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Resumen

The present project consists in the implementation of a Parrot Bebop 2 R© quadcopter as an autonomous line follower. The
development of the application is done through the operating system for robots ROS c© , which, through scripts, establishes a
communication link with Wi-Fi technology between the quadcopter and the computer that performs the line detection task and
flight control. The script is written in Python 3.7 language using the Atom c© text editor. The following features are integrated in the
script: a control algorithm for the quadcopter flight, a line detector that operates with the video acquired from the quadcopter and a
driver for the implementation of a joystick as a quadcopter manipulation method and security element.
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Abstract

El trabajo presentado consiste en la utilización de un cuadricóptero modelo Parrot Bebop 2 R© como seguidor de lı́nea autónomo.
El desarrollo de la aplicación se hace a través del sistema operativo para robots ROS c© (Robot Operating System), el cual, con
la elaboración de scripts. Establece un enlace de comunicación con tecnologı́a Wi-Fi entre el cuadricóptero y la computadora que
realiza la tarea de detección de lı́nea y control de vuelo. El script está escrito en lenguaje Python 3.7 con uso del editor de texto
Atom c© . En el script se integran las siguientes caracterı́sticas: un algoritmo de control para el vuelo del cuadricóptero, un detector
de lı́nea que opera con el video adquirido del cuadricóptero y un driver para la implementación de un joystick como método de
manipulación del cuadricóptero y elemento de seguridad.
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1. Introduction

Quadcopters are a very useful tools in areas like research,
commercial or professional fields. These devices are used for
different tasks like patrolling, army, monitoring, navigation,
mapping and even advertising tasks, this is due to the versa-
tility of its implementation (Piotr Kardasz and Zarzycki, 2016).
The quadcopters can be programmated with routines that fulfill
some activity, but in order to achieve this goal, a control algo-
rithm is needed. This algorithm not only minimizes the error
margin but also guaranties the security of its implementation
under some circumstances, such like unexpected air currents
(Johannes Meyer and von Stryk, 2012).

Figure 1: Parrot Bebop 2 R©.

A flight control algorithm (depending on the application and
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purpose of the quadcopter) tend to be quite specific, in a line fo-
llower case, the quadcopter has to be able to follow a drawn line
that indicates a fixed path to follow. There are different ways to
do so, depending on how the quadcopter acquires information
about its position. An example would be using the video ca-
mera integrated in the quadcopter, then, through digital image
processing, it is obtained the relationship between the line to
follow and some point of reference. The above example can be
implemented specially in patrolling fields where the advantage
of a wider observation field and a unmanned remote controlled
devise tend to be more profitable (Alexandre S. Brandao and
Soneguetti, 2015).

Conventionally, the line followers are limited to robots that
move on the floor, which implement infrared sensors that detect
the absence or existence of a line to follow (Pakdaman and Sa-
naatiyan, 2009) and with microcontrollers, operational ampli-
fiers and mechanical switches do their job (M. Zafri Baharuddin
and Chuan, 2016). This mention is made with the objective of
contrasting the advantage of a quadcopter use, due that this one
it’s not attached to the floor; it can avoid obstacles and cover a
wider field of movements for unforeseen events.

The quadcopter used in this work is made by Parrot R© com-
pany. The Parrot Bebop 2 R© (Figure 1) model has a 14 megapi-
xels HD 1080p video camera with a fisheye lens able to focus
on 3 axes. It also has a digital stabilization system which is
ideal for coping with winds up to 60 km/h and, in comparison
to other models of the same company, its price is inexpensive
(Parrot, 2016).

The Bebop Parrot 2 R© can be handled through different
ways, the most popular is with smartphone applications that
are developed officially by the manufacturer. In this work the
manipulation of the quadcopter is done over the software de-
velopment system for robots ROS c© (Koubâa, 2017). This plat-
form provides multiple open source tools for manipulation and
control of this kind of devices. Currently, it has a driver called
bebop autonomy c© for the Parrot bebop 1.0 R© and Parrot bebop
2.0 R© quadcopter models, which is based on the official SDK of
the Parrot R© company called ARDroneSDK3 c© (Bristeau et al.,
2011). Bebop autonomy c© is open source and can be downloa-
ded from the GitHub c© platform.

The bebop autonomy c© driver uses the ROS c© communica-
tion system, therefore, the control of the same is based on the
elaboration of scripts that allows us to obtain and manipulate
the information that the quadcopter throws through topics. Pre-
cisely, the video recorded is the most important feature of the
work, since the information recorded on every frame is reinter-
preted and processed in order to obtain an input to the control
algorithm that has been developed (Monajjemi, 2015).

ROS c© is only available for certain operating systems, the
version used in this case was ROS Kinetic c© (Koubâa, 2017)
over the Ubuntu LTE 16.04 c© operating system. This platform
works mainly with 2 programming languages: C ++ and Pyt-
hon. The elaborated scripts in this work were made in Python
3.7. One of the advantages of using scripts is the compatibility
with the use of language libraries focused on digital image pro-
cessing such as OpenCV c© (Bradski and Kaehler, 2008) which
is used in the elaboration of the work. Within the script, a driver
for the control of the quadcopter through a joystick was added,
in order to provide a method of manipulation of the quadcopter,

in addition to granting a security control element in case there
were any unforeseen event during the device flight.

The document is organized in sections as follows: Section
2 presents a general description of the implemented systems
and some considerations concerned to the set-up of the experi-
mental plant. Section 3 describes the structure of the script de-
veloped divided in 4 subsections: the communication system,
joystick event reading, digital image processing and the imple-
mentation of the control algorithm. The paper ends with some
conclusions.

2. System’s structure

Figure 2 shows the system diagram. It represents the ele-
ments integrated as well as the relationship they have among,
the inputs of the system are the video camera and the joystick
gamepad. It is important to note that the video camera input
has priority over the joystick input as far as piloting is concer-
ned. However, the joystick keeps being a fundamental element
since the node of communication is initialized by one of the
buttons of the joystick, as well as some commands, like taking
off and landing the quadcopter. The obtained outputs from the
quadcopter are: the video camera focus position and the speed
of the rotors for each helix that are given in 6 parameters di-
vided into 2 categories: the linear speed and the angular speed
(Figure 3), both categories are given in Cartesian coordinates in
YAML format (for its acronym “YAML Ain’t Markup Langua-
ge”), which is a standard serialization of package information
for programming languages (Ben-Kiki et al., 2005).

Figure 2: System diagram for the line follower.

Figure 3: Bebop Parrot 2 navigation velocities.
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2.1. Set-up and security elements

Along the performance and behavior testing of the quad-
copter, the implementation of a mechanism to control and pilot
the quadcopter was needed, in this case a XBOX 360 R© joystick
was employed (Ikeda et al., 2012). The video recorded from
the quadcopter, is visualized through an Ubuntu’s environment
window, which is a direct reading of the quadcopter’s bebo-
p/image raw topic. All tests were performed in isolated envi-
ronments in order to safeguard the physical integrity of third
parties, as well as the integrity of the quadcopter to unforeseen
events, such as air currents that exceed the quadcopter’s self-
stabilization capacity. For testing, a line of approximately 25
meters was drawn with blue tape on a surface without uneven-
ness.

3. Script structure

The script consists of 3 features. The first one is the method
of communication of ROS c© , this allows communication bet-
ween the ROS c© core and the quadcopter, enabling the reading
and writing of topics. The second feature is the manipulation
of the quadcopter with the joystick, in this part the script iden-
tifies the characteristics of the joystick, as well as its input pa-
rameters; which are interpolated through a function to be pu-
blished in the topics of movement speed and camera position of
the quadcopter. The script also assigns the quadcopter’s take-
off, landing and camera initialization commands to the joystick
buttons. Although this can be done with command lines, the
immediate response of the joystick provides an extra security
measure for the piloting of the quadcopter. Finally, the third
feature is the digital image processing of the video recorded by
the quadcopter and the implementation of the control algorithm.
In this part, the image is obtained from the quadcopter’s /ima-
ge raw topic, then, the image is identified and manipulated by
the script in order to process the information about the line to
follow and make decisions that handle the movement speed of
the quadcopter.

3.1. ROS c© communication system

The script was written with the qualities of a node within
the core of ROS c© . To achieve this goal is necessary the use
of the rospy library that is part of ROS c© repositories (Quigley
et al., 2015). Then, the script is able to interact with topics that
are available within the ROS c© core at the moment. Figure 4
shows the initialization of the script as a ROS c© node, Figure 5
shows the publisher metodology with 4 different objective to-
pics which are: the topic of landing, taking off, camera control
and movement speed of the quadcopter. These four topics are
the only ones to work with as far as publication is concerned.
Figure 6 shows the initialization of the subscriber to the video
camera topic of the quadcopter, this element is a fundamental
part since it is responsible of obtaining the image of the quad-
copter.

Figure 4: Node identification and topic listing.

Figure 5: Publishing process within the system.

Figure 6: Subscribing process within the system.

3.2. Joystick event reading

The script recognizes the joystick device by reading a file
within the Ubuntu c© operating system. That is hosted at /dev/in-
put directory address (Nguyen, 2003) and consists of a structure
that records the events performed on the joystick. The ioctl fun-
ction of the fcntl (Stevens et al., 2008) library of the repository



D. Garcı́a-Olvera et al. / Publicación Semestral Pädi Vol. 7 No. 14 (2020) 30–36 33

of Unix c© (W. Richard Stevens and Rudoff, 2004) based opera-
ting systems, allows the reading and recognition of the device
through responses generated by the operations defined by the
ioctl function. With this function the name of the device and
the number and mapping of buttons and axis that the joystick
has are obtained. Both, the axis and the buttons have an alias in
hexadecimal number, for practicality these numbers are stored
in a dictionary within the script. The dictionary stores the hexa-
decimal numbers for the buttons and axis of the most common
generic controls that can be implemented within the operational
system (DAI and SHU, 2008).

Figure 7: Assignment of buttons and axis map of the joystick.

Figure 8: Joystick event reading diagram.

Each time that there’s an event (pressing a button or moving
an axis), the script reads and interprets the information corres-
ponding to it, based on 4 parameters which are: time, value,
type and number. Time corresponds to the moment in which
the event occurred, value identifies in the case of the axis the
stick position in a range of -32767 to 32767 and, in the case of
buttons, 1 if it is pressed and 0 if it is not. Type identifies what
kind of event it was, if it was from the axis, button or initia-
lization type. The initialization ones show information of the
joystick status at the first moment of running the driver. Finally
the number identifies which button or axis were changed (DAI
and SHU, 2008).

Figure 9: Axis reading and interpolation function implementation.

Three buttons were assigned to control the quadcopter (Fi-
gure 7): the “X” button publishes to the landing topic, the “B”
button publishes to the takeoff topic and the “mode” button
starts the subscription to the video camera as well as the image
processing and control algorithm of the quadcopter (Figure 8).
If the “mode” button has not been pressed the quadcopter can
be piloted with the following axis: the x axis controls the linear
speed at y, the y axis controls the linear speed at x, the rx axis
controls the angular velocity at z and the axis ry controls the
linear velocity at z (Figure 9). It is important to mention that
there is a previous interpolation between the values obtained by
the joystick controller and the range allowed for the publication
of the quadcopter’s operating speeds, this is done with a fun-
ction of interpolation that returns the conditioned value (Figure
10).

Figure 10: Definition of the interpolation function.

3.3. Digital image processing

The control algorithm begins at the moment when the “mo-
de” button is pressed. The button starts the node subscription
to the /bebop/image raw topic. At the same time, this instruc-
tion uses a “callback” function where the image processing ta-
kes place. OpenCV c© offers different tools as far as image pro-
cessing is concerned, with the help of the CVBridge function,
an exception method is defined, this method allows to notify if
there is an event that prevents the execution of an OpenCV c©
function. In order to process the image obtained from the /be-
bop/image raw topic, it must be encoded from the message for-
mat of ROS c© to an OpenCV c© object, this is achieved with the
CVBridge imgmsg to cv2 function (Martinez and Fernández,
2013).



D. Garcı́a-Olvera et al. / Publicación Semestral Pädi Vol. 7 No. 14 (2020) 30–36 34

Figure 11: Video camera image conditioning diagram.

The default setting adjusts the quadcopter’s camera to cap-
ture the front area of itself, so, to visualize the ground where
the line to be detected is located, the speed parameter -83 has
to be published on the /bebop/camera control topic. This modi-
fies the angular “y” camera position and consequently the area
of visualization. This is only done once and preferably it is not
modified later. The camera has a position stabilizer which can
modify the position of the camera, therefore if the instruction to
visualize towards the ground is constant, it is expected that the
stabilizer will not move the camera to another unwanted posi-
tion.

By default, the size of the image obtained is 1920 x 1080
pixels, this resolution is not suitable for image processing, sin-
ce the computation time per frame is significantly larger, so, the
image is resized with a resolution of 160 x 120 pixels. Another
of the libraries used in the process is NumPy c© , this library is
used for the manipulation and creation of matrices. The video
recorded, after being converted into an OpenCV c© object, be-
comes a three-dimensional arrangement that can be interpreted
by NumPy c© (Oliphant, 2006).

There are different color detection algorithms, the HSV
(Hue-Saturation-Value) model is ideal for the detection of co-
lors, since a range can be established between the hue of the
color to be detected, despite the change of saturation or bright-
ness, it will remain the same (Deswal1 and Sharma, 2014). The
line to be detected is marked by a blue tape. To determine the
range in HSV parameters of the blue color of the tape itself, it
was necessary to take samples of the blue tape with a camera
at different light exposures, then convert the RGB (Red-Green-
Blue) values into HSV parameters.

With the function cv.inRange a matrix mask is obtained,
it contains the information corresponding to the blue range of
colors of the line to be detected. Then, with cv.bitwise and fun-
ction, it’s extracted the blue line to follow from every frame
of the video recorded by the quadcopter’s camera. The obtai-
ned video has only the range of color established by the mask

previously created for the blue of the tape in a wide range of
brightness (Figure 12).

Figure 12: Exclusive detection of the blue color of the tape.

Figure 13: Obtaining the contour and centroid of the blue figure.

The video obtained from the mask is converted to gray sca-
le, then the OpenCV c© function (cv.findContours) allows to
identify the contour of the tape of the line to follow. If there
is any contour in the video, it means that the line exists; the
way in which the noise detection of the image is reduced, is to
take the larger detectable area. So, if there is any element that
is not the line to follow this becomes discarded unless it has a
larger area than the line to follow itself (Garcı́a et al., 2015).

Figure 14: Definition of areas in the main video.

Cv.moments function determines the centroid of the line to
follow as well as its coordinates in the video, which are stored in
the variables cx (horizontal position) and cy (vertical position).
These coordinates are given in a range defined by the resolution
of the processed image, which in this case is 120 (cy) x 160 (cx)
pixels. The centroid is the reference point for the quadcopter pi-
loting, its position determines in which direction the quadcopter
must move (Figure 13).
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Any movement of the quadcopter in any direction will chan-
ge the position of the centroid of the line to follow, then the
quadcopter must be able to return to the point where the cen-
troid of the line to follow is right at the center of the video, in
order to always have the line visible. This is carried out with the
determination of areas throughout the video as seen in the Fi-
gure 14. Six vertical red lines in the video determines different
areas for possible cases where the line to follow can be detected
as well as the decisions regarding the control of the quadcopter.

Table 1: Relationship between movement speeds and the designed areas in the
video recorded.

Pixel
range

Angular “z”
speed

Linear “x”
speed

Linear “y”
speed

Center
cx <100
cx >60

0.0 0.05 0.0

Left
cx <= 120
cx >= 100

-0.15 0.025 -0.1

Middle
left

cx <150
cx >120

-0.3 0.025 -0.25

Limit
left

cx >= 150 -0.7 0.0 0.0

Right
cx <= 60
cx >= 40

0.15 0.025 0.1

Middle
right

cx <40
cx >10

0.3 0.025 0.25

Limit
right

cx <= 10 0.7 0.0 0.0

Lineless 0.0 0.0 0.0

3.4. Control algorithm
The six red lines drawn in the quadcopter video determine

7 areas. These lines are distributed according to the width in pi-
xels of the processed video which in this case is 160 pixels, each
determined area obeys different decisions by the quadcopter if
the centroid of the line detected is found. This is interpreted as
different movement speeds what will try to head the quadcop-
ter to the central area. In addition, in the case where there is no
line to follow found in the video, the quadcopter stops moving.
Table 1 shows the relationship between the published speeds to
the topic /bebop/cmd vel and the area where is located the cen-
troid of the line to follow. It is important to emphasize that the
cx coordinate is a parameter given by the centroid of the detec-
ted line and it is fixed in a range of 0 to 160 as well as the width
of every video frame.

Finally, Figure 15 shows the detection result and how the
quadcopter moves in 3 cases:

Straight line (Figure 15(a)): the centroid of the line to fo-
llow is between 60 and 100 pixels with respect to the ver-
tical axis (cx) of the image (central area), the quadcopter
moves forward only.

Turn to the left (Figure 15(b)): the centroid of the line to
follow is between 120 and 100 pixels with respect to the
vertical axis (cx) of the image (left area). The quadcopter
moves slightly to the left modifying both the angular ve-
locity on the z axis, and the linear velocity on the y axis.

Also the linear velocity in x decreases by half to make
a better turn without stop the movement on the line to
follow.

Turn to the right (Figure 15(c)): the centroid of the line
to follow is between 60 and 40 pixels with respect to the
vertical axis (cx) of the image (right area). As in the left
turn the quadcopter moves slightly to the right, keeping
the same values for the angular and linear angular velo-
cities but with the opposite sign. The linear movement
velocity in x also decreases but does not change its sign
(reverse).

(a) Moving forward.

(b) Turn to the left.

(c) Turn to the right.

Figure 15: Quadcopter shift in different scenarios.
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4. Conclusions

Part of the application precision comes from the detection
of the line, where it matters the size of the tape, the distance
between the quadcopter to the floor, the color detection algo-
rithm, the movement speed of the quadcopter and the acquisi-
tion speed from the video camera.

During the development of this work, it was considered in
first instance to use a black tape for the line, however the tech-
niques used for detection of this color failed under the effects
of exposure to different levels of brightness, hence, the use of
a black tape was discarded, concluding that the use of the HSV
format is more useful to detect ranges of any other color.

The control algorithm does not implement any mathemati-
cal model, the proposed movement speeds are the product of
the observation by the work developers.

The system can be improved implementing a more efficient
control stage by using the same principle of line color, coordi-
nates and centroid detection.

The work developed achieved its objective as a line follo-
wer, however, the results presented here can be used for diffe-
rent tasks where tracking requirements are implemented.
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