
Publicación Semestral Pädi No. 11 (2018) 65–70
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Resumen

En este trabajo presentamos, a través de un ejemplo particular, una breve introducción al tema de engrosamiento de filtraciones,
en particular, el caso inicial, es decir, cuando expandimos una filtración con una σ−algebra.

Abstract
We describe, thought of a particular example, the meaning of initial enlargement of filtration, this means, when we expand a
filtration with a σ−algebra.
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1. Introduction

Whenever we want to model a random experiment, we need
to define a probability space (Ω,F , P) where the element F is
a σ−algebra. This structure contains the events for which it is
possible to calculate its probability. Now, consider F1 and F2,
both sub σ−algebras, and suppose that F1 ⊂ F2 ⊂ F . This
means that F2 contains more events than F1. For example, if Xn

represents the result of the n−th flip of a coin and A is the event
to get two heads, then A ∈ F2, however, A < F1.

This motivates us to consider a filtration. A filtration is an
infinite increasing succession of σ−algebras contained in F ,
which have the historical information, but no the future infor-
mation, of a random phenomenon.

By enlargement of filtration, we refer that we expand the
filtration with additional information until we get another filtra-
tion. The study of enlargement of filtration began with the work
of Itô in 1976 (see [16]), when he gave meaning to the integral∫ t

0
W1dWs,

expanding the natural filtration of W with the variable W1 and
proving that the integral in this new filtration was well defined.

Two years later, in 1978, Barlow (see [4]) studied the pro-
blem of how to enlarge the filtration, in a minimal way, when
L is a positive random variable. More precisely, how to make
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L a stopping time (see Definition 2.9) and preserve the well-
definedness of the stochastic integrals. Since then, many studies
about this topic have been addressed, see, for instance, [19],
[20] or the related chapters of the books [25] and [26].

The results of enlargement of filtrations have been extensi-
vely used in finance to study the consequences of insider trading
(see the references of Section 4).

In this work, we will make a brief introduction to this topic
through a simple example. Firstly, we review some basic defi-
nitions of stochastic processes in Section 2. Then, in Section 3,
we will enlarge the filtration with the σ−algebra generated by a
brownian motion evaluated t = 1 and, from this, we will explain
the basic ideas of expanding a filtration. Finally, in Section 4,
we present a simple example of application.

2. Basic concepts

In this section, we will make a review of basic concepts
which will be needed in the remainder of this paper.

2.1. Stochastic processes and filtrations
A probability space (Ω,F , P) is a shortlist of three elements.

Here, Ω is a nonempty set, F is aσ−algebra of subsets of Ω and
P is a probability mesure. The elements of Ω represent all the
possible results in a random experiment, while those in F are
the possible events of the experiment.

Definition 2.1. A random variable is a function X : Ω → R
such that X−1(B(R)) ⊂ F , where B(R) is the σ−algebra of
Borel.
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As an example, let us consider the experiment of throwing
a coin. Let X be the random variable that takes the value 1 if the
result is head, and 0 if the result is tail. For this experiment, we
have Ω = {head, tail} and F = {∅,Ω, {head}, {tail}}.

Definition 2.2. Let (E,B) be a measurable space. A stochastic
process, X = {Xt}t≥0, is a family of random variables, such that
Xt : (Ω,F ) → (E,B), i.e., it is considered as function of two
variables so that for each couple (t, ω) corresponds X(t, ω). For
each ω ∈ Ω fixed, the function t → Xt(ω) is called the path of
the process.

These processes represent random phenomena that evolve
in time, for example, the capital of an insurance company, the
price of a stock, or the number of cars passing through a toll
booth in any given period of time. When we observe a random
phenomenon, we can be interested in the events that occur be-
fore or inclusive until instant t. For all fixed t, these events form
a σ−algebra that is contained in F . Thus, if we are interested in
studying random phenomena and we want to include the time
factor, we can add to our probability space a filtration.

Definition 2.3. A filtration of F is a non decreasing family of
σ−algebras {Ft}t≥0, namely,

Fs ⊂ Ft, ∀s, t > 0 such as s < t.

Note that the non-decreasing condition makes sense due to
the fact that, as time evolves, we have more information about
the random phenomenon.

Definition 2.4. A stochastic processes X is adapted to the fil-
tration {Ft}t≥0 if Xt is Ft−measurable ∀ t ≥ 0.

This means that the process can not anticipate the future
or, in other words, the possible events up to a given instant t
only depend on the past events. In particular, note that whether
a process is measurable or not, only depends on F , while to be
adapted depends on the filtration. In general, measurable does
not imply adapted.

Definition 2.5. The filtration F X is defined by

F X
t = σ(Xs; s ≤ t),

and it is called filtration generated by X.

If {Ft}t≥0 is a filtration in a probability space (Ω,F , P), we
can associate to it other possible filtrations, for example:

1 Ft+ = ∩s>tFs, t ≥ 0.

2 If the probability space is complete, we can denote Ft the
smallest σ−algebra that contains to Ft and all elements
of F of probability equals to zero.

If Ft = Ft+ for each t, it is said the filtration is right continuous.
We say that a filtration satisfies the usual conditions if it is right
continuous and Ft = Ft.

2.2. Some examples of stochastic processes
The different types of stochastic processes are obtained by

considering the different characteristics, mainly, the relations
of dependence between the random variables that make up the
process. For the purposes of this work, we will focus on de-
fining martingales, semimartingales and we will discuss about
two important processes: the brownian motion and the brow-
nian bridge.

We begin with martingales. These processes have a simple
interpretation in terms of fair games: if Xs is the capital of a
gamer at time s, the expected value (see Definition 2.6) tells
us that the average fortune at the future time t, given that the
history of the game is known until time s, is its capital at time t,
that is, the game is fair because on average the player does not
lose or win.

Definition 2.6. An adapted process X is called a martingale
with respect to the filtration {Ft}t≥0, if E(|Xt |) < ∞, and if s ≤ t
then E(Xt |Fs) = Xs.

If a process X is a martingale, this means that its expected
value, in a future time t, is the value of the process in the last
moment when it was observed.

Definition 2.7. When the sample paths of a stochastic process
X are, almost sure, right continuous with left limits it is said
that X is càdlàg.

Definition 2.8. If X is a càdlàg martingale and, in addition,
E(|Xt |

2) < ∞ for all t ≥ 0, we will say that X is an square
integrable martingale.

To define the next concept, we need some additional nota-
tion. If T is a nonnegative random variable and Yt is any pro-
cess, we define

YT
t =

YT∧t in {T > 0},
0 in {T = 0},

(1)

where T ∧ t stands for the minimum between T and t.

Definición 2.9. A stopping time τ is a random variable such
that, for each t ≥ 0, it is verified that {τ ≤ t} ∈ Ft.

A stopping time registers the moment in which an event of
the process occurs. More precisely, at any time t, we can know
if this event has occurred or not.

Definition 2.10. A process X is a local martingale with respect
to {Ft}t≥0, if there are stopping times {Tn} such that Tn ↑ ∞ so
that XTn is a martingale with respect to {Ft∧Tn }t≥0.

Local martingales are important for many reasons, one of
those being for the integrability of stochastic proceses.

The classic Itô integral [17] is defined for adapted proces-
ses to the filtration for which the integrator is a brownian motion
(see Definition 2.13). The idea of definition of this integral is si-
milar to the integral of a function with respet to a measure. First,
it is defined for simple processes and then, by approximation,
for more general processes. The interested reader can consult
[2] and [21] for a detailed exhibition about the construction of
this integral.
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Remark 2.11. The idea of Itô integral has been generalized to
more general integrators as local martingales and processes of
finite variation, namely those processes whose sample paths are
functions of finite variation (see Definition 2.17). In addition, it
can be shown (it is beyond the scope of these notes, though) that
linear combinations of those are, in a sense, all processes that
can be used as integrators. These processes are called “good
integrators” or semimartingales, reducing the integrability re-
quirements.

Definition 2.12. A processes X is said to be a continuous se-
mimartingale if X can be written as X = M + A ,where M is a
continuous local martingale and A is a càdlàg adapted process
with finite variation on [0, t] for t > 0.

For a detailed exposition of the previous concepts, as well
as of those of stochastic integration, the interested reader can
consult [7], [12], [25] and the references therein.

2.3. Brownian motion

Now, we give a brief introduction to the brownian motion
W (see for instance [21], [12], [26], [27]), one of the most im-
portant processes in stochastic calculus due to its applications
in different disciplines of science (we refer the interested reader
to [3], [23]). It was observed, for the first time in 1828, by the
botanist Robert Brown (see [8],[9]), when he studied the move-
ment of pollen grains suspended in a certain substance. Based
on Brown’s observations, several theories emerged, but it was
Einstein [13], in 1905, who gave the correct explanation. The
first rigorous mathematical construction of brownian motion is
due to Wiener [28].

Definition 2.13. A brownian motion W = {Wt}t≥0 is an adap-
ted stochastic process with continuous paths that satisfies the
following properties:

1 W0 = 0 with probability 1.

2 For s ≤ t, Wt −Ws is independent of Fs.

3 For s ≤ t, Wt−Ws has a normal distribution with mean equal
to 0 and variance t − s.

In what follows, we will mention only the properties of
Brownian motion that we will be useful in this work.

Proposition 2.14. The brownian motion is an square integrable
martingale.

Demostración. From Property 2 of Definition 2.13, we see

E(Wt −Ws|Fs) = E(Wt −Ws) = 0.

Proposition 2.15. The quadratic variation of brownian motion
in the interval [0, t] is t.

In order to establish the proof of this result, it is necessary
to give some definitions.

Definition 2.16. The collections of points P = {t0, . . . tn} is a
partition of an interval [a, b] if a = t0 < t1 < · · · < tn = b holds.

Definition 2.17. Let f : [a, b]→ R be a function. The variation
V f of f over [a, b] is defined to be

V f = sup
{ n

Σ
i=1
| f (ti) − f (ti−1)| :

P = {t0, . . . tn} is a partition of [a, b]} .

Now, we proceed with the proof of Proposition 2.15.

Demostración. Let ∆n be a succession of partitions of [0, t],
such that

‖∆n‖ = máx{ti − ti−1, i = 1, . . . n} → 0.

Then,

E(Σi(Wti −Wti−1 )2 − t)2 = E(Σi(Wt1 −Wti−1 )2 − Σi(tt − ti−1))2

=E
(
Σi[(Wti −Wti−1 )2 − (ti − ti−1)]2

+ 2 Σ j,k[(W j −Wt j−1 )2 − (t j − t j−1)]×

[(Wk −Wtk−1 )2 − (tk − tk−1)]
)

=ΣiE[(Wti −Wti−1 )2 − (ti − ti−1)]2

=ΣiE(Wti −Wti−1 )4 + Σi(ti − ti−1)2

=4Σi(ti − ti−1)2

≤4‖∆n‖Σ(ti − ti−1) = 4‖∆n‖t → 0 i f n→ ∞.

The following theorem is known as Levy theorem and es-
tablishes the conditions that characterize brownian motion. Its
proof can be found, for instance in, [7], [12].

Theorem 2.18. Let X be a continuous local martingale such
that {X2

t − t}t≥0 is a local martingale and X0 = 0. Then, X is a
brownian motion with respect to the filtration for which X is a
local martingale.

Remark 2.19. Formally speaking, the quadratic variation of a
process X is a stochastic process which is denoted as [X] and it
is defined by

[X]t = lı́m
n→∞

(L1)Σ∞i (Xtn
i−1∧t − Xtn

i ∧t)2, t ≥ 0.

As a consequence, Proposition 2.15 establishes that [W]t = t.

2.4. Brownian Bridge

This process is derived from brownian motion by requiring
an extra constraint and it is used, for example, in Statistics to de-
rivate the Kolmogorov-Smirnov test (the interested reader can
consult [11], [22]).

Definition 2.20. The brownian bridge {Xt}0≤t≤1 is a Gaussian
process (i.e., for any finite sub family (t0, t1, . . . , tn) ∈ Rn, the
random vector (Xt0 , . . . Xtn ) has a multivariate normal distribu-
tion) that satisfies the following:
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1 X0 = 0 and X1 = 0 with probability 1.

2 E(Xt) = 0

3 For s ≤ t, cov(Xs, Xt) = s(1 − t).

A natural question is whether such a process exists. The
answer is yes. We observe the following result.

Proposition 2.21. Let W be a brownian motion. The process
Xt = Wt − tW1 is a brownian bridge.

Demostración.

E(Xt) = E(Wt − tW1) = E(Wt) − tE(W1) = 0.

if s ≤ t ≤ 1.

cov(Xs, Xt) = E(XsXt) = E((Ws − sW1)(Wt − tW1))
= E(WsWt) − sE(W1Wt) − tE(WsW1) + stE(W1W1)
= s − st − ts + st = s(1 − t).

Proposition 2.21 give us a continuous version of the brow-
nian bridge. In [26], the reader can see how the brownian bridge
may be viewed as brownian motion conditioned to W1 = 0, na-
mely {Wt, 0 ≤ t ≤ 1|W1 = 0}.

We may consider the brownian bridge between 0 and y for
0 ≤ t ≤ 1 by setting,

Xt = Wt − t(W1 − y).

And more generally, between x and y for 0 ≤ t ≤ T , by expres-
sing,

Xt = x + Wt −
t
T

WT +
t
T

(y − x).

For Section 4, we will need the following concept.

2.5. Stochastic differential equations
We consider the non-autonomous stochastic differential equa-

tion written formally as

dXt = b(t, Xt)dt + σ(t, Xt)dWt, 0 < t ≤ T,

X0 = x0.

The interpretation of this equation is

Xt = x0 +

∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dWs, 0 ≤ t ≤ T. (2)

Here, W is a real-valued Brownian motion defined on the com-
pleted probability space (Ω,F , P), equipped with the filtration
(Ft : 0 ≤ t ≤ T ) that satisfies the usual conditions. The coeffi-
cients b, σ : [0,T ] × R → R are measurable functions and are
named drift and diffusion coefficients, respectively, and x0 ∈ R
stands for the initial condition. In equation (2), the stochastic
integral is defined in Itô’s sense. The process X = {Xt : t ≥ 0}
that solves (2) is called Itô’s process and its coefficients satisfy
certain regularity conditions, i.e., σ belongs to the class of pro-
cesses such that: i) for t ∈ (0,T ] the relation (s, ω) → σs(ω)

defined in (0, t] × Ω is measurable respect of the σ−algebra
B[0,t] × Ft, where B[0,t] is the Borel σ-algebra on [0, t], and ii)
P

(∫ T

0
σ2

t dt < ∞
)

= 1 are satisfied, while b belongs to the class of

processes such that i) and ii’) P
(∫ T

0
|bt |dt < ∞

)
= 1 hold.

To know about the existence and uniqueness of the solu-
tions of these equations, as well as more details, the reader can
consult, for example [2], [12], [24].

3. Enlargement of filtrations

As we briefly mentioned in the above section, a filtration
{Ft}t≥0 contains the information related to a given random phe-
nomenon up to the moment t. If we suppose the arrival of new
information, this induces to consider a different filtration {Gt}t≥0
such that Ft ⊂ Gt for each t ≥ 0. For example, in financial mar-
kets there are different types of traders whose behavior is indu-
ced by different types of information. It is commonly assumed
that all traders have the same information. If we assume that
the market can accept differences in information between tra-
ders, then we will have to consider a new filtration to approach
this problem (see, for instance [10] and references therein).

The enlargement of filtration is split into two cases: initial
enlargements, for which, Gt = Ft ∨σ(L) and progressive enlar-
gement, where Gt = Ft ∨ Ht. In both cases, σ(L) and Ht are
assumed to represent the new information.

When a filtration, is enlarged some questions need to be
answered: in which cases a semimartingale remains a semimar-
tigale and what is the new descomposition in G.

We want to focus our interest in inicial enlargement. For
such reason, rather than studying the general problem, we dis-
cuss an interesting problem.

3.1. Brownian Bridge

Let us begin with a brownian motion W = {Wt}t≥0 defi-
ned in a complete space of probability (Ω,F , P) that satisfies
the usual conditions and it is equipped with the natural filtra-
tion F W

t . Now, we define a new filtration that satisfies the usual
conditions as Gt = ∩

ε>0
F W

t+ε ∨ σ(W1).

We know that W is a martingale inFt, (see Proposition 2.14)
however it is not a martingale in the filtration Gt. In fact, let be
t ≤ 1 and note that W1 is measurable with respect to G, then

E(W1|Gt) = E(W1|F
W

t ∨ σ(W1)) = W1 , Wt.

Nevertheless, W is a semimartingale in Gt. The following result
presents us the decomposition of W as G− semimartingale.

Proposition 3.1. The process B which is defined as

Bt = Wt −

∫ t∧1

0

W1 −Wu

1 − u
du, (3)

is a Gt−martingale and a brownian motion in this same filtra-
tion.
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Demostración. We begin by computing the following expecta-
tion. Let 0 ≤ s < t < 1. By means of the property of indepen-
dent increments, we have

E(Wt −Ws|W1 −Ws) =E(Wt−s|W1−s)

=E
(
Wt−s − (t − s)

W1−s

1 − s
|W1−s

)
+

t − s
1 − s

E(W1−s|W1−s).

Notice that the brownian bridge Xt−s is independent of W1−s, in-
deed, cov(Wt−s−

t−s
1−s W1−s,W1−s) = 0 and we know that gaussian

variables are independent if they have zero covariance. Thus,

E(Wt −Ws|W1 −Ws) =
t − s
1 − s

(W1 −Ws).

On the other hand, since F W
s is independent of {Ws+h −Ws}h≥0

we have,

E(Wt −Ws|Gs) =E(Wt −Ws|W1 −Ws)

=
t − s
1 − s

(W1 −Ws).

Now, we compute

E(Bt − Bs|Gs) =E
(
Wt −Ws −

∫ t

s

W1 −Wu

1 − u
du|Gs

)
=E(Wt −Ws|Gs) − E

(∫ t

s

W1 −Wu

1 − u
du|Gs

)
and by Fubini’s Theorem for conditional expectation

=E(Wt −Ws|Gs) −
∫ t

s

1
1 − u

E(W1 −Wu|Gs)du

=E(Wt −Ws|Gs) −
∫ t

s

1
1 − u

E(W1 −Ws − (Wu −Ws)|Gs)du

=E(Wt −Ws|Gs) −
t − s
1 − s

(W1 −Ws)

=0.

Note that we do not have problems in t = 1 since

E2(|W1 −Ws|) ≤ E((W1 −Ws)2) ≤ c(1 − s),

for some constant c and for all s ∈ [0, 1], therefore

E
(∫ 1

0

|W1 −Ws|

1 − s
ds

)
≤

∫ 1

0

√
1 − s

1 − s
< ∞.

Accordingly, E(Bt |Gs) = Bs and B is a G−martingale. Also
by properties of the quadratic variation we have [B]t = t and the
Theorem 2.18 gives B is a brownian motion.

For more details and general version of the results presented
in this section the reader can consult [25] and [18].

4. Example

The results of enlargement of filtrations have been used in
finance to study the consequences of insider trading ([1], [5],
[15], [14]). The insider trading is when some participants of
the market have material information which they do not share
with the rest of the market. The insider knowledge can produce
the existence of arbitrage (that is, the possibility to get profits
without risk), or changes in the prices dynamic.

For example, in the Black-Scholes model [6], which it is
used to determine the value of certain financial assets called
European options, the price S of underlaying asset, due to dif-
ferent factors, evolves randomly, i.e., it is represented by the
following stochastic differential equation:

dS t = µS tdt + σS tdWt,

where µ and σ are constants. It is assumed that the asset has
a constant interest rate r. The agent invests his money in an
investment portfolio, thus his wealth is

dXt = rXtdt + π̂t(dS t − rS tdt), X0 = 0, t ∈ [0,T ]. (4)

We assume that r is a constant interest. The first addition of the
right side of the equality (4) represents the investment without
risk, while in the second adding π̂ is the number of shares of the
risky asset. If we include π = π̂S t/Xt as the proportion of wealth
invested in the risky asset and θ =

µ−r
σ

. The above equation is

dXt = (r + πtσθ)Xtdt + πtσXtdWt, X0 = 0, t ∈ [0,T ].

Using Itô’s formula (see [2], [24]) and properties of expectation
value it is estimated that in π = θ

σ
the agent can maximize his

expected wealth E(ln(XT )) and

sup E(ln(XT )) = ln(x) + T
(
r +

θ2

2

)
.

Now, we suppose that we enlarge the filtration with S 1 or equi-
valently with W1. Using Proposition 3.1, the dynamics of S and
X, for t < 1, are

dS t =

(
µS t +

W1 −Wt

1 − t
σS t

)
dt + σS tdBt,

dXt =Xt(πtσθ̂t + r)dt + σπtXtdBt.

Here θ̂ =
µ−r
σ

+ W1−Wt
1−t . Following a similar procedure it is found

that

máx
π ad. in Gt

E(ln(XT )) = máx
π ad. in F W

t

E(ln(XT ))

+ E
(∫ T

0

(W1 −Ws

1 − s

)2

ds
)

= máx
π ad. in F W

t

E(ln(XT )) −
1
2

ln(1 − T ),

where with π ad. inH , we refer to admissible strategies in the
σ−algebra H , this means that, once the new price of underla-
ying asset is announced, the investors readjust their portfolio
without adding or consuming money. Note that if T = 1, the
the maximum of the expected wealth is infinity, thus there is an
arbitrage opportunity.
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