

DESDE 2013 https://repository.uaeh.edu.mx/revistas/index.php/icbi/issue/archive Pädi Boletín Científico de Ciencias Básicas e Ingenierías del ICBI

Publicación Semestral Pädi Vol. 10 No. 19 (2022) 113-119

Implicaciones de una textura de dos ceros en las matrices de masa de los quarks Two-zeros textures implications on quark mass matrices

P. Miranda-Romagnoli¹, R. Noriega-Papaqui¹, A. Pontón-Gallardo-Rodríguez^a

^aÁrea Académica de Matemáticas y Física, Universidad Autónoma del Estado de Hidalgo, 42184, Pachuca, Hidalgo, México.

Resumen

Se realiza un análisis numérico de elementos de las matrices de masa de los quarks, considerando que tienen una estructura de texturas de dos ceros. Los parámetros libres del modelo de texturas utilizado, son acotados al imponer que se reproduzcan los valores experimentales provenientes de la matriz V_{CKM} , para lo cual se utiliza un criterio de chi cuadrada. A su vez un algoritmo genético es implementado para encontrar, numéricamente, valores de los parámetros que cumplan con el criterio de chi cuadrada. Se analizan los valores los numéricos encontrados por el algoritmo y se propone una relación para los elementos de las matrices de masa de los quarks.

Palabras Clave: Matrices de masa, texturas con ceros, algoritmo genético.

Abstract

A numerical analysis is performed on elements of quark mass matrices considering that they have a two-zeros texture structure. The free parameters of the texture model used are bounded by imposing that the experimental values from the V_{CKM} matrix are reproduced, using a chi-squared criterion. In turn, a genetic algorithm is implemented to find, numerically, values of the parameters that meet such a chi-squared criterion. The numerical values found by the algorithm are analyzed and a relationship is proposed for the elements of the quark mass matrices.

A genetic algorithm is implemented to find numerically parameters values. A comparison between theoretical values and those algorithm coming from is performed graphically.

Keywords: Mass matrices, texture zeros, genetic algorithm.

1. Introducción

La comprensión total del peculiar espectro de masas y mezclas de las partículas fermiónicas elementales sigue siendo uno de los problemas actuales de la Física de Partículas conocido como el *problema del sabor*.

En esta área de la ciencia, se utiliza la palabra sabor para denominar a cada tipo de fermión, existiendo por lo tanto 12 tipos diferentes de sabores: el sector de quarks tiene los sabores u, c, t, d, s y b; el sector de leptones los correspondientes sabores $e, \mu, \tau, \nu_e, \nu_\mu y \nu_\tau$. En el Modelo Estándar (ME) a primer orden (nivel árbol) los bosones neutros (γ, Z, H) se acoplan a un par de fermiones con el mismo sabor mientras que los bosones W^{\pm} se acoplan a un par fermiónico de diferente sabor. En este modelo, la intensidad del cambio de sabor se cuantifica por los elementos de una matriz conocida como: *la matriz de Cabibo-Kobayasi-Maskawa* (V_{CKM}) llamados los ángulos de mezcla. La matriz V_{CKM} está estrechamente relacionada con las matrices de masa las cuales definen a las masas de los quarks y leptones, así en este contexto el sabor y la generación de masas son dos conceptos que se encuentran fuertemente entrelazados y constituyen una parte importante de la investigación actual en la física de partículas, sus inicios datan desde los primeros años de la década de los setentas, poco después del establecimiento del Modelo Estándar. Muchas aproximaciones han sido desarrolladas en contextos teóricos y fenomenológicos. En este trabajo se estudiará el formalismo de texturas para las matrices de masa, cuyo objetivo es buscar una forma explícita, simple y consistente de las matrices de masa, que reproduzca las relaciones jerárquicas entre las masas de los quarks así como los

Fecha de recepción: 03/05/2022 Fecha de aceptación: 03/06/2022 Fecha de publicación (postprint): 03/06/2022 Fecha de publicación: 05/07/2022 https://doi.org/10.29057/icbi.v10i19.9147 ¹matrices con ceros en las entradas 11, 22, 13 y 31

^{*}Autor para correspondencia: pmiranda@uaeh.edu.mx

Correos electrónico: pmiranda@uaeh.edu.mx (Pedro Miranda-Romagnoli), rnoriega@uaeh.edu.mx (Roberto Noriega-Papaqui), po295884@uaeh.edu.mx (Aurora Pontón-Gallardo-Rodríguez)

elementos de la matriz V_{CKM} .

El pionero en esta dirección fue Haral Friszch (Fritzsch (1977)) quién considero una matriz de masa del tipo texturas con 6 ceros¹ y encontró la correcta jerarquía entre las masa de los quarks y algunos elementos de la V_{ckm} de manera analítica. Sin embargo mediciones experimentales porteriores excluyerón esta textura. El propio Friszch (Fritzsch and Xing (2003)) propuso a las texturas con 4 ceros² como la siguiente alternativa y además de seguir encontrando la jerarquía adecuada para las masas, obtuvo expresiones analíticas para todos los elementos de la matriz V_{CKM} , los cuales estaban en términos de las masas de los quarks y cuatro parámetros libres del modelo.

Este trabajo va más allá, se estudia numéricamente la viabilidad de trabajar con matrices de masa de 2 ceros³ así como relaciones existentes entre los elementos de la misma matriz de masa. El presente documento se encuentra organizado con la siguiente estructura, en el capítulo 2 se presenta el sector fermiónico del ME. En el capítulo 3 se analízan las texturas con 2 ceros y se concluye al obtener analíticamente los elementos de la matriz V_{CKM} predicha por el modelo en términos de los parámetros libres del mismo. En el capítulo 4 se describe brevemente el algoritmo genético implementado para la búsqueda del rango de valores permitidos en los parámetros del modelo de dos texturas. En el capítulo 5 los resultdos y el capítulo 6 se dedica a las conclusiones.

2. El sector de Yukawa del Modelo Estándar

El sector del Modelo Estándar(Weinberg (1967); Glashow (1961)) donde se encuentra la física relacionada el estudio de las masas de los quarks y la aparición de la matriz V_{CKM} es el Sector de Yukawa, el cual tiene la siguiente forma:

$$\mathcal{L}_{\mathrm{Y}} = -\bar{Q'}_{L} \left(Y^{d} \Phi d'_{R} + Y^{u} \tilde{\Phi} u'_{R} \right) + \mathrm{h.c.}$$
(1)

donde $Q'_L = (u'_L, d'_L)^T$, $\Phi = (\varphi^{\pm}, \varphi^0)^T$, $\langle \varphi^0 \rangle = v$ y $\tilde{\Phi} = i\sigma_2 \Phi^*$, los campos d'_R , u'_R son singletes bajo S U(2) y Y^q representa las matrices 3×3 de Yukawa (q = u, d).

Después del Rompimiento Espontáneo de la Simetría (RES) y de rotar los campos a la base de masa, a través de: $u'_{R,L} = U^u_{R,L} u_{R,L}$ y $d'_{R,L} = U^d_{R,L} d_{R,L}$ del lagrangiano anterior se desprende un lagrangiano de masas dado por:

$$\mathcal{L}_{\text{mass}} = -\bar{d}_L \bar{M}^d d_R - \bar{u}_L \bar{M}^u u_R + \text{h.c}$$
(2)

donde $\overline{M}^q = U_L^{q\dagger}(vY^q)U_R^q = U_L^{q\dagger}M^q U_R^q$ y la matriz M^q es conocida como la matriz de masa de los quarks q. Esta matriz es diagonalizada de manera general por una transformación⁴:

$$U_L^{q\dagger} M^q U_R^q = \text{Diag}(\lambda_1^q, \lambda_2^q, \lambda_3^q), \qquad (3)$$

donde λ_i^q son los eigenvalores de masa para los quarks (q = u, d). Las matrices de rotación U_R^q y U_L^q se encuentran al diagonalizar las matices hermíticas $M^q M^{q\dagger}$ y $M^{q\dagger} M^q$. La matriz de

mezcla V_{CKM} se construye a partir de las matrices de rotación izquierdas U_L^q a través de la siguiente expresión:

$$V_{\rm CKM} = U_L^{u\dagger} U_L^d. \tag{4}$$

Dado que experimentalmente sólo las masas de los quarks y los elementos de la matriz V_{CKM} se pueden medir, las matrices U_L^q y U_R^q no son observables físicos⁵ además de que no son predichas por la teoría y por consecuencia la matriz V_{CKM} tampoco lo es.

2.1. La matriz de mezcla V_{CKM}

De forma general la matriz de Cabibo-Kobayashi-Maskawa (Ec. 4) tiene la siguiente estructura:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}.$$
 (5)

Experimental se conocen el valor numérico de sus nueve elementos, los cuales tiene el siguiente valor central y error correspondiente(Zyla et al. (2020)):

$$\begin{split} |V_{ud}| &= 0.97401 \pm 0.00011, \quad |V_{us}| = 0.22650 \pm 0.00048, \quad |V_{ub}| = 0.00361^{+0.0001}_{-0.00000}, \\ |V_{cd}| &= 0.22636 \pm 0.00048, \quad |V_{cs}| = 0.97320 \pm 0.00011, \quad |V_{cb}| = 0.04053^{+0.00083}_{-0.00061}, \\ |V_{td}| &= 0.00854^{+0.00023}_{-0.00016}, \quad |V_{ts}| = 0.03978^{+0.00082}_{-0.00060}, \quad |V_{tb}| = 0.999172^{+0.00024}_{-0.00003}, \end{split}$$

Teóricamente es una matriz unitaria y por lo tanto se puede parametrizar en términos de 3 ángulos y una fase. La parametización más utilizada y la cual utilizaremos en este trabajo es la *parametrización estándar* definida por los ángulos θ_{12} , θ_{13} , θ_{23} y la fase δ_{13} a través de la siguiente multiplicación de matrices⁶:

$$V_{CKM} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & C_{23} & S_{23} \\ 0 & -S_{23} & C_{23} \end{pmatrix} \begin{pmatrix} C_{13} & 0 & S_{13} e^{-i\delta_{13}} \\ 0 & 1 & 0 \\ -S_{13} e^{i\delta_{13}} & 0 & C_{13} \end{pmatrix} \begin{pmatrix} C_{12} & S_{12} & 0 \\ -S_{12} & C_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

La conexión entre la teoría y el experimento se da a través de las siguientes expresiones:

$$S_{13} = |V_{ub}|$$
 (6)

$$S_{12} = \frac{|V_{us}|}{\sqrt{1 - |V_{ub}|^2}} \tag{7}$$

$$S_{23} = \frac{|V_{cb}|}{\sqrt{1 - |V_{ub}|^2}} \tag{8}$$

$$J = C_{12} S_{12} C_{13}^2 S_{13} C_{23} S_{23} S en \delta_{13}.$$
(9)

3. Matrices de masa del tipo texturas de 2 ceros

Una matriz de masa del tipo texturas de 2 ceros tiene la siguiente estructura matricial:

$$M_q = \begin{pmatrix} E_q & D_q & 0 \\ D_q^* & C_q & B_q \\ 0 & B_q^* & A_q \end{pmatrix}; \quad q = u, d.$$
(10)

²matrices con ceros en las entradas 11, 13 y 31

³matrices con ceros en las entradas 13 y 31

⁴Transformación de similaridad.

⁵Para el caso de que las matrices de masa sean hermíticas $U_L^q = U_R^q$.

⁶Hemos utilizado la notación $Cos \theta_{ij} = C_{ij}$ y $Sen \theta_{ij} = S_{ij}$.

y cuyos eigenvalores λ_i^q definen las masas m_i^q de los quarks $\lambda_i^q = m_i^{q7}$ y los valores experimentales de las masas de los quarks tienen el siguiente valor central y error correspondiente(Z.Z Xing and Zhou (2008); Huang and Zhou (2021)):

$$\begin{split} m_u &= 1,23 \pm 0,21 \, MeV, & m_c &= 0,620 \pm 0,017 \, GeV, \\ m_t &= 168,26 \pm 0,75 \, GeV, & m_d &= 2,67 \pm 0,19 \, MeV, \\ m_s &= 53,16 \pm 4,61 \, MeV, & m_b &= 2,839 \pm 0,026 \, GeV. \end{split}$$

La matriz de masas M_q puede factorizar como el producto de una matriz ortogonal O_q y una matriz de fases P_q de la forma:

$$M_q = P_q^{\dagger} M_q P_q, \tag{11}$$

$$P_{q} = \text{diag}\left(1, e^{i\phi_{D_{q}}}, e^{i(\phi_{D_{q}} + \phi_{B_{q}})}\right).$$
(12)

La matriz ortogonal \overline{M}_q se escribe como:

$$\bar{M}_{q} = \begin{pmatrix} E_{q} & |D_{q}| & 0\\ |D_{q}| & C_{q} & |B_{q}|\\ 0 & |B_{q}| & A_{q} \end{pmatrix}.$$
 (13)

Los invariantes ante transformaciones de similaridad Ec(3) son:

$$\operatorname{Tr}(M^{q\dagger}M^{q}) = (m_{1}^{q})^{2} + (m_{2}^{q})^{2} + (m_{3}^{q})^{2}, \qquad (14)$$

$$Det(M^{q^{\dagger}}M^{q}) = (m_{1}^{q})^{2}(m_{2}^{q})^{2}(m_{3}^{q})^{2},$$
(15)

$$\frac{1}{2} \left[\operatorname{Tr}^2(M^{q\dagger}M^q) - \operatorname{Tr}(M^{q\dagger}M^q) \right] = (m_1^q)^2 (m_2^q)^2 + (m_1^q)^2 (m_3^q)^2 \qquad (16)$$
$$+ (m_1^q)^2 (m_2^q)^2.$$

Resolviendo el sistema de ecuaciones anterior, para $|B_q|$, $|D_q|$ y C_q expresar en términos de E_F y A_F se tiene:

$$|B_q| = \sqrt{\frac{(A_q - m_1^q)(A_F - m_2^q)(A_q - m_3^q)}{E_q - A_q}},$$
 (17)

$$|D_q| = \sqrt{\frac{(E_q - m_1^q)(E_q - m_2^q)(E_q - m_3^q)}{A_q - E_q}},$$
 (18)

$$C_q = -\left(A_q + E_q - m_1^q - m_2^q - m_3^q\right).$$
(19)

Los elementos de la matriz O_q , que diagonalizan a \overline{M}_q son: $(O_q)_{11} =$

$$\left[1 + \frac{(E_q - m_1^q)(A_q - E_q)}{(m_1^q - E_q)(m_2^q - E_q)} + \frac{(E_q - m_1^q)(A_q - m_2^q)(m_3^q - A_q)}{(m_1^q - E_q)(m_2^q - E_q)(A - m_1^q)}\right]^{-1/2} (20)$$

$$(O_q)_{22} = \left[1 + \frac{(E_q - m_1^q)(m_3^q - E_q)}{(m_2^q - E_q)(A_q - E_q)} + \frac{(A_q - m_1^q)(m_3^q - A_q)}{(A_q - E_q)(A_q - m_2^q)}\right]^{-1/2}$$
(21)
$$(O_q)_{33} =$$

$$\left[1 + \frac{(A_q - E_q)(m_3^q - A_q)}{(A_q - m_2^q)(A_q - m_1^q)} + \frac{(E_q - m_1^q)(m_2^q - E_q)(m_3^q - A_q)}{(m_3^q - E_q)(A_q - m_2^q)(A_q - m_1^q)}\right]^{-1/2} (22)$$

$$(O_q)_{2i} = \frac{m_i^q - E_q}{|D_q|} (O_q)_{1i} \quad i = 1, 2, 3.$$
(23)

$$(O_q)_{3i} = \frac{|B_q|}{m_i^q - A_q} (O_q)_{2i} \quad i = 1, 2, 3.$$
(24)

Por lo tanto, los elementos de la matriz V_{CKM} predichos por el modelo de 2 texturas son:

$$V_{CKM}^{th} = U_L^{u^{\dagger}} U_L^d = O_u^T (P_u P_d^{\dagger}) O_d,$$

$$\left(V_{CKM}^{th}\right)_{i\alpha} = (O_u)_{1i} (O_d)_{1\alpha} + (O_u)_{2i} (O_d)_{2\alpha} e^{i\phi_1^q} \qquad (25)$$

$$+ (O_u)_{3i} (O_d)_{3\alpha} e^{i(\phi_1^q + \phi_2^q)}.$$

donde las fases están definidas por: $\phi_1^q = \phi_{Du} - \phi_{Dd}, \phi_2^q = \phi_{Bu} - \phi_{Bd}, \phi_1^l = \phi_{Dv} - \phi_{Dl}, \phi_2^l = \phi_{Bv} - \phi_{Bl}.$

La ecuación anterior nos proporciona expresiones analíticas de los elementos de matriz la V_{CKM}^{th} considerando el modelo de 2 texturas, donde se tiene una dependencia explícita de los parámetros A_u , A_d , E_u , E_d , ϕ_1^q y ϕ_2^q . Para encontrar el rango permitido de estos parámetros que reproduzcan los valores experimentales de la V_{CKM} con su margen de error correspondiente se utiliza un criterio de χ^2 , el cual se establece por:

$$\chi^{2}(A_{u}, A_{d}, E_{u}, E_{d}, \phi_{1}^{q}, \phi_{2}^{q}) = \frac{\left(\left|V_{us}^{th}\right| - \left|V_{us}\right|\right)^{2}}{\sigma_{V_{us}}^{2}} + \frac{\left(\left|V_{ub}^{th}\right| - \left|V_{ub}\right|\right)^{2}}{\sigma_{V_{ub}}^{2}} + \frac{\left(\left|V_{cb}^{th}\right| - \left|V_{cb}\right|\right)^{2}}{\sigma_{V_{cb}}^{2}} + \frac{\left(J^{th} - J\right)^{2}}{\sigma_{J}^{2}}, \quad (26)$$

donde el super índice "*th*" denota que el término proviene de la parte analítica y la correspondiente sin índices denota la parte experimental con incertidumbre $\sigma_{V_{kl}}^2$. En lo que sigue se buscarán las regiones de los parámetros A_u , A_d , E_u , E_d , ϕ_1^q y ϕ_2^q , tal que el valor de:

$$\frac{\chi^2(A_u, A_d, E_u, E_d, \phi_1^q, \phi_2^q)}{4} \le 1$$
(27)

Para dicha empresa utilizaremos un algoritmo génetico.

4. Algoritmo Genético

Se utilizó un algoritmo genético tradicional, el cual se explica en las siguientes subsecciones. Este algoritmo nos permite encontrar soluciones en varios rangos de valores, en particular nos interesó $\chi^2 < 1$, $\chi^2 < 0$,1 y $\chi^2 < 0$,01.

4.1. Población inicial

Se generan individuos iniciales al azar o cromosomas, cada uno de ellos compuesto por 6 parámetros; a continuación se califica el desempeño de cada cromosoma de acuerdo a la respuesta de la función objetivo, en este caso el valor de χ^2 . Técnicamente, cada parámetro es representado en 28 bits, por lo que cada parámetro se puede dividir en $2^{28}=268,435,456$ partes, con lo que se obtiene una precisión satisfactoria para nuestros objetivos a alcanzar.

⁷En este trabajo se considerará que las todas las m_i^q son positivas.

4.2. Cruce

Se obtienen nuevas soluciones intercambiando información de los individuos por medio de cruces. De la población inicial de 56 individuos o cromosomas se elige al azar un par, para generar dos nuevas soluciones intercambiando su información, es decir, intercambiando cierto número de bits de los que están compuestos. Este proceso se repite para cada par de individuos, generando una población de 56 nuevos individuos.

4.3. Mutación

La mutación de los cromosomas nos permite aumentar la diversidad de las soluciones, dado que el cruce y selección por sí mismos nos puede llevar a favorecer alguna solución. En nuestro caso la diversidad de las soluciones es de suma importancia, toda vez que deseamos conocer los rangos permitidos para un espacio de parámetros que cumple con el criterio de χ^2 .

4.4. Selección

Los 56 nuevos individuos, generados mediante el cruce, son evaluados y se unen a los pasados para formar una población de 112 individuos, los cuales se ordenan para elegir a los 56 mejores, de acuerdo a las correspondientes soluciones obtenidas, convirtiéndose así en la nueva población.

4.5. Terminación

El algoritmo termina su ejecución cuando se ha alcanzado el objetivo deseado, es decir, el valor de χ^2 se encuentra por debajo de un cierto valor máximo o bien se ha alcanzado el número máximo de generaciones, esto último previene el caer en un ciclo interminable. Los números máximos utilizados varían de la siguiente manera: MaxGen=1100000 para $\chi^2 < 1$; MaxGen=220000 para los dos casos restantes, $\chi^2 < 0,1$ y $\chi^2 < 0,01$.

5. Resultados

Los parámetros A_u , A_d , E_u , E_d , ϕ_1^q y ϕ_2^q del Modelo de 2 Texturas, se acomodan como las componentes en un vector \vec{P} , de la siguiente forma:

$$\vec{P} = (A_u, A_d, E_u, E_d, \phi_1^q, \phi_2^q)$$

A \vec{P} es un punto de un espacio de seis dimensiones. Las cuatro primeras entradas, están restringidas a los intervalos⁸:

$$m_t \ge A_u \ge m_c \ge E_u \ge m_u, \qquad m_b \ge A_d \ge m_s \ge E_d \ge m_d.$$

mientras que las fases de las dos últimas entradas, en los intervalos:

$$2\pi \ge \phi_1^q \ge 0, \qquad 2\pi \ge \phi_2^q \ge 0.$$

Las ecuaciones ec.17, ec.18 y ec.19 nos dan la dependencia de B_q , D_q y C_q respecto a las masas y parámetros del modelo de 2 texturas A_q y E_q , respectivamente y su análisis se presenta a continuación.

5.1. Análisis de
$$B_u$$
 y B_d

Los parámetros B_u y B_d , están definidos a través de la ecuación:

$$|B_q| = \sqrt{\frac{(A_q - m_1^q)(A_F - m_2^q)(A_q - m_3^q)}{E_q - A_q}}, \qquad q = u, d.$$
(28)

En las subfiguras a) y c) de la figura 1 se grafican los elementos B_u y B_d respecto a los parámetros del modelo de 2 texturas. En el eje x corresponde a A_q , en el eje y corresponde a E_q y el eje z a $B_q = B_q(A_q, E_q)$. Proyectando al plano $A_q - B_q$, $(E_q = 0)$, las curvas resultantes se pueden aproximar a una elipse centrada en $\frac{m_3^2 + m_2^2}{2}$ con vértices ubicados en los puntos $(m_2^q, 0)$ y $(m_3^q, 0)$. Definiendo el parámetro γ como:

$$\gamma = \sqrt{\frac{2\,m_1^q}{m_3^q + m_3^q}},$$

los demás parámetros de la elipse a, b y c son:

$$a = \frac{m_3^q - m_2^q}{2}$$
 $b = \sqrt{1 - \gamma} a, \quad c = \sqrt{\gamma} a.$ (29)

En las subfiguras b) y d) de la figura 1 se grafican los valores de los elementos B_u y B_d encontrados por el algoritmo que reproducen V_{CKM} .

5.2. Análisis de D_u y D_d

La relación correspondiente para parámetros D_u y D_d es:

$$|D_q| = \sqrt{\frac{(E_q - m_1^q)(E_q - m_2^q)(E_q - m_3^q)}{A_q - E_q}}, \qquad q = u, d. \quad (30)$$

En las subfiguras a) y c) de la figura 2 se grafican los elementos de la matriz D_u y D_d respecto a los parámetros del modelo de 2 texturas. Análogamente los ejes corresponden corresponde a A_q (eje x), E_q (eje y) y $D_q = D_q(A_q, E_q)$ eje z. Proyectando al plano $A_q - D_q$, la curva va como $\frac{1}{\sqrt{A_q}}$. Se contrastan los valores encontrados por el algoritmo que reproducen V_{CKM} (subfiguras b) y d)).

5.3. Análisis de C_u y C_d

En lo referente al análisis de los elementos C_u y C_d la relación que los define corresponde a la ecuación de un plano

$$A_q + E_q + C_q - (m_1 + m_2 + m_3) = 0$$

cuyo vector normal está dado por $\hat{n} = \frac{1}{\sqrt{3}}(1, 1, 1)$. La gráfica correspondiente es la figura 3.

⁸Se obtienen al imponer que B_q y D_q reales, ver ecs. (17) y (ec.18).

Figura 1: Gráfica de B_u (parte de arriba) y B_d (parte inferior). Las subfiguras a) y c) muestran todo el rango de valores teóricos permitidos de B_u y B_d . Las subfiguras b) y d) muestran solo la región que reproduce V_{CKM} encontrados por el algoritmo genético.

Figura 2: Gráfica de D_u (parte de arriba) y D_d (parte inferior). Las subfiguras a) y c) muestran todo el rango de valores teóricos permitidos de D_u y D_d . Las subfiguras b) y d) muestran solo la región que reproduce V_{CKM} encontrados por el algoritmo genético.

Figura 3: Gráfica de C_u (parte de arriba) y C_d (parte inferior). Subfiguras a) y c) muestran todo el rango de valores teóricos permitidos de C_u y C_d . Las subfiguras b) y d) muestran solo la región que reproduce V_{CKM} encontrados por el algoritmo genético.

Figura 4: Gráficas de las más de dos mil soluciones encontradas vs todos los parámetros normalizados (izquierda). Las correspondientes a $|B_u|/m_t$, $|D_u|/m_t$, E_u/m_t (derecha y arriba) y $|B_d|/m_b$, $|D_d|/m_b$, E_d/m_b (derecha y abajo)

5.4. Análisis combinado

En esta sección se presenta un análisis para los elementos A_u/m_t , A_d/m_b , $|B_u|/m_t$, $|B_d|/m_b$, C_u/m_t , C_d/m_b , $|D_u|/m_t$, $|D_d|/m_b$, E_u/m_t y E_d/m_b , para esto se grafican las más de dos mil soluciones encontradas (eje x), contra el valor absoluto de los parámetros normalizados (eje y); las gráficas correspondientes se muestran en la Figura 4. Las subfiguras a) y b) corresponden al sector *u*, mientras que las subfiguras c) y d) al sector d. Puede observarse que los puntos relativos a A_u/m_t y C_u/m_t cubren, casi de manera uniforme, el espacio permitido (Subfigura a)), empero los correspondientes a $|B_u|/m_t$, $|D_u|/m_t$ y E_u/m_t se encuentran restringidos en una región, es decir, $|B_u|/m_t$ tiene una cota superior, no hay puntos arriba de la recta $|B_u|/m_t = 0.5$ y el valor mínimo encontrado está por arriba de la recta $|B_u|/m_t = 0,06$. Para los puntos $|D_u|/m_t$ y E_u/m_t se observa que están acotados superiormente por la recta $|D_u|/m_t = E_u/m_t = 0.04$ (Subfigura b)). Analogamente los puntos relativos a A_d/m_b y C_d/m_b cubren, casi de manera uniforme, el espacio permitido (Subfigura c)), mientras que los pertenecientes a $|B_d|/m_b$ se encuentran acotados por las rectas $|B_d|/m_b = 0.5$ (cota superior) y $|B_d|/m_b = 0.04$ (cota inferior), los puntos asociados a $|D_d|/m_b$ y E_d/m_b son acotados superiormente por la recta $|D_d|/m_b = E_d/m_b = 0,03$ (Subfigura d)). Esta evidencia numérica nos motiva a proponer la siguiente relación para los elementos de las matrices de masa de los quarks,

$$|B_u| > |D_u|, E_u, \qquad |B_d| > |D_d|, E_d.$$

6. Conclusiones

En este trabajo se ha considerado un formalismo de texturas de dos ceros para las matrices de masa de los quarks tipo u y tipo d. Los parámetros de libres del modelo que cumplen con las

restricciones experimentales impuestas por la V_{CKM} se encontraron a través de un criterio de chi cuadrada y los resultados importantes se enlistan a continuación.

- 1. Se implementó exitosamente un algoritmo genético para encontrar, de forma numérica, los valores de los parámetros del modelo teórico de texturas. Con lo que se encontraron los puntos \vec{P} que tienen valores de $\chi^2 < 1, \chi^2 < 0,1$ y $\chi^2 < 0,01$.
- 2. Al graficar los elementos normalizados de las matrices de masa $|B_u|/m_t$, $|B_d|/m_b$, C_u/m_t y C_d/m_b , se encontró que al proyectar la gráfica de $|B_u|/m_t$ y $|B_d|/m_b$ al plano $A_q - B_q (q = u, d)$, la curva correspondiente se puede aproximar a una elipse con parámetros dados en la ecuación 29, mientras la gráfica correspondiente a C_u/m_t , C_d/m_b , es un plano, con vector normal $\hat{n} = \frac{1}{\sqrt{3}}(1, 1, 1)$.
- 3. Se establecieron las siguientes relaciones entre los elementos de la matriz de masa: $|B_u| > |D_u|, E_u$ y $|B_d| > |D_d|, E_d$.

Referencias

- Fritzsch, H. (1977). Calculating the cabibbo angle. *Physics Letters B*, 70:436 440.
- Fritzsch, H. and Xing, Z. (2003). Four zero texture of hermitian quark mass matrices and current experimental tests. *Phys. Lett. B*, 555:63–70.
- Glashow, S. L. (1961). Partial symmetries of weak interactions. Nucl. Phys., 22:579–588.
- Huang, G. and Zhou, S. (2021). Precise values of running quark and lepton masses in the standard model. *Phys. Rev. D*, 103:016010.
- Weinberg, S. (1967). A model of leptons. Phys. Rev. Lett., 19:1264-1266.
- Zyla, P. et al. (2020). Review of particle physics. *Prog. Theor. Exp. Phys.*, 2020(8).
- Z.Z Xing, H. Z. and Zhou, S. (2008). Updated values of running quark and lepton masses. *Phys. Rev. D*, 77:113016.