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Abstract 

A method is proposed to characterize spatially extended non-linear dynamic systems that exhibit both periodic and chaotic 
spatiotemporal behavior. The system is a two-dimensional square lattice of coupled Hénon maps that interact with nearest 
neighbors through diffusive coupling. Focusing on just one of the maps of the lattice (network) and on one of its dynamic 
variables, this method is compared against two other forms of characterization of the dynamic behavior of the network. It is 
shown that the sampling of a single map provides more consistent and effective results than the other two methods. 

Keywords:  Hénon map, Coupled Map Lattices, Diffusive coupling, dynamics characterization. 

Resumen 

Se analiza un método para caracterizar sistemas dinámicos no lineales espacialmente extendidos que exhiben un 
comportamiento espaciotemporal tanto periódico como caótico. El sistema analizado es una red cuadrada bidimensional de 
mapas de Hénon acoplados que interactúan con los vecinos más cercanos a través de un acoplamiento difusivo. Enfocándose en 
uno de los mapas de la red y midiendo una de sus variables dinámicas, se compara este método contra otras dos formas de 
caracterización del comportamiento dinámico de la red. Se demuestra que el muestreo de un solo mapa proporciona resultados 
más consistentes y efectivos que los otros dos métodos. 

Palabras Clave:  Mapa de Hénon, Arreglos de mapas acoplados, Acoplamiento difusivo, Caracterización dinámica. 

1. Introduction

The significance of Coupled Map Lattices (CML) (Kaneko,
1992), (Kaneko, 1991) is based on the fact that they are useful 
for developing and understanding new concepts in 
spatiotemporal systems as well as deducing universal laws 
(Zhang and Wang, 2015), (Yang et al., 1996), (Liu et al., 
1999). A critical not completely understood issue of nonlinear 
dynamical systems is to determine the way in which a periodic 
or chaotic behavior influences the dynamics of these systems 
with a large number of degrees of freedom such as coupled 
systems (Tran, 2001), (Chakravarty et al., 2003), (Wang et al., 
2011). There are a range of applications in which pattern 
formation and spatiotemporal chaotic behavior (Xu et al., 
2019), (Turing, 1952) takes place, including excitable media 
(Báscones et al., 2002), (Winfree, 1991), (Pande and Pandit, 
2000), biological systems (Ahmed et al., 2001), (Nicolis et al., 
2004), diffusion fields (Daccord et al., 1986), (Garik et al., 

1989), (Meixner et al., 2000), convection (Chiam et al., 2003), 
(Zhang and Viñals, 1995), and chemical systems (Xi et al., 
1993), (Elezgaray and Arneodo, 1992), (O'Hern et al., 1996). 
Just few analytical results for special nontrivial models which 
cannot be studied by existing elementary methods have been 
obtained (Just, 1998), (Lü and Hu, 2004), so to analyze these 
kinds of complex problems it is useful to continue with studies 
based on numerical calculations. This work intends to cover 
this issue by analyzing a method to characterize the temporal 
dynamics of CMLs. 

Hénon map has been used in recent years to understand and 
extend concepts in nonlinear dynamics (Hu et al., 2017); it is 
used too in applications in several areas such as parameter 
fitting (Tao et al., 2004), (Oprisan, 2002), chaos control 
(Wagner and Stoop, 2001), and betatron oscillations (Tzenov 
and Davidson, 2003) among others that can be found in 
literature. Numerical solutions of this map give a rich variety 
of regular periodic solutions and deterministic chaos; in this 
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way, the Hénon map is already a standard tool to analyze 
nonlinear dynamical systems, here it is utilized to characterize 
a lattice system. 

In characterizing dynamical systems several topics must be 
considered, some methods require a precise and unbiased 
characterization of the available information that can be 
derived from the system such as maximum entropy methods. 
Also, the idea of information content has found key 
applications in systems that contain large amounts of 
information as well as a field to apply formal mathematics. 
Information content provides a rigorous definition of 
randomness and a quantitatively precise way of characterizing 
a particular dynamical system as complex. 

To characterize a spatially extended non-linear dynamical 
system that exhibit spatiotemporal chaotic behavior it has been 
used several methods as in (Cross and Hohenberg, 1993), (Qi 
et al., 2003), (Sharma and Gupte, 2002). For CMLs, the 
exploration of the parameter space is computationally 
demanding so it is necessary to use a simple characteristic that 
it be easy to evaluate in order to characterize the states of the 
system.  

There is a diversity of techniques for characterizing a CML, 
two of the most used are the calculation of the trace of the 
matrix of stationary states (Just, 1998) and the Lyapunov 
exponent (Lai et al., 2003). In this work, both techniques are 
compared against a method proposed by obtaining the 
sampling of the fast variable of the Hénon map from a single 
randomly chosen node in the central region of the square 
network. All these three methods are non-heavy numerical 
evaluation and are carried out along with the evolution of the 
system. 

This paper is organized as follows. Section 2 presents the 
assumptions and equations of the model. Section 3 contains the 
main numerical results and discussions. Finally, section 4 
gives the general conclusions. 
 
2. The model 

The system under analysis is a discrete two dimensional 
(2D) squared lattice of Hénon maps defined by equations (1-
4). Although the local dynamics of each site in the lattice is 
described by a Hénon map, here the main focus of attention is 
on how the spatiotemporal dynamics of the lattice evolves as a 
whole, where each map is interacting with its nearest-
neighbors via Turing’s diffusive coupling (Kaneko, 1992). The 
whole model is defined by 

 (1) 

 
 (2) 

 
where the so called fast and slow variables of the map are 
respectively 

 (3) 
 

       (4) 

 
and the pair (i, j) labels the row and the column of the matrix 
that represents the lattice array. Parameters values for µ and J 
are chosen so that a single Hénon map exhibits both periodic 
and chaotic dynamic (from here, J is fixed to 0.30). The 
coupling strength is carried out by doing summations of four 
nearest neighbors (nn) and scaled with the coupling constant h 
allowed to vary in the range (0.0, 0.40). The size of the lattice 
is 100x100 sites with periodic boundary conditions imposed. 
This fixed medium size of the lattice using diffusive coupling 
with maps was chosen because it is known from previous test 
calculations this size and above, the lattice size does not 
influence the dynamic state as it is reported in (Kaneko, 1991) 
with a Logistic CML.  

Proposed method steps consist first, in assigning a random 
number to dynamical variables of whole network and evolving 
in time by iterating equations (1-4). Second, nearest-neighbors 
of each map interact through constant linear diffusive coupling 
defined by equations (1) and (2). Third, a node of the lattice is 
randomly chosen and periodic conditions were imposed.  

Selected values of µ were in the range (0, 2.0), for which a 
solution of one Hénon map goes through periodic to windows 
of chaotic states. For values outside these ranges of parameter 
µ, the solution for a single map diverges. 

Numerical calculations were performed using a program 
encoded in C++ language developed by one of the authors 
(JMSS). For the display of images in Figure 1, the Matlab™ 
software was used. The display of results in graphs of 
coordinate systems (figures 2 and 3) was carried out using the 
Origin™ software. 

 
3. Numerical Results 

It was found that once a steady state is reached (after about 
200 time-iterations), the lattice and individually each site 
remains in the same state, i.e. periodic or chaotic. In the case 
of periodic states, each element of the lattice visits the 
corresponding values associated to the given state so, for 
period-1 state has one allowable value, period-2 has two 
values, and so on. By mapping each value to a gray level and 
displaying it as an image, a spatial distribution or pattern is 
form as shown in Figure 1 with h=0.01 where has been used 
several values of parameter µ. While the system remains in a 
low order period, such as period-one or period-two, its 
dynamic is easily identified through the formed patterns, as in 
figures 1a, 1b and 1c, but when the system is in a higher 
periodic order as period eight as in figure 1e, or in a chaotic 
state as in figures 1d and 1f, the spatial distribution appears to 
be a random image, therefore cannot be distinguished any state 
even qualitatively. 

With the aim to compare, calculations for some values of 
the diffusive coupling parameter h were done in terms of the 
parameter µ. Figure 2 shows the results of the bifurcation 
diagrams for two methods of identification, the left-hand side 
column corresponds to the sampling of one point of the lattice 
proposed here, while the right-hand side column corresponds 
to the trace of the whole lattice matrix. By analyzing the 
bifurcation diagrams, it can be seen that, except for period-1 
(µ<0.40) for the trace of the matrix calculation the qualitative 
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behavior is non uniform for increasing values of the diffusive 
coupling constant, even for the trivial case h=0.0, while for the 
one sample method (OSM) results to be uniform as the 
parameter µ is increasing. For further values of h none 
characterization of this dynamical system is possible to get if 
it is based just on this technique; moreover, for each value of 
h the appearance of the bifurcation diagram changes in 
behavior almost completely, so this technique is inappropriate 
to characterize Hénon Coupled Map Lattices. 

 

 
Figure 1: Spatial patterns obtained for several values of the µ-parameter and 
using a constant diffusive coupling h=0.01. a) Period one (µ=0.20); b) Period 
two (µ=0.80); c) Period four (µ=1.04); d) Chaotic state (µ=1.17); e) Period 
eight window (µ=1.27); f) Chaotic state (µ=1.40). It is shown a sub region of 
the whole considered lattice in each case. 

 
To obtain first row of Figure 2 a null coupling was applied 

(n=o) which is the trivial case of isolated maps, therefore, the 
bifurcation diagram is just the same as for one Hénon map with 
the same parameters. 

As the value of the diffusive coupling constant is increasing, 
the bifurcation diagram is evolving accordingly. In the range 
µ<0.4, the trace-matrix method characterizes the system 
exactly for all values of the coupling constant, however for 
values µ>0.4, this method fails and the state of the system 
cannot be determined. 

Third method, Lyapunov exponents were obtained to 
compare with the method proposed here. For h=0.01, the 

description given by curve in Figure 3a agrees exactly with the 
behavior for our method shown in Figure 2 for the same value 
of h, resulting identical dynamics states in the full range of µ. 
Although the calculation of the Lyapunov exponent is a very 
reliable technique for characterizing a dynamic system, in the 
case of the CML analyzed here, this calculation loses structure 
for larger values of h (h>0.01). That happens when the system 
goes into a quasi-periodic regime (µ>0.37) see Figure 3b. The 
exponent results positive in this interval, so no conclusion can 
be made about the dynamics of the lattice, this does not happen 
in the same range of µ parameter for the case h=0.05 of the 
OSM. By comparing both graphs, the calculation of Lyapunov 
exponents results in an instability (Figure 3b) while the OSM 
(Figure 2) shows truly the quasi-periodic regime instead.  

After the contrast between method proposed in this work 
versus other two techniques, it can be observed a robust 
characterization of the system for the entire ranges of values of 
the parameter µ by the OSM proposed in this work. 

 

 
Figure 2: Comparison between two methods of characterization through 
bifurcation diagrams. First column contains the results for OSM and second 
column for the trace of the matrix. The horizontal axis corresponds to the 
parameter µ, the vertical axis (not showed) is in arbitrary units. Arrows in the 
left hand figure for row with h=0.01 correspond to each pattern of Figure 1. 
 
4. Conclusions 

Exploring the parameter space of a CML is computationally 
demanding, so it is necessary to use less processor-intensive 
calculations to characterize the dynamics regimes of the 
system. Whenever the system be in a low periodic order its 
dynamic is easily identified through the formed spatial 
patterns, but when the system be in a higher periodic order or 
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in a chaotic state, the spatial distributions appear to be as a 
random image in the depiction used here. 

The lack of robustness in calculating the trace of the matrix 
for a lattice of Hénon maps became evident and moreover, the 
behavior of the bifurcation diagrams for increasing values of 
the diffusive coupling constant follows a non-uniform 
behavior even for the trivial case (h=0.0), no match exists with 
the isolated Hénon map except in the period-1 region. In the 
period-2 regime the trace method is ineffective and does not 
give an intelligible pattern. Resuming, both the trace matrix 
and Lyapunov exponent method do not characterize the actual 
cascade of instabilities. Instead, the bifurcation diagram 
corresponding to one sample of the method proposed here 
shows a very definite dynamical state. 
 

 
Figure 3: (a) Lyapunov exponents for h=0.01, and (b) h=0.05. Once the 
exponent becomes positive only an instability can be inferred in the ranges 
µ>1.10 in (a) and µ>0.40 in (b). The vertical axis is in arbitrary units. 
 

By building bifurcation diagrams respect of the parameter 
µ, it becomes clear that to characterize a CML, it is more 
efficient to use one site of the lattice instead of a global 
character of the whole system. As the value of the diffusive 
coupling constant is increasing, the bifurcation diagram of one 
lattice point suffers continuous transformation, it has been 
found that this global characteristic is insensitive to the 
dynamics of the global lattice. 

In the case of the CML, analyzed for increasing values of h, 
Lyapunov exponent lose structure and just an instability region 
can be inferred from its graph while the method proposed truly 
shows the quasi-periodicity regime for such parameter values. 
So, the characterization of the dynamics of a CML through 
bifurcation diagrams in the region of stable periodic, cuasi-
periodic, and chaotic regime is an appropriate general method. 
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