‘ \"7=0.6 F

0.8 ‘ :
0.7 TN

R 061 3

Figura 2: Comparacién de la solucién del modelo matematico con respecto a
Patarapanich (1984).

En la Figura 2 se muestra la aproximacién de la solucién
del modelo matemético propuesto con respecto al estudio de
(Patarapanich, 1984) y en donde se puede identificar que am-
bas soluciones tienen una buena aproximacion. Por otro lado
en la misma figura se muestra el efecto que tiene el pardme-
tro de posicién I, = hy/h;, se observa que conforme decrece
el parametro I'; la energia reflejada aumenta, esto quiere decir
que se presenta una mayor reflexion conforme la estructura se
acerca a la superficie libre.

3.2. Comparacién de estructuras de superficie lisa y super-
icies onduladas incluyendo el cambio batimétrico

En las Figura 3 se presenta la comparacién de dos casos.
Caso 1 : Un rompeolas de superficie lisa donde e =0y m = 0

92
incluyendo un fondo marino variable y Caso 2 : Un rompeo-

las de superficie ondulada con € = 0.1 y m = 5 incluyendo un
fondo marino de superficie variable.
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Figura 3: Comparacion de los coeficientes de reflexion R de un rompeolas liso
y un rompeolas ondulado.

En la Figura 3 se muestra que para una batimetria con pen-
diente constante cuando i — 0 el coeficiente de reflexion para
un rompeolas de superficie lisa es R = 0.0987 y para un rom-
peolas de superficie ondulada R = 0.0994, lo cual quiere decir
que se presenta una mayor reflexion cuando el rompeolas tie-
ne una superficie ondulada. En la misma grafica se aprecia que
cuando u — 0.14 el coeficiente de reflexién aumenta para una
superficie ondulada, por otro lado para una estructura de super-
ficie lisa el coeficiente de reflexion decrece.

4. Discucion y Conclusiones

Con base en la teoria lineal de ondas largas, se analiz6 la
interaccidn del oleaje con una estructura sumergida de superfi-
cie ondulada incluyendo el efecto de un fondo marino variable,
misma que es una aportacion del presente trabajo. Para la super-
ficie ondulada el cambio obedece a una distribucién sinusoidal.
La solucién del modelo matematico se comparo con las solu-
ciones analiticas de Patarapanich (1984), mostrando una buena
aproximacion.

Las conclusiones principales se pueden resumir en la forma
siguiente:

= Cuando aumenta en magnitud el pardmetro de perturba-
cidn g, se puede observar que los coeficientes de reflexion
crecen de manera importante. Esto fisicamente indica que
habrd mas oleaje reflejado, en caso de una zona portuaria,
ayudaria a disipar los efectos del oleaje sobre las estruc-
turas en el puerto. Por otro lado para estructuras flotantes
con dispositivos integrados de conversion de energia el
cambio geométrico de la superficie de la estructura po-
dria aumentar su eficiencia energética.

= Se aprecia en la soluciones que antes que interactue el
oleaje con la estructura, el oleaje ya presenta una refle-
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xi6n del orden de R = 0.1, esto se debe al cambio del fon-
do marino. En esta condicién cuando el oleaje se propaga
sobre la pendiente constante sus propiedades cinemadticas
cambian aumentando la energia potencial del oleaje que
podra ser captado por el convertidor de energia.

= En los resultados se observa que el nimero de ondulacio-
nes presenta un efecto muy importante en la reflexion del
oleaje, cuando el pardmetro m crece el coefciente de re-
flexién R va en aumento, esto quiere decir que para tener
una mayor reflexién es necesario aumentar el nimero de
ondulaciones condiciones que pueden ser aprovechadas
para aumentar la eficiencia energética en las estructuras
convertidoras de energia.

El modelo matemadtico que se propone en este trabajo pue-
de usarse como una referencia practica para identificar, como
primera aproximacion, las caracteristicas geometricas que debe
presentar el rompeolas para una mayor cantidad de energia re-
flejada tomando en cuenta el efecto de cambio geométrico del
fondo marino.
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