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On the nonlinear output regulation for systems described by Takagi-Sugeno fuzzy
descriptor models with a steady-state mapping as an LMI optimization problem

La regulación no lineal de la salida para sistemas descritos por modelos descriptores
tipo Takagi-Sugeno con variedad estacionaria como un problema LMI de
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Resumen

This paper is devoted to provide a numerical solution to the nonlinear output regulation problem for descriptor systems. The
control law under design is a nonlinear one, it consists on a nonlinear stabilizer combined with linear steady-state mapping as
well as nonlinear steady-state input mapping; all of them are computed via linear matrix inequalities. A numerical example and a
mechanical system as well are used to illustrate the viability of the proposed approach.
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Abstract

Este artı́culo presenta una solución numérica al problema de regulación no lineal de salida para sistemas descriptores. La ley de
control es no lineal y consiste en un estabilizador combinado con un mapeo lineal en estado estacionario, ası́ como una entrada de
estado estacionario no lineal; todos ellos se calculan mediante desigualdades matriciales lineales. Se utilizan un ejemplo numérico
y un sistema mecánico para ilustrar la viabilidad del enfoque propuesto.

Keywords: Diseño de regulador no lineal, Sistema descriptor, Desigualdad matricial lineal, Modelo Takagi-Sugeno.

1. Introduction

In control systems, the problem of driving the system output
such as it asymptotically tracks a desired reference and rejects
undesired disturbances while keeping stability in a closed-loop
systems is address frequently due to its wide applicability in
mechanical systems, aeronautics and robotics, among others;
this task is referred as the output regulation problem (Isidori
and Byrnes, 1990). The works of Francis (1977) and Fran-
cis and Wonham (1976) have shown that the solvability of a
multivariable linear regulator problem corresponds to a sys-
tem of two linear matrix equations, called Francis Equations.
Later, Isidori and Byrnes (1990) shown that the result estab-
lished by Francis is a particular case of the nonlinear problem,
providing necessary and sufficient conditions as a set of nonlin-
ear partial differential equations called Francis-Isidori-Byrnes
(FIB). Unfortunately, these conditions presents, in many cases,

a considerable numerical complexity. Some numerical solu-
tions have been given, most of them in terms of Takagi-Sugeno
(TS) fuzzy models (Chiu and Chiang, 2009; Castillo-Toledo
et al., 2012; Chen, 2005; Tapia-Herrera et al., 2013; X.-Jun and
Z.-Qi, 2000; Lian and Liou, 2006; Ma and qi Sun, 2000; Lee
et al., 2003; Hernández-Cortés et al., 2015; Karamanos et al.,
2018) or as dynamic implementations (Armenta et al., 2019).
The popularity of TS models is due to their capability to ex-
actly represent (via the sector nonlinearity approach) or approx-
imate with an arbitrary exactness nonlinear dynamics (Tanaka
and Sugeno, 1992; Tanaka and Wang, 2001); regardless its ori-
gin, a TS model is viewed as a convex combination of linear
submodels (vertex models) together with scalar convex func-
tions; such structure facilitates the use the direct Lyapunov’s
method and obtaining condintions in terms of linear matrix in-
equalities (LMIs). LMI conditions are highly appreciated since
its solvability can be determined by convex optimization tech-
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niques (Boyd et al., 1994) already implemented in commercial
software (Gahinet et al., 1994; Sturm, 1999). Despite the use
of TS models for solving the nonlinear output regulation prob-
lem, LMI conditions are only for the stabilizer part of the final
control law. Recently in (Bernal et al., 2012b) an LMI solution
for the nonlinear mappings is available. Nevertheless, none of
the above works deals with nonlinear descriptor systems; they
may appear when the Euler-Lagrange formalism is employed
for modelling mechanical, biomechanical, electromechanical
systems (Lewis et al., 2003; Fantoni et al., 2002; Luenberger,
1979).

This work provides a numerical solution for the output regu-
lation of nonlinear descriptor systems via TS models and LMIs.
The proposal extends developments from (Lin and Dai, 1996),
where linear singular systems are considered; it also takes ad-
vantage of descriptor representations since the input matrix re-
mains constant, and as mentioned in (Meda-Campaña et al.,
2009) it relaxes the fuzzy FIB equations under mild assump-
tions. The designing conditions are in terms of LMIs.

The rest of the work is organized as follows: Section 2
places the problem to be solved and states some standard solu-
tions; Section 3 provides LMI conditions to approximate a so-
lution of the nonlinear output regulation problem for descriptor
systems; Section 4 illustrates the performance of the proposal
on physical as well as numerical examples. Finally, Section 5
closes the paper and gathers some comments on future work.

2. Problem Statement

Consider the following class of nonlinear descriptor sys-
tem1:

E(x)ẋ(t) = A(x)x(t) + Bu(t) + D(x)w(t), y(t) = Cx(t), (1)

where x ∈ Ωx ⊂ Rn is the state vector, u ∈ Rm is the input
vector, y ∈ Ro is the output vector, and w ∈ Ωw ⊂ Rs is the
state vector of the exosystem, to be defined later, which gener-
ates the reference and/or the perturbation signals; it is assumed
that x = 0 is an equilibrium point, A(·), E(·) : Rn 7→ Rn×n,
D(·) : Rn 7→ Rs are sufficiently smooth for all x ∈ Ωx such that
0 ∈ Ωx, B ∈ Rn×m and C ∈ Ro×n are constant matrices. Matrix
E(·) is full rank for x ∈ Ωx, i.e., from (1) it is always possible to
obtain a standard state-space representation:

ẋ(t)= f (x,w, u), (2)

with f (x,w, u) = E−1(x)(A(x)x(t) + Bu(t) + D(x)w(t)). Now let
us recall the output regulation problem for system (2) and the
following exosystem

ẇ(t) = s(w), yr(t) = q(w), (3)

where s(w) : Rs 7→ Rs and q(·) : Rs 7→ Ro are sufficiently
smooth vector fields holding s(0) = q(0) = 0, yr ∈ Ro is called

the reference output. The exosystem is poisson stable. Argu-
ments will be omitted when their meaning can be inferred from
the context.

In (Isidori and Byrnes, 1990; Isidori, 1995), the nonlinear
output regulation problem for systems of the form (2), with a
nonlinear output y(t)=h(x), h(0) = 0, consists in finding a con-
troller u = α(x,w), α(0, 0) = 0 such that

• The equilibrium point x = 0 of the closed-loop system
ẋ = f (x, 0, α(x, 0)) is asymptotically stable.

• The tracking error

e(t) = y(t) − yr(t) = h(x) − q(w), (4)

goes asymptotically to zero for any initial condition
(x(0),w(0)) ∈ Ω ⊂ Ωx ×Ωw.

Then, the following assumptions are considered: A1) the
exosystem (3), with w = 0 being an equilibrium point, is Pois-
son stable, that is, the eigenvalues of S = ∂s(w)/∂w|w=0 does
not have real part; A2) the linear approximation of (2) at the
origin x = 0, with w = 0, is stabilizable. Thus, the output reg-
ulation problem with full information is solvable if and only if
there exists mappings π(w) : Rs 7→ Rn, π(0) = 0 (the steady-
state zero-error manifold) and γ(w) : Rs 7→ Rm, γ(0) = 0 (the
steady-state input) such that

∂π(w)
∂w

s(w) = f (π(w),w, γ(w)), (5)

0 =h(π(w)) − q(w) (6)

holds. The nonlinear control law that performs output regula-
tion is

u = K (x − π(w)) + γ(w) (7)

with K ∈ Rm×n designed such that the linear approximation of
(2), around the origin, is asymptotically stable.

The set of equations (5)-(6) is known as Francis-Isidori-
Byrnes (FIB) equations. The next section presents LMI con-
ditions to performing output regulation by means of the origi-
nal descriptor form (1) and convex representations for a nonlin-
ear stabilization gain and using an adaptation of (5)-(6) to find
π(w) = Πw and γ(w).

2.1. Convex representations
There are several methodologies to obtain a Takagi-Sugeno

(TS) fuzzy model from (1), among them, the sector nonlinear-
ity approach provides an exact representation (Ohtake et al.,
2003). It consists in gathering all the nonlinear terms in A(x),
E(x), D(x) in the so-called premise vector z(x) ∈ Rpsuch that
each entry of z(x) is well-defined and bounded in Ωx ⊂ Rn, i.e.,
zi(x) ∈ [z0

i , z
1
i ], where z0

i and z1
i are the minimum and maximum

of zi(x). Thus, each term can be expressed as convex sums of
its bounds, that is

zi(x) = µi
0(zi)z0

i + µ
i
1(zi)z1

i ,

1In general, descriptor systems are of the form E(x,w, u, t)ẋ(t) = f̃ (x,w, u, t) (Duan, 2010). Nevertheless, the class treated in this work (1) naturally appears
from state-space representations of systems modeled by Euler-Lagrange formalism M(q)q̈(t)+Co(q, q̇)q̇(t)+G(q)= τ(t), y(t)= q(t), where q ∈ Rnq is the vector of
generalized coordinates, M(q) ∈ Rnq×nq is the inertia matrix, Co(q, q̇) ∈ Rnq×nq is the Coriolis matrix, G(q) ∈ Rnq is the gravity vector, and τ ∈ Rnτ is the torque
vector (Lewis et al., 2003, Section 4.3)
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where

µi
0(zi) =

z1
i − zi(x)

z1
i − z0

i

, µi
1(zi) = 1 − µi

0(zi),

are called weighting functions and fulfill the convex sum prop-
erty in ∀x ∈ Ωx, i.e., µi

0(zi) + µi
1(zi) = 1 and µi

0, µ
i
1 ∈ [0, 1].

Then, the so-called membership functions can be defined as

µi(z) =
p∏

j=1

µ
p
i j

(z j), i j = {0, 1},

they also hold the convex sum property: 0 ≤ µi(z) ≤ 1 and∑r
i=1 µi(z) = 1. Finally, a Takagi-Sugeno model for system (1)

can be expressed as follows (Taniguchi et al., 1999):

r∑
i=1

µi(z)Ei ẋ =
r∑

i=1

µi(z)(Aix + Bu + Diw), y = Cx, (8)

where (Ei, Ai, B,C,Di)|µi(z)=1 are the vertex matrices, r = 2p is
the number of vertex (rules, linear submodels). In this work,
we assume that the exosystem (3) is linear, this is,

ẇ(t) = S w(t), S ∈ Rs×s, (9)

with S having its eigenvalues on the imaginary axis. The fol-
lowing section presents an adaptation of the traditional FIB
equations for nonlinear descriptor systems in an exact TS fuzzy
model (8).

3. Main Results

In (Meda-Campaña et al., 2009), it is established that sys-
tem (2), with a TS representation, performs output regulation
if the input distribution matrix B(x) and the steady-state map-
ping π(w) are constant, while γ(w) has a convex form. Based
on this and taking advantage of the structure in (8), we define
π(w) = Πw, Π ∈ Rn×s and γ(w) =

∑r
i=1 µi(z)Γiw, Γi ∈ Rm×s,

i ∈ {1, 2, . . . , r}. Moreover, following the results for singular
systems presented by Lin and Dai (1996), we propose the fol-
lowing adapted r-FIB equations for descriptor systems:

EiΠS =AiΠ + BΓi + Di, (10)
0 =CΠ − Q. (11)

The r set of linear equations must hold simultaneously for Γi,
i ∈ {1, 2, . . . , r} and a single Π. Note that thanks to the struc-
ture of the descriptor systems, there are no crossed-products
between Γi and Bi (Meda-Campaña et al., 2009). Thus, the non-
linear control law that performs output regulation is

u = Kµ (x − Πw) + Γµw (12)

with Kµ designed such that the origin of (1) is asymptotically
stable.

Remark 1. The above assumption on matrix B is met when
dealing with mechanical systems whose mathematical model-
ing is obtained from Euler-Lagrange methodology; thus a state-
space representation is of the form (1).

Now, in order to design the stabilizer, based on the descrip-
tor convex model, the augmented system redundancy form is
used, i.e. ẋ = ẋ and 0 × ẍ = Aµx + Bu − Eµ ẋ as in (Taniguchi
et al., 1999, 2000; Arceo et al., 2016), then

Ē ˙̄x =Āµ x̄ + B̄u (13)
y =C̄ x̄ (14)

where x̄ =
[
x
ẋ

]
, Ē =

[
I 0
0 0

]
, Āµ =

[
0 I

Aµ −Eµ

]
, B̄ =

[
0
B

]
, and

C̄ = [C 0]. The nonlinear control law under design is a parallel
distributed compensation (PDC) one (Wang et al., 1995):

u =
r∑

i=1

µi(z)Kix =
[
Kµ 0

][x
ẋ

]
= K̄µ x̄, (15)

where Ki ∈ Rm×n, i ∈ {1, 2, . . . , r} are the controller gains to be
designed. To this end consider the following Lyapunov func-

tion V(x̄) = x̄T ĒT P̄x̄, ĒT P̄ = P̄T Ē ≥ 0, whereP̄ =
[
P1 0
P3 P4

]
,

Pi ∈ Rn×n, i ∈ {1, 3, 4} such that P1 = PT
1 > 0 and P4 being

invertible. Indeed, guaranteeing V̇ < 0 ensures the stability of
theclosed-loop system; thus we have V̇ < 0 if

ĀT
µ P̄ + K̄T

µ B̄T P̄ + P̄T Āµ + P̄T B̄K̄µ < 0. (16)

Now, considering X =
[
X1 0
X3 X4

]
, withX1 = P−1

1 , X4 = P−1
4 ,

X3 = −P−1
4 P3P−1

1 and multiplying (16) on the left and right by
XT and X, respectively, yields

XT ĀT
µ + M̄T

µ B̄T + ĀµX + B̄M̄µ < 0, (17)

with M̄µ = K̄µX. The previous inequality guarantees that V̇ < 0,
thus asymptotic stability at the origin is achieved. Nevertheless,
in practical cases it is important to consider the following: guar-
anteeing a maximum speed convergence φ > 0 while holding
a bound on the control input ||u(t)|| ≤ β, β > 0. The former is
guaranteed if V̇ ≤ −2φV holds, in terms of LMIs this is implied
by [

X3 + XT
3 + 2φX1 (∗)

AiX1+BMi−EiX3+XT
4 −EiX4−XT

4 ET
i

]
<0, (18)

hold for all i ∈ {1, 2, . . . , r}. If feasible, the controller gains are
computed as Ki = MiX−1

1 , i ∈ {1, 2, . . . , r}. As for bounding the
control law we have[

1 xT (0)
x(0) X1

]
≥ 0 and

[
X MT

i
Mi β2

]
≥ 0, i ∈ {1, 2, . . . , r}, (19)

where x(0) is a given initial condition.

Remark 2. Based on the proposed results by Bernal et al.
(2012a), conditions (10) and (11) can be written as an LMI
problem, thus the design of Π and γ(w(t)) can be seen as an
optimization problem. Let N(x) and R(x) be continuously dif-
ferentiable linear matrix functions and x as the decision vec-
tor. Then, an approximated solution for N(x) − R(x) = 0 can
be settled as minimization problem, that is, min ϵ > 0 : −ϵ ≺
N(x)−R(x) ≺ ϵ, ≺ stands for element-wise ordinary lower than,
in other words:

min ϵ > 0 :
{

N(x) − R(x) − ϵ ≺ 0
N(x) − R(x) + ϵ ≻ 0
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Thus, by means of Remark 2, conditions (10) and (11) can
be expressed as

min ϵ > 0 :

−ϵ ≺

[
AiΠ + BΓi + Di − EiΠS 0

0 CΠ − Q

]
≺ ϵ (20)

with ϵ arbitrarily small.

Remark 3. The numerical complexity of the LMI approach
increases as the number of nonlinearities increases, since the
number of vertex models is 2p. In Xie et al. (2014) the nu-
merical complexity of the LMI conditions is approximated by
log10(n3

dnl), where nd is the number of scalar decision vari-
ables and nl is the number of LMI rows. In our case, as the
complete design involves LMIs (18), (19) and (20) we have
nd = 0.5n(n + 1) + 2n2 + mnr + ns + msr + 1 and nl =

2nr+n+1+r(n+m)+2(n+ s)r+2(o+ s), where n is the number
of states, m the number of inputs, o the number of outputs, s the
size of the exosystem, r = 2p is the number of vertex models.

4. Examples

In this section, the proposed fuzzy regulation approach and
method previously derived are applied to two TS descriptor
fuzzy models without external disturbances. The first example
is numerical while the second on corresponds to the well-known
cart-pole system. The LMI conditions have been checked by the
LMItoolbox (Gahinet et al., 1994) within Matlab 2018a.

4.1. Numerical example

Consider a nonlinear model of the form (1) with

E(x)=
0.37 0.43 − 2 1

1+x2
2

0.23 1.15

 , A(x)=
[
−0.35 1.24 + cos x2
−0.74 0.5

]
,

B=
[
1.5
0

]
,D(x)=

[
0
0

]
,C=
[
0
1

]T
.

Applying the sector no linearity approach stated in Section 2.1;
two different nonlinear terms can be identified z1 = 1/(1+ x2

2) ∈
[0, 1] and z2 = cos x2 ∈ [−1, 1], such bounds hold in Ωx = R2.
Then, the weighting functions are µ1

0 = (1 − z1), µ1
1 = 1 − µ1

0,
µ2

0 = 0.5(1 − z2), µ2
1 = 1 − µ2

0; therefore, the four membership
functions are µ1 = µ

1
0µ

2
0, µ2 = µ

1
0µ

2
1, µ3 = µ

1
1µ

2
0, and µ4 = µ

1
1µ

2
1.

The vertex matrices are

E1 = E2 =

[
0.37 0.43
0.23 1.15

]
, E3 = E4 =

[
0.37 −1.57
0.23 1.15

]
,

A1 = A3 =

[
−0.35 0.24
−0.74 0.5

]
, A2 = A4 =

[
−0.35 2.24
−0.74 0.5

]
.

The considered exosystem is (9) with ẇ1 = w2, ẇ2 = −w1. The
task is that x2 tracks w1 + w2, thus Q = [1 1]. Running LMIs
(18) with ϕ = 0 (no decay rate condition) together with (20),
feasible solutions are found with ϵ = 9.0757 × 10−16, meaning

that the FIB equations (10)-(11) are satisfied. The computed
gains are

Π =

[
1.784 −1.433

1 1

]
,Γ1 =

[
0.323
0.232

]T
,Γ2 =

[
−1.010
−1.100

]T
,

Γ3 =

[
1.656
−1.100

]T
,Γ4 =

[
0.323
−2.434

]T
,K1 =

[
−0.773
1.386

]T
,

K2 =

[
−0.773
0.053

]T
,K3 =

[
−0.151
1.172

]T
, and K4 =

[
−0.151
−0.160

]T
.

Thus, now we are ready to implement the control law (12) for
the nonlinear system. Simulation results for initial conditions
x(0) = [1 1.5]T and w(0) = [0.7 0]T are shown in Figures 1 and
2; it can be seen that the tracking takes place asymptotically.
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1
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2

Figure 1: Output versus reference x2 vs w1 + w2
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Figure 2: control signal u(t) of the system

It is important to notice that the system under study has a
linear input distribution matrix and if a standard state-space rep-
resentation (2) is to be obtained, matrix B would be no longer
constant, thus results reported in (Meda-Campaña et al., 2009)
cannot be directly applied. Additionally, inverting the matrix
E(x) would generate more nonlinear terms and therefore more
vertex (rules) models.
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4.2. Cart-pole system
Consider the underactuated system in the Figure 3 consist-

ing for a car on the rail and one vertical beam joined to the car
(Fantoni et al., 2002). The cart-pole dynamical equations can
be represented from the Lagrange equation of motion (Lewis
et al., 2003), whose final form is M(q)q̈+Co(q, q̇)q̇+G(q) = τ,
where q = [x θ]T is a vector of generalized coordinates x is
the distance of the horizontal rail and θ is the angle from the
vertical, i.e.

M(q) =
[

M+m ml cos θ
ml cos θ ml2

]
, G(q) =

[
0

−mgl sin θ

]
Co(q, q̇) =

[
0 −ml sin θθ̇
0 0

]
, and τ =

[
f
0

]
.

M

mgl

g θ

y

x
f

Figure 3: Cart-Pole System

Table 1: Nonlinearities in (21) and their bounds
Nonlinearity Definition Lower bounds z0

i Upper bounds z1
i

z1 sin x3 -0.2588 0.2582
z2 sin x3/x3 0.9886 1
z3 x4 -1.5708 1.5702
z4 cos x3 0.9659 1

The motion equation for this system, described by its de-
scriptor model (1) is

1 0 0 0
0 M+m 0 ml cos x3
0 0 1 0
0 ml cos x3 0 ml2



ẋ1
ẋ2
ẋ3
ẋ4

=


x2
ml sin x3x2

4+u
x4

mlg sin x3

. (21)

Rewriting the previous nonlinear descriptor as a convex sum
in a compact set Ωx = {|x3| ≤ 15◦, |x4| ≤ 1rad/s} with their non-
linearities and their bounds settle in the table 1, we have an
exact TS representation:

16∑
i=1

µi(z)Ei ẋ =
16∑
i=1

µi(z)(Aix + Bu),

where µi(z) = µ1
i1

(z)µ2
i2

(z)µ3
i3

(z)µ4
i4

(z) and the indexes [i1i2i3i4]
are the digit binary representation of (i − 1), i ∈ {1, 2, . . . , 16}.
A set of illustration matrices Ai, Ei and B = [0 1 0 0]T for the
cart-pole system are given below:

A1 =


0 1 0 0
0 0 0 0.024
0 0 0 1
0 0 0.582 0

 , A8 =


0 1 0 0
0 0 0 −0.024
0 0 0 1
0 0 0.588 0

 ,

A13 =


0 1 0 0
0 0 0 −0.024
0 0 0 1
0 0 0.588 0

 , A16 =


0 1 0 0
0 0 0 0.024
0 0 0 1
0 0 0.588 0

 ,

E1 =


1 0 0 0
0 1.6 0 0.058
0 0 1 0
0 0.058 0 0.009

 , E8 =


1 0 0 0
0 1.6 0 0.058
0 0 1 0
0 0.058 0 0.009

 ,

E13 =


1 0 0 0
0 1.6 0 0.060
0 0 1 0
0 0.060 0 0.009

 , E16 =


1 0 0 0
0 1.6 0 0.060
0 0 1 0
0 0.060 0 0.009

 .

For this system, the task is that pendulum follows a sinusoidal
reference, that is, x3 asymptotically tracks ω1, generated by the
exosystem ω̇1 = ω2, ω̇2 = −ω1. As mentioned before by us-
ing the LMIs (18) with φ = 0 and (20), the controller (12) is
computed by the established in Section 3. The LMIs are found
feasible, for illustration purposes some of the gains are shown

K1 = [446.0 435.4 1428.5 236.8] ,
K8 = [446.2 435.6 1429.1 237.0] ,
K13 = [446.0 435.4 1428.5 236.9] ,
K16 = [446.2 435.6 1429.1 236.9] ;

the minimum ϵ is 0.0135, the common steady state

Π =


−9.9388 0

0 −9.9388
0.9865 0

0 0.9773

 ,
and some of steady state inputs Γi related to i subsystems
Γ1 =

[
15.845 −0.023

]
, Γ8 =

[
15.843 0.023

]
, Γ13 =[

15.845 0.023
]
, Γ16 =

[
15.843 −0.023

]
. Simulation re-

sults have been performed for initial conditions x(0) =

[10◦ 0.05 0.1 0.05]T , w(0) = [5 0]T , the behavior closed-
loop trajectories are depicted in Figure 4; it can be observed,
the tracking error goes to zero as time increases. The rest of
the states and the control input are shown in Figure 5, notice
that at the beginning, the control law requires a large amount of
energy.

Keep in mind that as we are in the LMI framework, we can
directly add performance specifications such that decay rate,
input-output constraints, etc. Since the control law would be
applied to the real system, lower input control signal is required
and the necessity of bounds in order to not affect the actuator.
Such improvements can performed by running LMIs (18) for
decay rate φ = 0.8 and (19) for the input constrain β = 10 with
x(0) = [0 0 5◦ 0]T as initial condition. As expected, the
control signal holds the imposed bounds and now it can be im-
plemented directly on the physical system; its performance can
be seen in Figures 6 and 7.



L. Poblete et al. / Publicación Semestral Pädi Vol. 9 No. 18 (2022) 85–91 90
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Figure 4: Output x3 versus reference ω1 and tracking error e(t) for the cart-pole
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Figure 5: States and control signal u(t) for the nonlinear cart-pole system
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Figure 6: Output x3 versus reference ω1 and tracking error e(t) for the cart-pole
system with decay rate and input constraints
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Figure 7: States and control signal u(t) for the nonlinear cart-pole system with
decay rate and input constraints

5. Conclusions

This work has defined the nonlinear output regulation for
dynamical systems in descriptor forms; sufficient conditions for
the existence of such controller are given in terms of linear ma-
trix inequalities. In particular, the proposed approach are given
by two components, the first one is a nonlinear stabilizer which
creates a globally attractive steady state and, the second one,
the steady-state mappings on the basis on new equations in the
sense of Isidori; all of these carried out in a practical way. It
has been shown that, the approach can be effective for the im-
plementation in real time. Two systems have been presented in
order to show the advantages of the proposed approach.
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