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Resumen

El análisis de la marcha es una de las áreas de investigación más importantes y desafiantes en entornos clı́nicos y de computación.
La biomecánica de la marcha y el reconocimiento humano de la marcha son dos áreas principales de interés. Las alteraciones en la
marcha pueden causar problemas de salud fı́sica y mental en las personas, por lo que los diagnósticos y tratamientos derivados del
análisis de la marcha óptima son de gran utilidad en el ámbito clı́nico. Este documento examina los métodos, las aplicaciones y las
plataformas de análisis de la marcha, la biomecánica de la marcha, ası́ como los enfoques y conjuntos de datos de reconocimiento
de la marcha. Luego, describimos las contribuciones en la cinemática de la marcha hacia adelante, útiles para evaluar marchas
como agachado y normal. Además, se describe un marco para el reconocimiento de la marcha antiálgica basado en la actividad
humana, utilizando el giroscopio integrado en un teléfono inteligente. Se utilizaron diferentes algoritmos y métricas para realizar el
reconocimiento de la marcha, destacando Support Vector Machines, Naive Bayes, k-Nearest Neighbours y Accuracy y F-measure,
respectivamente. Finalmente, discutimos los desafı́os y las perspectivas futuras en el reconocimiento de la marcha.

Palabras Clave: Análisis de la marcha, biomecánica de la marcha, reconocimiento de la marcha, conjuntos de datos de la marcha.

Abstract

Gait analysis is one of the most important challenging research areas in clinical and computing settings. Gait biomechanics and
gait human recognition are two major areas of interest. Alterations in walking can cause physical and mental health problems in
people, so diagnoses and treatments derived from optimal gait analysis are very useful in clinical settings. This paper surveys the
gait analysis methods, applications and platforms, gait biomechanics, as well as, gait recognition approaches and datasets. Then,
we describe contributions in gait forward kinematics, useful to assess gaits such as crouched and normal. Also, a framework for
antalgic gait recognition based on human activity, using the gyroscope embedded in a smartphone is described. Different algorithms
and metrics were used to perform the gait recognition, highlighting Support Vector Machines, Naive Bayes, k- Nearest Neighbours,
and Accuracy and F-measure, respectively. Finally, we discuss the challenges and future perspectives on gait recognition.

Keywords: Gait analysis, gait biomechanics, gait recognition, gait datasets.

1. Introduction to gait analysis

Walking is the biomechanical locomotion action that hu-
man beings develop to move autonomously. Gait is the style
that each person performs to move the body forward during the
alternately limbs cyclic motion. While, gait analysis (GA) is
the set of procedures to observe record, analyse and interpret
human walking (Stergiou, 2020). This assessment tool traditio-
nally has been based on the observational expertise and know-
ledge of the specialists. However, recently the instrumentation
to measure, process, and analyse the body biomechanics has

improved the performance of this approach (Whittle, 2014).
Gait analysis has been applied optimally in several areas such
as i) robotics, ii) biomechanics, iii) sports, iv) rehabilitation, v)
gait disease diagnosis, vi) surveillance, vii) forensics among ot-
hers (Singh et al., 2018).

Most of the important applications of the gait analysis have
been developed in clinical settings, in order to develop disea-
se diagnosis and treatments decision-making. An inability to
walk can change a persons life, impacting in its independence
and creating significant health problems over both the short and
long term. This is why gait analysis and the topics around this
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work are very important. There are two main categories: clini-
cal gait assessment and gait research. Clinical gait assessment
has the aim of making detailed diagnoses and planning opti-
mal treatments, whereas gait research focuses on improving the
understanding of gait. Gait assessment could be used to deter-
mine gait illnesses regarding the medical conditions that invol-
ve the locomotor system. A large number of diseases affecting
the neuromuscular and musculoskeletal systems and leading to
disorders of gait are i) cerebral palsy, ii) Parkinson’s disease,
iii) osteoarthritis, iv) rheumatoid arthritis, v) stroke, vi) spinal
cord injury, vii) myelodysplasia, viii) multiple sclerosis, among
others (Levine et al., 2012).

2. Gait analysis methods and platforms

The aim of gait analysis is to identify gait abnormalities by
studying the motor performance of the musculoskeletal system
during walking. In the functional analysis of the pelvic, hip,
knee, and ankle joints, it is evaluated by measuring the an-
gular displacement and the rigidity of its degrees of freedom
(DoF) when walking (Rigoldi et al., 2012). There are several
methods to perform gait analysis, which can be based only on
the expertise of the specialist or on instrumented technological
equipment (Kelly, 2020). Commonly, sophisticated systems but
with higher costs provide an objective analysis rather than the
observational approach. Though, it has often found in clinical
settings that the problem can be appropriately managed using
simpler techniques.

Tabla 1: Gait acquisition methods and available platforms (Ancillao, 2018; Su-
rer and Kose, 2011; Klöpfer-Krämer et al., 2020; Whittle, 2014).

Methods Instrumentation Data Purpose
Marker-
based
motion
capture

Optoelectronic
systems, retro-
reflective markers

Marker x, y, z coor-
dinates and their
evolution over time

Tracking the subject
motion to recons-
truct their 3D posi-
tion.

Markerless
motion
capture

Camera and RGB-D
sensors

Video recordings of
gait sequences

Conventional came-
ras can be utilized
without the neces-
sity of using special
apparel or hardware.

Inertial
measure-
ments

Accelerometer, gy-
roscope or magneto-
meter

Inertial time-series Inertial measure-
ment and analysis.

Floor sen-
sors

Force plat-
forms/pressure
matrices

Force and moment
vector exchanged
with the ground.
Coordinates of the
centre of pressure

Analysis of ground
forces, joint reac-
tion, and muscle
force.

Electromio-
graphy

Electromyograph Time-series of the
voltage produced by
muscle contraction

Analysis of muscle
contraction.

Energy
consum-
ption

Oxymeter, stethos-
cope

Time-series of O2
and CO2 levels,

Analysis of energy
consumption while
walking.

Electrogo-
niometry

Electrogoniometer Joint angles time-
series

Continuous measu-
rements of the angle
of a joint while wal-
king.

The most common observational methods are: the Berg Ba-
lance Scale (BBS), dynamic gait index, 10-Meter Walk Test,
6-Min Walk Test, and the Functional Ambulation Categories
(FACs). All these methods evaluate the walking ability using
different tasks and ranges. Due to the evaluation depends on the
specialist experience, the assessments are subjective (Sharif Bi-
dabadi et al., 2019). To overcome these limitations, different

methods and devices have been developed and introduced in
practice. A GA assessment requires the simultaneous acquisi-
tion of different types of biomechanical data, therefore, it is ne-
cessary to use different measurement systems which are usually
stored within the same database. A summary of the methods
commonly used in a GA is presented in Table 1.

Figura 1: Markers position of marker-based hemiplegic gait analysis system
(Correa-Bautista, 2012)

The marker-based motion capture (MoCap) method uses
body markers as we can see in Figure 1 is one of the most useful
technologies for gait analysis. To this end, the theory of multi-
rigid body systems and cameras calibration are required. There
are major sources of errors in human movement analysis regar-
ding instrumental errors, environmental variability, soft tissue
artifacts and, anatomical landmark misplacement. Also, due to
the joint angles are not obtained directly, it is necessary to apply
inverse kinematic techniques. Markerless systems, overcome
these limitations using conventional cameras without the neces-
sity of using special apparel or hardware. These techniques are
classified into model-based and model-free techniques. Model-
based approach uses an a priori human body model. While,
model-free approaches do not use a human model (Arai and
Asmara, 2013). However, the implicitly model variations in po-
se configuration, body shape, camera viewpoint and appearance
are taken into account. The success on the visual GA depends
on the number of repetitions and patient motivation (Surer and
Kose, 2011).

The digital development of microelectromechanical sys-
tems is gaining great interest as a tool for clinical applications.
Using inertial measurements for body tracking is a relatively
new technology (Mc Ardle et al., 2020). Accelerometers, gy-
roscopes, and magnetometers have been used to develop gait
acquisition systems in both clinical and free-living environ-
ments, which are useful for identifying gait abnormalities (Li
et al., 2018; Steinmetzer et al., 2020), age-based characteriza-
tion (Mariani et al., 2010), hemiplegia (Fang et al., 2014). An
advantage of this technology is the possibility to perform real-
time evaluations. Also, by placing these sensor units to each
joint segment of the human body, the orientation of each seg-
ment relative to a global frame could be calculated (Sprager and
Juric, 2015).

Over the last few years, recent work floor sensors have been
applied for medical applications such as the impact of muscle
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fatigue on gait characteristics, health monitoring, and age-based
classification (Alharthi et al., 2021); as well as characterization
of gait abnormalities in multiple sclerosis, Parkinsons disease,
or fibromyalgia patients (Klöpfer-Krämer et al., 2020). A force
platform (or a force plate), integrates devices with either strain
gauges or piezoelectric transducers. For gait analysis force plat-
forms are fixed in the ground and they record the force between
the ground and the plantar surface of the foot (Ancillao et al.,
2018). The disadvantages of using force plates are: the need to
be built on a walkway, the number of contact surfaces is limited
and a single foot is a measurement during a gait cycle. In the sa-
me way, Electromyography (EMG) is a used technique in gait
biomechanics to study the muscle of each body segment (Naz-
mi et al., 2019). Three important applications of surface EMG
signals are initiation of muscle activation, force generation by
a muscle, and measurement of the fatigue within a muscle. The
problem with EMG signals is the semi-quantitative approach
and the little measure of the strength of contraction of indivi-
dual muscles. Also, it may be quite difficult to obtain satisfac-
tory recordings from a walking subject due to the characteristics
of the electronic equipment and the electrodes (Kazemi et al.,
2017; Schmidt et al., 2020; Rossi et al., 2018).

Another device that has been used for making continuous
measurements joint angles is an electrogoniometer. The output
function is usually plotted as a chart of joint angle against time
or percentage of the gait cycle. (Di Nardo et al., 2020). Oxy-
gen consumption (Darter et al., 2013) and heart rate monitoring
(Cheung and Vhaduri, 2020) also have been methods to assess
a patient during walking. Recently, several technological plat-
forms for GA have been developed. For example, the GAITRite
System is a truly portable single-layer pressure-sensitive walk-
way measuring temporal and spatial parameters and providing
easy identification of gait anomalies (Khan et al., 2019). BTS
GAITLAB is a system with 8 motion capture cameras, 6 force
plates which performs clinical motion and gait analysis used to
evaluate ground reaction forces during gait in people with uni-
lateral transtibial amputation, a series of cases (Cardona et al.,
2021). Another system is Wearable FSR sensor used to measure
the pressure distribution and changes on an insole, can collect
the force applied positions and pressure changes information
while walking, running, jumping (Xiao and Menon, 2014). Al-
so, the gait analysis tekscan includes force plates, motion captu-
re, and EMG systems. for gait research and evaluations through
objective and quantifiable data and it has been used to validate
a SmartInsoles Cyber-Physical System (CPS) to measure gait
parameters of multiple users in a restriction-free environment
(Arafsha et al., 2018).

3. Gait Biomechanics

Biomechanics is a scientific discipline based on methods of
mechanical engineering to analyze biological systems perfor-
mance. Since gait is considered a mechanical process that is
performed by the human body, it could be studied in this way
(Levine et al., 2012). While gait kinematics studies the veloci-
ties, accelerations, and displacements during the gait, gait ki-
netics focuses on the forces and torques that generate the body
movements. Some areas of biomechanics inquiry that have been

addressed are: developmental, exercise, rehabilitative, occupa-
tional and forensic (Stergiou, 2020). Kinetics and kinematics
analysis of the hip, knee, and ankle joints has been used to as-
sess the effects of a hip arthroplasty (Beaulieu et al., 2010),
chronic stroke evolution (Ogihara et al., 2020), Achilles ten-
dinopathy (Munteanu and Barton, 2010), rheumatoid arthritis
(RA) (Weiss et al., 2008), inversion sprains (Chinn et al., 2014),
and strategies on the gait of patients with Parkinsons disease
(Xu et al., 2021).

To better carry out GA, the terminology used must be un-
derstandable. In Figure 2, the stages and phases of the gait cycle
using as a reference the right lower limb (green) are presented.
To this end, we adapt the 2392 OpenSim musculoskeletal mo-
del. As we can see, the cycle consists of two phases: stance and
swing, and four and three stages, respectively. The main para-
meters used in clinical settings for GA are: stride velocity, step
length, stride length, cadence, cycle time, speed, step width,
step angle, step time, swing time, stance time, ground reaction
forces, joint angles, muscle force, and momentum (Muro-De-
La-Herran et al., 2014).

Figura 2: Saggital of positions of the lower limbs during the human gait cycle.

In the same sense, today in a GA test it is important to
consider demographic parameters such as age, duration of the
disease, sex, place of residence, place of birth, employment
(Arellano-González et al., 2021). The environmental parame-
ters such as lighting, temperature, noise, humidity, among ot-
hers, must be considered. To understand pathological gaits, it
is necessary to compare these with the normal gait parameters.
Frequently, a global GA test is presented based on Kinematic,
spatiotemporal and kinetic gait parameters, in the three anato-
mical planes (sagittal, coronal and transverse).

3.1. Gait forward kinematics and visualization

Human gait biomechanical research is a current essential
area, in which individuals of different ages and conditions are
examined to determine gait diseases from abnormalities regar-
ding the gait normal parameters. Researchers in this area focus
on building body models which explain the functioning of the
body system and provide solutions to improve the methods for
GA. Acquiring and analysing kinematic and kinetic data of the
body-segments and joints of interest have been a common pro-
cedure (Surer and Kose, 2011). In previous work we presented
a method for gait forward kinematics of position to model the
lower limbs during walking. Quaternions algebra was used as a
mathematical tool to solve the inverse kinematics of the 8 DoF
proposed chain (Figure 3a) and comparative analysis with clas-
sical methods was carried out.
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Using the same approach, a determination of the difference
in the cartesian space performance between normal and crou-
ched gaits was performed. To this end, statistical metrics such
as area, RMS level and centroid were used. Also, a visualization
of the three anatomical planes for the workspace performance
was presented (Gonzalez-Islas et al., 2020). The gait data ob-
tained evaluating the kinematic parameters are big and multidi-
mensional. So, the manual data analysis carried out implies a
high temporary, economic, and high specialty cost. Which can
lead to errors and a subjective evaluation done by specialist.
Therefore, an automatic analysis based on machine learning is
possible.

Visual gait analysis is the most common human-based way
to assess gait performance. The use of video recording or vir-
tual visualizations also makes it possible to observe gait abnor-
malities. Showing the subject a video recording of their gait is
very useful although, it is not considered biofeedback, since it
is not performed in real-time. However, with the advantage of
technology adds it could be possible. When a therapist is wor-
king with a subject to assess and correct a gait abnormality, the
subject may gain clear feedback about their performance.

For the human being, in addition to the basic senses, there
are other sensory mechanisms such as the kinesthetic, which is
controlled by the receptors in the muscles, tendons, and joints.
Therefore, the way that we think and process emotions is reflec-
ted in human behavior and gait. An internal biological and/or
biomechanical stimulus depends on the mental state of the in-
dividual at that moment. The way in which it is interpreted de-
termines the choices that are made at a cognitive and emotional
level to express a motor response. Emotional states are interre-
lated with the human gait, the current understanding of human
motion linking emotions and gait would benefit from further
work in contributing to a more in-depth understanding (Kelly,
2020).

Figura 3: a) 8 DoF Kinematic open chain to model the gait cycle, b) 2392 Open-
sim Musculoskeletal model (Seth et al., 2018) and c) Maya Human skeletal
model.

4. Gait recognition

During the last decades, gait analysis has been studied an
improved by the computer community. Gait recognition is a
computational approach based on gait pattern analysis, which is
used for examining and comparing different subjects. In areas
such as person identification (Figure 4), gender classification,
surveillance, forensics, and diagnosis of diseases GR has been

applied (Singh et al., 2018). In clinical settings, Parkinson’s di-
sease detection (Saad et al., 2017), rheumatoid arthritis (RA)
evaluation (Raziff et al., 2016), cerebral palsy detection (Tabo-
rri et al., 2015), as well as, chiropractic and orthopedic (Hnatiuc
et al., 2021) diagnosis, and prediction of lower-limb fracture
rehabilitation (Pla et al., 2017). The variations in gait parame-
ters between the subjects allow to differentiate them or determi-
ne some abnormalities regarding a normal gait pattern.

Figura 4: Flowchart of gait recognition system by integrating inertial and
RGBD sensors (Zou et al., 2017).

4.1. Gait recognition framework
The fundamental framework of a gait recognition system

consists of two stages, which are training and testing as shown
in Figure 5 (Wan et al., 2018).

Figura 5: Machine learning framework for gait recognition.

4.1.1. Data acquisition
The first module of the training phase is gait data acquisi-

tion, which is important for collecting human gait data accor-
ding the experimental design and the accuracy of the system.
Depending on the gait parameters, there are several acquisition
platforms such as i) Wearable sensor (Figure 7), ii) floor sensors
iii) cameras and iv) Myolectric sensors (Sahu et al., 2020).

4.1.2. Access and preprocessing
The first step in any machine learning project is data access

and visualization, which is useful for understanding the proper-
ties of the data. Common ways are visualizations, signal pro-
cessing, and clustering techniques. Generally, gait raw data are:
noisy, multidimensional, multivariable, missing, and outliers.
Therefore, preprocessing tasks including data cleaning, data in-
tegration, data reduction, and data transformation are required
(Mathworks, 2018).

4.1.3. Feature extraction\selection
One of the most important parts of any gait recognition sys-

tem is feature extraction. It turns gait raw data that could be
understandable without redundancy for machine learning algo-
rithms (Sahu et al., 2020). Different data acquisition methods
require different feature extraction techniques. In Table 2 a sum-
mary of this stage is presented.
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Tabla 2: Summary of feature representation methods for gait recognition (Wan
et al., 2018; Singh et al., 2018).

Model-based Model-free Accelerometer and
Gyroscope

Floor sensors

Stride
length/cadence

Direct Silhouette Mean/Standard de-
viation

Heel strike

Step length Motion-Energy
Image/Motion-
History

DTW distance Foot strike

Gait periods Gait Energy Ima-
ge/Gait History
Image.

Range Area

Distance b/w
joints

Frame Difference
Energy Image

Energy Length

Stance width Active Energy Ima-
ge

Spectral entropy Mean and stan-
dard deviation

Joint rotation
patterns

Distance-based fea-
tures

Median Frequency Axis relations-
hip

Motion trajec-
tories

Centroid-based fea-
tures

Correlation Amplitude
spectrums

Orientation
limbs

Gait Flow Image Mutual information End point and
its amplitude

Figura 6: Overview of temporal representations of silhouettes gait sequences
(Sepas-Moghaddam and Etemad, 2022).

In vision-based gait recognition, features are extracted ba-
sed on model-based and model-free representations. Model-
based feature representation aims to model the human body,
and features are extracted from this model. It typically includes
distances and angles of some points on human bodies. Model-
based methods are view-invariant, scale-invariant and are not
affected by background cluttering and noise. There are two ap-
proaches in this sense. First, structurally-based, which estimates
the geometrical and structural properties of individual subjects.
Second, the 3D model-based aims to identify the discriminative
features that differentiate people according to their gait (Singh
et al., 2018). In model-free approaches, no prior geometric mo-
del of the human body is formed, but they process the whole
motion or shape of human silhouettes. Temporal representation
based on templates is an approach used to represent the tempo-
ral information in of silhouettes gait sequences as we can see in
Figure 6 (Sepas-Moghaddam and Etemad, 2022). It is indepen-

dent of video quality and lower computational cost. However, it
depends on viewpoints and scale (Wang et al., 2010).

Wearables are recently considered one of the most suitable
technologies for healthcare, security, sports, and fitness appli-
cations. In gait analysis, accelerometers, gyroscopes, inertial
measurement units (IMUs), and force sensors have been used
to measure gait characteristics (Saboor et al., 2020). Two featu-
re extraction methods for this are gait-cycle-based and frame-
based methods. In some gait recognition systems, multiple ac-
celerometers are attached simultaneously to human bodies to
get multiple gait signals. To this end, signals sources need to
be fused (Dehzangi et al., 2017). The simplest way for repre-
senting floor-sensor data is body mass. In this way, the body
mass information can be used for identifying a person. Howe-
ver, since many individuals may have the same body mass, the
recognition rate may below. The floor sensor system captures
spatiotemporal samples due to varying ground reaction force
(GRF) in multiples of up to 4 uninterrupted steps on a conti-
nuous area (Alharthi et al., 2021).

To avoid many features, which were extracted in the last sta-
ge, feature selection is a required process. Using too many fea-
tures leads to overfitting and more computational resources du-
ring the training stage. Feature selection (or dimensionality re-
duction) is the process of deficiently selecting the features that
are more relevant, preserving the essential raw data informa-
tion and removing redundant features. There are common fea-
ture selection approaches such as stepwise regression, sequen-
tial feature selection, and regularization, Principal Component
Analysis (PCA), Genetic Algorithms, Support Vector Machines
(SVM), Particle Swarm Optimization (PSO), Discrete Cosine
Transform (DCT), among others (Figueiredo et al., 2018).

Tabla 3: Summary of the classification algorithms and its benefits and disad-
vantages (Singh et al., 2018; Pogorelc et al., 2012).

Algorithms Benefits Disadvantages
K-Nearest Neigh-
bors (k-NN)

If training data is
large, it is simple
and efficient.

Lower accuracy.
Does not work
well with high
dimensions.

Naive Bayes (NB) Simple and easy to
implement. Fast,
since it requires
less training data. It
makes probabilistic
predictions

Unable to make pre-
dictions

Support Vector Ma-
chines (SVM)

High accuracy.
Handles high di-
mensional data
well.

Not suitable for lar-
ge datasets

Deep Conventional
Neural Networks
(DCNN)

High accuracy. Po-
pular for classifi-
cation, compression
and recognition.

It needs more trai-
ning data. High
computational cost

Decision Trees (DT) Good generalizing Prone to overfitting
Random Forest
(RF)

Highest accuracy. It
can also handle big
data.

Low prediction ac-
curacy

4.1.4. Classification
The last stage of the gait recognition framework is classi-

fication, which is an iterative process to develop a model and
involves these steps: i) Select the training and validation data,
ii) Select a classification algorithm, and iii) Train and evalua-
te classification models. Before training classifiers, we need to
divide the data into training and validation sets, in which ran-
domly 80 % and 20 % of the data, respectively are assigned (Su-
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gomori, 2016). Then, iterative training and evaluation of models
is performed. It is possible to follow the brute force approach
and run all the algorithms, or start with the algorithms with bet-
ter performance for gait recognition. Classification is divided
into two categories: supervised and unsupervised. In table 3,
we present a summary of the most common methods used for
this task.

k-NN is the most used classifier in gait recognition. There
are various ways to evaluate the performance of a gait recogni-
tion model. The most common way is the use of the generali-
zed metrics for n experiments, which are presented as follows
(Gonzalez-Islas et al., 2021).

Accuracy (Acc)

Acc =
1
n

n∑
i=1

T Pi + T Ni

T Pi + T Ni + FPi + FNi
∗ 100 (1)

F-measure (F)

F =
1
n

n∑
i=1

2PiRi

Pi + Ri
∗ 100 (2)

Sensitivity o Recall (R)

R =
1
n

n∑
i=1

T Pi

T Pi + FNi
∗ 100 (3)

Specificity (SP)

S P =
1
n

n∑
i=1

T Ni

T Ni + FPi
∗ 100 (4)

Precision (P)

P =
1
n

n∑
i=1

T Pi

T Pi + FPi
∗ 100 (5)

Accuracy is used when the true positives (TP) and true ne-
gatives (TN) are more important, while F-measure (F) is useful
when the false negatives (FN) and false positives (FP) are cru-
cial. Where, TP are the positive correctly classified instances,
TN are the negative correctly classified instances, FP are the
outcomes misclassified as the positive class, and FN are instan-
ces misclassified as the negative class. Also, other metrics such
as: Sensitivity (R), Specificity (SP), Precision (P) (Jun et al.,
2020), are used to evaluate the performance.

4.2. Gait datasets
In order to evaluate gait recognition systems, different data-

sets using different data acquisition platforms have been collec-
ted. in Table 4 a summary of the gait datasets, with their DAQ
platforms, as well as description is presented.

As you can see in Table 4 there are several gait datasets with
recognition purposes. CASIA Gait Database also has other two
datasets A and B: The first includes 124 subjects and the gait da-
ta were captured from 11 views. While the second one contains
153 subjects and takes into account four walking conditions:
normal walking, slow walking, fast walking, and normal wal-
king with a bag (Zheng et al., 2011). Similarly, The ASIS Gait
database, contains other data sets such as (2015) Marker-name
labelled raw data of five gait cycles (right heel contact to next
right heel contact) obtained from 214 participants and (2019)
NoCap data of ten gait cycles (5 gait cycles started from right

heel contact and 5 gait cycles started from left heel contact) ob-
tained from 300 participants (Takayanagi et al., 2019).

Tabla 4: Available datasets for gait recognition. Where DAQ is data acquisition
Dataset DAQ platform Description
OUISIR Inertial
Sensor-based Gait
Database (Ngo
et al., 2014)

Three inertial mea-
surement units
(accelerometer
and gyroscope)
and a smartphone
around the waist of
a subject,

744 subjects (389 males and 355 fe-
males) with ages ranging from 2 to 78
years.

OU-ISIR Gait Da-
tabase (Takemura
et al., 2018)

Camera 10,307 subjects (5,114 males and
5,193 females with various ages, ran-
ging from 2 to 87 years) from 14 view
angles, ranging 0-90, 180-270.

MAREA (Khan-
delwal and
Wickström, 2017)

Accelerometers on
waist, wrist and
both ankles

(20 healthy subjects) that consists of
walking and running in indoor and out-
door environments.

CASIA Gait
Database (Zheng
et al., 2011)

Camera system 20 persons.(Dataset A). Each person
has 12 image sequences, 4 sequences
for each of the three directions.

AIST Gait Data-
base (Takayanagi
et al., 2019)

Optical motion sys-
tem

2013. Marker-name labeled raw data
of one gait cycle (right heel contact to
next right heel contact) obtained from
139 participants were included.

Gait Dyna-
mics in Neuro-
Degenerative
Disease Database
(Hausdorff et al.,
2019).

Force-sensitive
resistors, with the
output roughly
proportional to the
force under the foot

Collection of 64 recordings of gait
from 15 subjects with Parkinson’s di-
sease, 20 with Huntington’s disease,
13 with amyotrophic lateral sclerosis,
and 16 healthy controls.

Gait in Aging and Disease database includes walking stride
intervals time series from 15 subjects: 5 healthy young adults
(23 - 29 years old), 5 healthy old adults (71 -77 years old), and
5 older adults (60 - 77 years old) with Parkinson’s disease. The
stride interval was measured using ultra-thin, force-sensitive re-
sistors placed inside the shoe (Hausdorff et al., 1998). Parkin-
son’s disease (PD) is one of the most common movement disor-
ders. The database Gait in Parkinsons Disease aims the measure
of gait of 93 patients with idiopathic PD (mean age: 66.3 years;
63 % men), and 73 healthy controls (mean age: 66.3 years; 55 %
men). The database includes the vertical ground reaction force
records of subjects as they walked at their usual, self-selected
pace for approximately 2 minutes on level ground. Underneath
each foot were 8 sensors (Ultraflex Computer Dyno Graphy, In-
fotronic Inc.) that measure the force (in Newtons) as a function
of time. The output of each of these 16 sensors has been digi-
tized and recorded at 100 samples per second, and the records
also include two signals that reflect the sum of the 8 sensor out-
puts for each foot. (Frenkel-Toledo et al., 2005)

On early age, gait is unsteady. However, there is a hypot-
hesis that gait dynamics would continue to develop beyond age
three. For this reason, gait cycle duration on a stride-by-stride
basis in healthy children (n=50) ages 3 to 14 years old were
measured and storaged. A portable foot-switch device inserted
inside of shoes was used. (Zakaria et al., 2014). Elder adults
also are a very important community, Long Term Movement
Monitoring Database contains data of a seventy-one commu-
nity (mean age = 78.36 4.71 years; range = 65-87 years). Sub-
jects were classified as fallers and non-fallers based on their
self-report of previous falls (Goldberger et al., 2000).

Wearable sensors are a widely used technology for GA.
(Luo et al., 2020) present a database of human gait performan-
ce on irregular and uneven surfaces collected by wearable sen-
sors This database provides data from thirty participants (fif-
teen males and fifteen females, 23.54.2 years, 169.321.5cm,
70.913.9kg) who wore six IMUs while walking on nine outdoor
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surfaces with self-selected speed (16.44.2 seconds per trial).
Human motion capture is frequently used in GA, (Schreiber
and Moissenet, 2019) to describe a multimodal dataset of hu-
man gait at different walking speeds on injury-free. The expe-
riment was established for 50 adult participants adults healthy
and injury-free for lower and upper limbs in the most recent
six months, with no lower and upper extremity surgery in the
last two years. Participants were asked to walk on a straight-
level walkway at 5 speeds during one unique session. Three-
dimensional trajectories of 52 reflective markers spread over
the whole body, 3D ground reaction forces and moment, and
electromyographic signals were simultaneously recorded. For
each participant, a minimum of 3 trials per condition have been
made available in the dataset for a total of 1143 trials.

The AVA Multi-View Dataset for Gait Recognition
(AVAMVG) contains 200 multi-view videos or 1200 (6 x 200)
single view videos. They establish twenty humans (4 females
and 16 males), participated in ten recording sessions each. Ten
gait sequences were designed before the recording sessions.
All actors depict three straight walking sequences, and six cur-
ved gait sequences as if they had to round a corner (López-
Fernández et al., 2014). Bradford Multi-Modal Gait Databa-
se is a Gateway to create a dynamic gait signature. 30 sub-
jects conducting four forms of gait (walk, run, walk to run, and
walking with a handbag) were evaluated. Each subject recor-
ding included a total of 8 samples of each form gait, and a 3D
point cloud (representing the 3D volume of the subject) (Ala-
war et al., 2016). Finally, TUM-GAID was introduced by (Cas-
tro et al., 2019) collects 305 subjects performing two walking
trajectories in an indoor environment. Two recording sessions
were performed, and the action was captured by a Microsoft
Kinect sensor which provides a video stream with a resolution
of 640480 pixels and a frame rate of around 30 FPS.

4.3. Antalgic gait recognition based on human activity
Antalgic gait is one of the most common abnormal gaits.

In a previous work we present a framework for antalgic gait
recognition (Gonzalez-Islas et al., 2021), using the embedded
gyroscope (a signal for each axis) of a smartphone for data ac-
quisition. The test carried out was 10-meter walk, with a popu-
lation of 30 subjects, 40 % antalgics, and 60 % non-antalgics.
The experimental data acquisition setting and correspondence
between the anatomical axis and gyroscope axis are presented
in Figure 7.

Figura 7: Wearable acquisition setting for antalgic gait recognition, using a em-
bedded gyroscope.

The classification algorithms used were: i) K-Nearest
Neighbors (k-NN), ii) Naive Bayes (NB), iii) Support Vector

Machines (SVM), iv) Discriminant Analysis (DA), v) Decision
Trees (DT), and vi) Classification Ensembles (CE). The perfor-
mance of the algorithms was evaluated using the metrics: Accu-
racy (ACC), Sensitivity (R), Specificity (SP), Precision (P), and
F-measure (F). The equations presented in section 4.1.4 were
used for this purpose. A summary of the metrics performance
for each classification method is shown in the Table 5.

Tabla 5: Summary of performance of classification methods for antalgic gait
recognition ( %) (Gonzalez-Islas et al., 2021).

Algorithm
\Metric

Acc F R SP P

SVM 98.88 97.77 100.00 100.00 98.66
k-NN 99.44 100.00 99.33 98.33 98.88
NB 96.1 91.66 100.00 100.00 94.82
DA 98.33 99.16 98.33 98.33 98.41
CE 89.44 88.22 91.22 87.22 87.34
DT 89.44 86.66 93.72 89.16 84.12

As it can be seen, SVM and k-NN were the models with
better Accuracy performance of 98.88 % and 99.44 %, respec-
tively. The implementation of this framework in a real scenario
for diagnosing diseases related to antalgic gait is supported by
the obtained results.

4.4. Gait Recognition challenges
Currently, although there are significant advances in gait re-

cognition systems, there are still open research topics. The cha-
llenge for gait recognition systems is efficiency in real-world
applications. Real gait data are large, noisy, multivariable, mul-
tidimensional, multi-source origin. Also, conditions such as
lighting, viewpoints, walking surface, physical (pregnancy, leg
or foot injuries), clothing, footwear, cluttering environments
and occlusion in vision-based systems, represent a big challen-
ge in this area. The aforementioned issues result in problems
such as gait occlusion, view, and appearance changes.

In addition, data acquisition platforms for collecting biome-
chanics, demographic and environmental variables during the
gait parameters acquisition affects the performance of the sys-
tems. Also, to the aforementioned issues, extraction and, selec-
tion of the specific gait features as well as the best algorithm
for the specific task to achieve high recognition, is a recurring
need. Several gait recognition approaches has been developed
and the obtained results provide an encouraging outlook, but
there are still issues to improve gait recognition. Although the-
re are several gait datasets these have considerable restrictions,
which open a new research direction to solve this need (Sepas-
Moghaddam and Etemad, 2022).

Many approaches have been developed to improve gait re-
cognition systems. However, there are some opportunity areas
in future research such as gait recognition under occlusion sce-
nario, gait-based anomalies detection, robust gait recognition
under appearance covariate, adaptive foreground/background
object segmentation, optimized features for efficient gait recog-
nition, and fusion of gait features (Singh et al., 2021).

5. Conclusions

This paper has been focused on a general description of
gait analysis, gait biomechanics, and gait recognition, as well
as some contributions to this area that we have done. Different
gait methods, platforms, and datasets have been mentioned. Alt-
hough, there are several gait approaches with promising results,
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today real-world applications with high accuracy are still few.
Technological advances in electronic and computing systems
allow the development of more efficient gait acquisition plat-
forms, feature extraction and selection, as well as classification
algorithms.

Gait biomechanics is another open research area, the need
to develop mathematical approaches to model the kinematic and
kinetic behavior of the limbs during the walk; particularly when
the application of diagnostic criteria is relevant, in which not
only the gait is significant for the evaluation, but also the caden-
ce or movement speed. Forward kinematics allows the analysis
in the workspace and it makes possible the global performance
in the three anatomical planes or local analysis for each. While
inverse kinematics, in addition to determining the performan-
ce of the joints with respect to the range of movement, allows
the reduction in the instrumentation to acquire the parameters
of the gait.

Assisted physiotherapy and neurorehabilitation platforms
for spastic patients (a consequence of a stroke), establish that
exergaming techniques in which walking is involved, represent
an alternative that encourages the development of the treatment
routine with visual and kinesthetic feedback; the forward and
inverse kinematics of the gait (position and velocity) strengthen
the realism in this type of platform.

Also, future perspectives in gait recognition were discussed.
Each of the framework stages such as acquisition, datasets ge-
neration, access and preprocessing, feature extraction/selection
and classification affects the performance of any recognition
system and require to be improved. Support Vector Machines,
K-Nearest Neighbors and Naive Bayes, are the most common
and efficient algorithms used for this purpose. In clinical set-
tings, gait diseases diagnosis and decision-making has been
supported by recent gait recognition systems and there is an
increasing acceptance by clinicians of the results of gait analy-
sis.
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