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Abstract 

Zeolites have been shown to have a large number of technological applications, especially in the formation of nanostructures inside them. 
In this work evaluates the Zn concentration in an A4 zeolite for the formation of nanoparticles by ion exchange, by controlling the temperature 
parameters. XRD and FT-IR analysis was carried out to verify that the zeolite structure was not affected and by UV-vis and SEM-EDS we 
analyzed which of the concentrations would be the most convenient. Taking as criteria the optimum ion exchange and the stability of zeolite 
A4).  

Keywords:  Zeolite A4, Ion exchanged, Zn. 
 
Resumen 

Las zeolitas han demostrado tener una gran cantidad de aplicaciones tecnológicas, especialmente en la formación de nanoestructuras en su 
interior. En este trabajo se evalúa la concentración de Zn en una zeolita A4 para la formación de nanopartículas, mediante el intercambio 
iónico, controlando los parámetros de temperatura. Se realizo análisis de XRD y FT-IR para comprobar que la estructura de la zeolita no se 
alterara y por medio de UV-vis y SEM-EDS se analizó cuál de las concentraciones es la más adecuada. Tomando como criterio el óptimo 
intercambio iónico y la estabilidad de la zeolita A4. 

Palabras Clave: Zeolita A4, Intercambio Iónico, Zn 

 

1. Introduction 

Zeolites are hydrated crystalline aluminosilicates, with 
elements of groups I and II as exchange ions. They consist of 
a framework of [SiO4]4- and [AlO4]5- tetrahedra connected at 
the vertices by oxygen atoms, whose main characteristic is the 
great capacity for selective adsorption of ions (Eroglu et al., 
2017; Leal-Perez et al., 2022).  Among the zeolite family are 
the so-called synthetic zeolites, of which 67% of those 
produced worldwide are consumed as Linde Type A (LTA, 
Zeolite A), which were first synthesized in 1656 (Breck et al., 
1956). These have perfectly defined cavities compared to 
natural zeolites and therefore have a much higher economic 
value. These have perfectly defined cavities compared to 

natural zeolites and therefore have a much higher economic 
value (Król, 2020).  

Zeolite A is commonly divided into zeolite A3 when the 
exchange ion is potassium, zeolite A4 (ZA4) for sodium ion 
and zeolite A5 for calcium ion (Melo et al., 2012). The general 
formula of ZA4 is Na12[(AlO2)12(SiO2)12].27H2O with a 
silicon/aluminum (Si/Al) ratio equal to 1 according to 
Lowenstein's rule (Mozgawa et al., 2011; Mumpton, 1978). On 
the other hand, the zeolite A structure is formed by 
substructures, the four-double ring structure (D4R) and the six-
single ring structure (S6R). In addition, among them the one 
comprising two types of cages: the β-cage (sodalite cage), and 
the α-cage (Brouwer et al., 2020; Mozgawa et al., 2011). 
Zeolites have extensive applications in technology: water 
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treatment (Millar et al., 2016; Wen et al., 2018), gas adsorption 
(Lin et al., 2012), green chemistry (Adebajo, 2007), ion 
exchanged (Hedström, 2001), among others. Zinc is a very 
attractive ion-exchange for zeolite functionalization, because 
its ion-exchange occurs in a simple way. In which the 
concentration can significantly influence the formation and 
growth of ZnO nanoparticles (Np-ZnO) (Cerri et al., 2021). 
Studies have been reported where Zn concentration has been a 
determinant factor in formation of ZnO (Amooaghaie et al., 
2017; Ismail et al., 2005; Lee et al., 2008). On the other hand, 
in zeolites, work has been reported on a natural zeolite 
observing this effect (Sanatgar-Delshade et al., 2011). 
However, similar work for zeolite A4 has not been found.  

In this work different concentrations of Zn in zeolite A4 are 
studied in order to determine the most suitable for the 
formation of Np-ZnO. Using XRD and FT-IR techniques to 
verify the structural and molecular stability of the zeolite in 
ion-exchange, as well as SEM-EDS and UV-vis for the 
analysis of the concentrations. 

 
2. Methodology 

Synthetic ZA4 (Sigma Aldrich, 98%), zinc Acetate 
(CH3COO)2Zn.2H2O (Sigma Aldrich, 99%), and deionized 
water were used as solvent to hydrate. 

We followed the methodology reported by Flores-
Valenzuela et al (Flores-Valenzuela et al., 2015). 5 g of ZA4 
was hydrated with 50 ml of deionized water for a period of 48 
hours. Then, 100 ml solutions of deionized water were 
prepared with zinc acetate at molar concentrations of 0.01, 
0.02, 0.03, 0.05, 0.075, 0.1 M. Then, hydrated ZA4 samples 
and zinc acetate solutions were placed in culture tubes inside a 
thermal bath vessel to adjust the temperature parameter to 50 
°C. Once the conditions were obtained, the zinc acetate 
solution was added into the hydrated ZA4 growth tube and kept 
under magnetic stirring for 60 minutes.  Subsequently, the 
product (ZA4+XZn, where X corresponds to each of the zinc 
acetate concentrations) is recovered by the filtration equipment 
carrying out the necessary washes to remove residues from the 
precursor solutions. Once the ion exchange is carried out, the 
obtained sample of Zeolite A4+XZn is dried at room 
temperature. This process was carried out in the same way for 
each of the concentrations. Only the analyses carried out on 
samples ZA4+0.01Zn, ZA4+0.05Zn, and ZA4+0.1Zn are 
shown. 

XRD analysis was carried out with PHI5100 Bruker AXS 
D8 Advance diffractometer. The vibrational energy of bonds 
present in structures of different samples was determined by 
IRAffinity 1-S Shimadzu Infrared Spectrometer. Optical 
absorption spectra were taken whit UV Visible 
Spectrophotometer Evolution 220 Thermo. Micrographs and 
EDS were measured with the JEOL JSM-7401F field emission 
scanning electron microscope (FESEM). 

 
3. Results and discussion 

Figure 1 shows the FTIR analysis corresponding to ZA4, 
ZA4+0.01Zn, ZA4+0.05Zn, and ZA4+0.1Zn. The specific 
bands of ZA4, at 1642 and 3444 cm-1, are observed, assigned 
to the vibrational bending and stretching modes of the -OH 
bonds of chemical and physical water. At 1000 cm-1, the band 
characteristic of the asymmetric stretching vibrations of Si-O-

Si and Si-O-Al. The band observed at 554 cm-1 corresponds to 
the symmetric stretching vibrations of the Si-O-Si and O-Si-O 
bonds, and the signal at 665 cm-1 corresponds to the 
asymmetric stretching vibrations of the Si-O-Al bonds 
(Mozgawa et al., 2011; Şen et al., 2008). The samples where 
the ion exchange with Zn was applied, show a similar behavior 
to the pure ZA4. 
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Figure 1. FTIR of ZA4, ZA4+0.01Zn, ZA4+0.05Zn, and ZA4+0.1Zn. 
 
Figure 2, the Miller indices of ZA4, ZA4+0.01Zn, 

ZA4+0.05Zn, and ZA4+0.1Zn are shown. For ZA4, the Miller 
indices were indexed with the JCP2:01-089-5423 card, which 
shows the characteristic peaks. For samples ZA4+0.01Zn, 
ZA4+0.05Zn, and ZA4+0.1Zn, an evident decrease in the 
relative intensity of the peaks exists, mainly at (220), (420), 
(640) and (664), as well as, the absence of the peak at (440). In 
addition, two new peaks are observed around 15° and 25°, not 
identified for possible Zn precursor species. Therefore, these 
peaks are referred to as forbidden planes. Which could be 
originated by defects in ZA4 structure at atomic substitutions 
(ion exchange, this work), an interstitial or a vacancy. Causing 
rearrangement of neighboring atoms, as well as change in 
valence electron states. This phenomenon is extensively 
reported as "defects in non-resonant X-ray scattering". 
(Dmitrienko & Ovchinnikova, 2000; He et al., 2015; Williams 
& Carter, 1996; Yan et al., 2012). These results indicate the 
presence and interaction of Zn2+ ion with the structure of ZA4 
causing the described effects. On the other hand, no ZnO 
characteristic peaks are observed at 36° and 42° for a cubic 
structure indexed with pdf 96-153-4837.  

Figure 3 shows the optical absorption spectra of ZA4, 
ZA4+0.01Zn, ZA4+0.05Zn, and ZA4+0.1Zn. ZA4 shows poor 
absorption bands, it could be considered invisible in the UV-
vis range. In ZA4+0.01Zn, ZA4+0.05Zn, and ZA4+0.1Zn we 
observed an absorption band at 216 to 240 nm with a maximum 
at 227 nm and a second band is observed from 256 nm 
associated with Zn2+ ions (Dapurkar et al., 2001; Xu et al., 
2012). On the other hand, at 370 nm a small band is observed, 
which has been reported for ZnO structures (Santhoshkumar et 
al., 2017; Singh & Gopal, 2007), possibly formed on the zeolite 
surface, when Zn ions are exposed to the environment. 
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Figure 2. XRD of ZA4, ZA4+0.01Zn, ZA4+0.05Zn, and ZA4+0.1Zn. 
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Figure 3. Optical absorption spectra of ZA4, ZA4+0.01Zn, ZA4+0.05Zn, and 
ZA4+0.1Zn. 

 
Figure 4 shows the SEM-EDS of ZA4, ZA4+0.01Zn, 

ZA4+0.05Zn, and ZA4+0.1Zn. For ZA4, well-defined cubic 
crystals are observed, as well as the elements O, Al, Si, and Na 
in characteristic atomic ratios (Mumpton, 1978). In 
ZA4+0.01Zn, ZA4+0.05Zn, and ZA4+0.1Zn, besides the Zn 
signal, evidence of ion exchange can be observed. In samples 
ZA4+0.05Zn and ZA4+0.1Zn, the Zn ratio is very similar. 
Therefore, it can be suggested that the concentration of 0.05 M 
is more suitable in the formation of nanoparticles. Because the 
use of reagents would be optimized. On the other hand, it is 
possible to observe a stronger deformation in the zeolite 
structure with the 0.05 M concentration in comparison with 0.1 
M. For each of the samples, 4-point EDS and 1 large area EDS 
measurements were carried out, where the same results were 
obtained, therefore, only one EDS analysis is shown for each 
sample. 

 

Figure 4 shows the SEM-EDS of ZA4, ZA4+0.01Zn, ZA4+0.05Zn, and 
ZA4+0.1Zn. 

4. Conclusion  

XRD and FT-IR analysis suggests that the zeolitic structure 
is not significantly affected during Zn ion exchange. In 
addition, no evidence of other species formation is shown. On 
the other hand, optical absorption spectra analysis shows a 
tendency in the identification of ionic species, as well as a 
small signal at 370 nm, which could be attributed to the 
formation of oxides on the zeolite surface due to environmental 
exposition.  Also, SEM-EDS analysis showed that the atomic 
content of Zn in the 0.05 and 0.1 M samples were very similar. 
Furthermore, the zeolite structure for 0.05 M concentration is 
less affected by chemical attack in ion exchange. Determining 
that the concentration of 0.05 M could be the most suitable for 
formation of nanoparticles, because it allows an optimal ion 
exchange and preserves the structure of ZA4 significantly.  
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