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Abstract: 

The food industry aims to develop products that are sensorially appealing, stable, and safe, promoting the use of acidulants and pH 
regulators with specific technofunctional properties. This study reviewed the main acidulant compounds used in foods, highlighting 
their origin, physicochemical characteristics, sensory effects, and technological applications, with emphasis on confectionery. Recent 
scientific information was integrated to classify them by chemical nature and production methods, both conventional and fermentative. 
The impact of organic acids on flavor, texture, and synergy with sweeteners and gelling agents was analyzed. Regulatory and 
sustainability aspects were also discussed. In conclusion, acidulants are key components for modulating organoleptic and 
technological properties, optimizing confectionery formulation and consumer acceptance. 
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Resumen: 

La industria alimentaria busca desarrollar productos sensorialmente atractivos, estables y seguros, lo que impulsa el uso de acidulantes 
y reguladores de pH con propiedades tecnofuncionales. Este estudio revisó los principales compuestos acidulantes empleados en 
alimentos, destacando su origen, características fisicoquímicas, efectos sensoriales y aplicaciones tecnológicas, con énfasis en la 
confitería. Se integró información científica reciente para clasificarlos según su naturaleza química y métodos de producción, tanto 
convencionales como fermentativos. Se analizó el impacto de ácidos orgánicos sobre sabor, textura y sinergia con edulcorantes y 
gelificantes. También se abordaron aspectos regulatorios y sostenibles. En conclusión, los acidulantes son componentes clave para 
modular propiedades organolépticas y tecnológicas, optimizando la formulación y aceptación de productos de confitería. 
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Introducción 
Los agentes acidulantes son compuestos, principalmente ácidos orgánicos 
débiles, que se incorporan a los alimentos y bebidas para modificar el perfil 
organoléptico, mejorar la experiencia sensorial, regular el pH y favorecer 
procesos tecnológicos como la gelificación, la conservación y la quelación de 
iones metálicos [1–6]. 
 
Desde la antigüedad, los ácidos orgánicos han estado presentes en la 
alimentación humana; el ácido láctico, derivado de la fermentación de la leche, 
y el ácido acético, procedente del vinagre, son ejemplos representativos que aún 
conservan relevancia tanto en la gastronomía como en la industria moderna 
[7,8]. 
 
Actualmente, los acidulantes se obtienen mediante procesos de fermentación o 
por síntesis química, y la elección del método incide directamente en la 
disponibilidad, el costo y la pureza del producto final [9].  
 
En la industria alimentaria, los principales acidulantes son los ácidos acético, 
cítrico, málico, tartárico, láctico y fumárico [10,11]. La diversidad de métodos de 
producción responde a criterios tecnológicos, económicos y ambientales; cada 
técnica repercute de manera distinta en la funcionalidad, sostenibilidad y 
viabilidad industrial del compuesto, dependiendo de factores como la naturaleza 
de la materia prima, el tipo de producto alimenticio y los costos de operación y 
purificación [9,12]. 
 
La acidez ejerce una influencia decisiva en las características sensoriales y 
fisicoquímicas de los alimentos. Contribuye a realzar el sabor y la percepción de 
frescura en productos como encurtidos, bebidas y confitería, especialmente en 
caramelos y gomitas [13].  
 
Además, el pH afecta la estabilidad del color, ya que las antocianinas son 
sensibles a los cambios de acidez y modifican su tonalidad en función del 
entorno [14]. Niveles bajos de pH, obtenidos mediante la adición de ácido cítrico, 
reducen el pardeamiento enzimático en frutas y hortalizas, preservando su 
calidad visual [15,16]. También influyen en la textura: la gelificación proteica en 
productos lácteos varía según el pH, modificando la consistencia de yogures y 
quesos [17,18]. 

 
Durante la elaboración de productos de confitería, los acidulantes regulan la 
cristalización del azúcar, contribuyen a la extracción de pectinas y pigmentos, y 
mejoran la percepción de sabor [19–21]. Entre ellos, el ácido cítrico se distingue 
por su eficacia, al proporcionar una acidez más equilibrada y agradable en 
comparación con otros como el fosfórico, láctico o tartárico [4,10]. Sin embargo, 
un control inadecuado del pH puede provocar alteraciones nutricionales y 
sensoriales que disminuyen la aceptación del producto [22]. 
 
En términos estructurales, los ácidos se dividen en orgánicos e inorgánicos. Los 
primeros, como el ácido cítrico y el ácido láctico, se originan de forma natural, 
frecuentemente a partir de procesos fermentativos; el ácido cítrico abunda en 
frutas cítricas, mientras que el ácido láctico se genera por la acción de bacterias 
ácido-lácticas durante la fermentación de carbohidratos [10,11,23–25]. Los 
ácidos inorgánicos, como el fosfórico y el clorhídrico, poseen una acidez más 
intensa y se emplean con menor frecuencia en alimentos debido a limitaciones 
de seguridad y compatibilidad sensorial [26,27]. 
 
Con base en lo anterior, el objetivo de esta contribución es ofrecer una visión 
integral sobre los agentes acidulantes y reguladores de pH empleados en la 
industria alimentaria, considerando sus procesos de producción, propiedades 
fisicoquímicas, aplicaciones prácticas y su influencia en la textura, la 
conservación y el perfil sensorial de los alimentos. De esta manera, se busca 
proporcionar una base sólida de conocimiento sobre sus aplicaciones 
industriales, útil para estudiantes de ciencias de los alimentos, tecnólogos, 
desarrolladores de productos y otros profesionales interesados en el tema. 
 
Procesos de producción de los agentes acidulantes y de los reguladores 
de pH en la industria 
 
Proceso de producción de los acidulantes 
Los acidulantes, al igual que otros aditivos alimentarios, pueden obtenerse de 
fuentes naturales, por fermentación o mediante síntesis química. Ejemplos 
representativos incluyen el ácido tartárico de origen natural, los ácidos cítrico, 
láctico y fumárico producidos por fermentación, y los ácidos málico y fosfórico 
obtenidos por rutas sintéticas. Su clasificación en orgánicos o inorgánicos 
depende de su estructura química y del proceso de obtención [9]. Los métodos 
de producción determinan la pureza, funcionalidad, costo y disponibilidad del 
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compuesto, así como su desempeño sensorial dentro de los alimentos. En la 
práctica industrial, se priorizan los procesos con mayor rendimiento y menor 
costo operativo [12]. 
 
Tradicionalmente, la producción de acidulantes ha dependido de la fermentación 
microbiana [9]. El ácido cítrico, por ejemplo, se genera mediante la fermentación 
de azúcares por Aspergillus niger, seguida de una etapa de purificación que 
incluye precipitación con sales cálcicas y cristalización, obteniendo un producto 
de alta pureza apto para uso alimentario [28,29]. Actualmente, este proceso se 
ha optimizado mediante fermentación en estado sólido y el uso de sustratos 
alternativos como el bagazo de caña de azúcar, lo que incrementa la eficiencia 
y reduce los costos de producción, además de fomentar el aprovechamiento de 
residuos agroindustriales [30]. 
 
De forma análoga, el ácido láctico se produce por fermentación con bacterias del 
género Lactobacillus, seguido de etapas de purificación mediante filtración por 
membranas y cromatografía de intercambio iónico para obtener un producto de 
grado alimenticio [31,32]. El ácido málico, en cambio, puede obtenerse por 
síntesis química o mediante bioprocesos con Aspergillus oryzae; la vía 
biotecnológica se considera más sostenible y puede incluir etapas de 
cristalización o extracción reactiva para su purificación [33–35]. 
 
El ácido tartárico se recupera de subproductos vinícolas como el mosto o el vino, 
a través de etapas controladas de precipitación y cristalización que aseguran su 
pureza [36,37]. En el caso del ácido fumárico, la industria suele emplear la 
isomerización del ácido maleico derivado del petróleo, seguido de cristalización 
para alcanzar el grado alimenticio requerido [31,38]. 
 
Las innovaciones recientes han impulsado tecnologías que integran la 
acidificación controlada con otros métodos de conservación. La llamada 
“tecnología de barreras” combina una acidificación suave con tratamiento 
térmico, logrando productos más estables y de mejor calidad. Un ejemplo es el 
uso de glucono-delta-lactona (GdL) en la elaboración de paneer reducido en 
grasa, donde mejora la textura y extiende la vida útil [39,40]. En panadería, los 
sistemas acidulantes multicomponentes, mezclas de ácidos orgánicos y 
enzimas, se emplean para retardar el envejecimiento del pan y conservar su 
aroma y frescura [41]. 
 

El tipo y la concentración del acidulante también inciden en las propiedades 
sensoriales. La aplicación de ácido cítrico, por ejemplo, mejora la recuperación 
de componentes lácteos durante la elaboración de quesos procesados [42] y 
reduce el pardeamiento enzimático en frutas y hortalizas, manteniendo su color 
y textura durante el almacenamiento [15,16]. 
 
Los procesos de obtención de acidulantes abarcan estrategias que van desde la 
fermentación microbiana y la extracción natural hasta la síntesis química y la 
aplicación de tecnologías combinadas. Cada enfoque difiere en términos de 
rendimiento, pureza, sostenibilidad y viabilidad industrial, y su elección depende 
de factores como la materia prima disponible, el tipo de alimento al que se 
destina y los costos de producción y purificación. 
En la Tabla 1 se presenta una comparación entre los principales métodos de 
producción de acidulantes utilizados en la industria. 
 

Tabla 1. Comparación de métodos de producción de acidulantes utilizados en 
la industria alimentaria 

Método de 
producción Ventajas Desventajas Ref 

Fermentación 
microbiana 

tradicional (ej. 
Aspergillus niger 

para ácido cítrico) 

Alta pureza del producto final; 
proceso ampliamente 
establecido; adecuado para 
producción a gran escala. 

Velocidad de producción 
relativamente lenta; 
requiere condiciones 
ambientales estrictas; 
costos elevados si no se 
optimiza. 

[9,28] 

Fermentación en 
estado sólido (ej. 

producción de 
ácido cítrico en 

bagazo de caña) 

Aprovechamiento de residuos 
agroindustriales; reducción 
significativa de costos; proceso 
más sostenible. 

Control de parámetros más 
complejo; mayor 
variabilidad entre lotes. 

[30] 

Síntesis química 
(ej. ácido málico a 
partir de anhídrido 

maleico) 

Alta eficiencia y rendimiento; 
control total de condiciones de 
reacción; excelente 
escalabilidad industrial. 

Generación de mezclas 
racémicas; dependencia de 
insumos petroquímicos. 

[34] 

Fermentación 
biotecnológica 
moderna (ej. 

ácido málico con 
Aspergillus 

oryzae) 

Mayor sostenibilidad; 
rendimientos mejorados; menor 
impacto ambiental. 

Requiere procesos 
avanzados de purificación; 
altos costos iniciales de 
investigación y desarrollo. 

[29,35] 

Extracción natural 
(ej. ácido tartárico 

de residuos 
vinícolas) 

Uso de recursos renovables; 
baja huella ambiental; costo 
reducido cuando se aprovechan 
subproductos. 

Pureza dependiente de la 
materia prima; limitado a 
regiones con producción 
vinícola. 

[36,37] 

Isomerización 
química (ej. ácido 

Proceso rápido y eficiente; 
reacción controlable bajo 
condiciones industriales. 

Derivado de fuentes 
petroquímicas; puede [31,38] 
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fumárico a partir 
de ácido maleico) 

requerir purificación 
adicional. 

Tecnología de 
barreras (ej. uso 

de GdL en 
paneer) 

Mejora sensorial y prolongación 
de la vida útil; acidificación 
suave y controlada; compatible 
con procesos de mínima 
intervención. 

Requiere combinarse con 
otras tecnologías; no 
aplicable a todos los 
productos. 

[39,40] 

Uso de 
acidulantes 

multicomponentes 

Previene deterioros específicos, 
como el envejecimiento del pan; 
mejora el aroma, la textura y la 
frescura. 

Formulación más compleja; 
costo elevado cuando se 
utilizan ingredientes 
premium. 

[41] 

 

Proceso de producción de los reguladores de pH 

Los reguladores de pH empleados en alimentos se obtienen mediante rutas 
industriales que aseguran su pureza y estabilidad, permitiendo su uso en 
diversas aplicaciones tecnológicas. Entre los más comunes se encuentran el 
bicarbonato de sodio (NaHCO₃) y el bitartrato de potasio o cremor tártaro, 
ampliamente utilizados en panadería, confitería y productos fermentados. 

El bicarbonato de sodio se produce principalmente por el proceso Solvay, que 
utiliza cloruro de sodio, amoníaco y dióxido de carbono. Durante el proceso, la 
reacción de estos componentes en una solución de salmuera amoniacal genera 
la precipitación del bicarbonato, el cual se separa, cristaliza y seca para eliminar 
impurezas y ajustar su contenido de humedad [43–46]. Su adición en alimentos 
regula el pH y contribuye a mejorar la textura, el volumen y la porosidad de los 
productos [47,48]. 

El cremor tártaro se recupera de los subproductos de la vinificación, donde el 
bitartrato de potasio precipita naturalmente durante la fermentación alcohólica. 
El material cristalino obtenido se purifica mediante recristalización y lavado, 
asegurando su calidad y eliminación de compuestos indeseables [49–51]. En la 
industria alimentaria, actúa como regulador de pH y estabilizante, favoreciendo 
la textura y la consistencia de productos como merengues, masas batidas y 
caramelos 

Innovaciones y mejoras en los procesos de producción 

Los desarrollos recientes en fermentación y biotecnología han promovido el uso 
de residuos orgánicos como sustrato y han mejorado la eficiencia energética en 

la producción de compuestos de interés. La digestión anaerobia de residuos 
húmedos permite la obtención de ácidos grasos volátiles (VFAs), los cuales 
pueden emplearse como insumo en la producción de biocombustibles, 
particularmente combustible de aviación, con costos influenciados por la 
composición del residuo y la eficiencia de separación [52]. La fermentación 
asistida con magnetita ha incrementado los rendimientos de etanol al estimular 
bacterias productoras bajo condiciones anaerobias [11]. 

La fermentación oscura aplicada a residuos sólidos y líquidos genera ácidos 
orgánicos y alcoholes útiles para distintas aplicaciones [53]. La co-fermentación 
de residuos alimentarios, como técnica complementaria, mejora la velocidad de 
conversión hacia VFAs [54]. 

En paralelo, se han adoptado enfoques de producción más limpia, como el uso 
de subproductos agrícolas fermentados para la elaboración de alimento animal, 
lo que mejora la eficiencia de aprovechamiento de residuos vegetales como la 
col china, el salvado de trigo y el salvado de arroz [55]. La conversión biológica 
de desechos mediante larvas de Hermetia illucens, reforzada con fermentación 
fúngica ex situ, ha reducido la masa de residuos y facilitado la recuperación de 
nutrientes [56,57]. 

Algunas estrategias recientes incluyen la síntesis de productos biodegradables 
a partir de enzimas obtenidas de residuos vegetales. Este tipo de ecoenzimas 
se ha utilizado en la formulación de detergentes, evidenciando su potencial en 
aplicaciones ambientales [58]. 

La implementación de nuevas estrategias biotecnológicas ha mejorado la 
eficiencia de los procesos de fermentación orientados al aprovechamiento de 
residuos orgánicos. Estos enfoques permiten transformar subproductos 
agroindustriales en compuestos de valor añadido mediante métodos que 
reducen el impacto ambiental y optimizan el uso de recursos. La Tabla 2, 
incluyendo el tipo de residuo utilizado, el producto obtenido, la técnica aplicada 
y su respectiva referencia. 
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Tabla 2. Comparación de innovaciones en procesos de fermentación y 
valorización de residuos orgánicos 

Innovación o 
tecnología 

Ventajas Desventajas Ref 

Uso de ácidos 
grasos volátiles 

(VFAs) derivados 
de residuos 

Aprovechamiento de 
residuos húmedos; potencial 

para producción de 
biocombustibles sostenibles. 

Requiere optimización del 
pretratamiento y de la 

separación; costos 
variables según la materia 

prima. 

[52] 

Estimulación de 
bacterias con 

magnetita 

Mejora la producción de 
etanol; incrementa la 

eficiencia de la fermentación 
anaerobia. 

Necesidad de mantener 
condiciones estrictamente 

controladas; costos 
asociados al uso de 

magnetita. 

[11] 

Fermentación 
oscura 

Conversión eficiente de 
residuos sólidos y líquidos 
en metabolitos de interés. 

Limitaciones por 
acumulación de 

compuestos tóxicos; 
requerimientos de pH. 

[53] 

Co-fermentación de 
residuos 

alimentarios 

Incremento rápido en la 
producción de VFAs; mejora 

de la biodegradabilidad. 

Dificultad para mantener 
estabilidad microbiana; 
riesgo de inhibición por 

sobrecarga de nutrientes. 

[54] 

Producción de 
alimento animal a 
partir de residuos 

agrícolas 

Reducción de residuos 
vegetales; generación de 

subproductos útiles. 

Requiere control sanitario 
riguroso y validación de 

inocuidad. 
[59] 

Bioconversión con 
Hermetia illucens 
más fermentación 

fúngica 

Reducción de masa 
residual; recuperación 
eficiente de nutrientes. 

Necesidad de 
infraestructura 
especializada. 

[56–
57] 

Aplicación de 
ecoenzimas 
derivadas de 

residuos vegetales 

Aprovechamiento de 
desechos orgánicos para 

obtener productos 
biodegradables. 

Falta de estandarización 
en producción; variabilidad 

en pureza y eficiencia. 
[58] 

 
Regulaciones y seguridad alimentaria 
 
El uso de acidulantes en alimentos está regulado por marcos normativos 
internacionales y nacionales que establecen límites de uso y criterios de 
inocuidad. Organismos como el Comité Conjunto FAO/OMS de Expertos en 
Aditivos Alimentarios (JECFA), la Autoridad Europea de Seguridad Alimentaria 
(EFSA) y la Administración de Alimentos y Medicamentos de Estados Unidos 
(FDA) evalúan periódicamente la seguridad de estos compuestos, definiendo 
parámetros como la Ingesta Diaria Aceptable (IDA) a partir del nivel sin efecto 
adverso observable (NOAEL). Para ello, se aplican protocolos toxicológicos que 

incluyen ensayos agudos, subcrónicos, crónicos, carcinogénicos, mutagénicos 
y metabólicos en animales expuestos a diversas dosis [60,61]. 
 
La IDA puede clasificarse como “no especificada”, cuando la toxicidad del 
compuesto es baja, o como "no asignada", cuando su uso está condicionado a 
circunstancias específicas. A partir de estas evaluaciones, el Codex 
Alimentarius establece los niveles máximos permitidos en alimentos, lo que 
sirve de referencia para las legislaciones nacionales, incluido México, donde la 
COFEPRIS regula su uso a través de las Normas Oficiales Mexicanas [60]. 
 
Además de los requisitos regulatorios, se realiza una evaluación detallada de la 
interacción de los acidulantes con el organismo humano. Algunos estudios 
señalan que, aunque compuestos como el ácido cítrico están clasificados como 
GRAS por la FDA y aprobados en la Unión Europea como E330, el consumo 
en exceso puede generar molestias gastrointestinales o modificar la absorción 
de minerales como hierro y zinc, dependiendo de la matriz alimentaria [62–64]. 
También se ha documentado su capacidad para reducir patógenos como 
Salmonella en alimentos, reforzando su utilidad como agentes antimicrobianos 
[65]. 
 
La evaluación integral que realizan las agencias regulatorias contempla tanto la 
función tecnológica como los posibles efectos adversos de los acidulantes, lo 
que permite establecer límites de exposición seguros y garantizar su uso en 
condiciones controladas [61,66]. 
 
Control de calidad en la producción de acidulantes 
 
Los aditivos alimentarios deberán ser de calidad alimentaria apropiada y 
satisfacer en todo momento las especificaciones de identidad y pureza 
determinadas por el CODEX. Por lo que respecta a la inocuidad, la calidad 
alimentaria se logra ajustando los aditivos a sus especificaciones en conjunto 
(y no simplemente mediante criterios individuales) y mediante su producción, 
almacenamiento, transporte y manipulación en conjunto con las BPF [67]. 
 
La calidad para los procesos de producción de acidulantes se suelen basar en 
la pureza (porcentaje de ingredientes activos y contaminantes presentes), se 
deben incluir límites para metales pesados, sulfatos y otras impurezas que no 
se alineen con las especificaciones de grado alimenticio. Los análisis de pureza 
y calidad tienden a inclinarse por técnicas como HPLC (High-Performance 
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Liquid Chromatography) [16,42]. Métodos como la espectroscopia de UV-vis 
pueden usarse de igual manera para asesoras la calidad y pureza [16,40]. 
 
Principales acidulantes y reguladores de pH en la industria alimentaria 
 
Los acidulantes y reguladores de pH empleados en alimentos combinan 
disponibilidad, costo, pureza y desempeño tecnológico. A continuación se 
sintetizan sus características químicas básicas, su presencia natural cuando 
aplica y, sobre todo, las rutas de producción a escala industrial, dado que estas 
condicionan pureza, subproductos y huella de proceso en aplicaciones 
alimentarias. 
 
Ácido acético 
El ácido acético (CH₃COOH; C₂H₄O₂) se encuentra en solución como ion 
acetato. A escala industrial predomina la síntesis por carbonilación de metanol 
en fase líquida con CO, catalizada por complejos de rodio y promotores 
yodados (proceso Monsanto), que opera típicamente a 150–200 °C y 30–50 bar 
y alcanza ≈95 % de selectividad, con subproductos como ácido fórmico y 
formaldehído; el sistema requiere agua controlada generada in situ por reacción 
de metanol con HI y usa acetato de metilo como disolvente/captador [8]. La 
variante con catalizador de iridio (proceso Cativa) mejora la velocidad global y 
reduce el consumo de agua y la formación de subproductos, con ventajas 
económicas del ciclo catalítico [8]. En menor medida, existen rutas 
fermentativas donde microorganismos convierten carbohidratos en ácidos 
orgánicos, incluido el acético [68]. 
 
Ácido cítrico 
El ácido cítrico (C₆H₈O₇; ácido 2-hidroxipropano-1,2,3-tricarboxílico) es un α-
hidroxiácido poliprótico presente en cítricos y frutos rojos  [69]. La producción 
industrial se basa en fermentación con Aspergillus niger a partir de azúcares 
(fermentación sumergida o de superficie), seguida de precipitación como citrato 
de calcio, reacidificación con H₂SO₄, decoloración/pulido (carbón activado o 
resinas de intercambio iónico) y cristalización-secado para obtener el producto 
anhidro o monohidratado; los rendimientos pueden alcanzar hasta ≈85 % bajo 
condiciones optimizadas. Se exploran sustratos alternativos y el uso de 
levaduras, aunque su escalamiento aún presenta variabilidad en rendimientos 
y costos [69–71]. 
 
 

Ácido málico 
El ácido málico (C₄H₆O₅; 2-hidroxi-butanodioico) es un C4-dicarboxílico 
ampliamente distribuido en frutas como manzana, plátano, lichi y ciruela [72]. 
Industrialmente, se obtiene, de forma mayoritaria, por rutas químicas a partir de 
anhídrido maleico de origen fósil: hidratación a ácido maleico, isomerización a 
ácido fumárico y posterior hidratación a ácido málico, en general a 160–220 °C 
y 3–6 h, con etapas de cristalización y extracción para alcanzar purezas 
alimentarias [72]. Las alternativas enzimáticas y fermentativas con recursos 
renovables avanzan en investigación, pero aún no igualan la competitividad del 
proceso químico en gran escala [72]. 
 
Ácido tartárico 
El ácido L-tartárico (C₄H₆O₆; L-2,3-dihidroxibutanodioico) se concentra de 
manera natural en uvas y subproductos vínicos (lías), donde precipita 
principalmente como bitartrato potásico y tartrato cálcico [55,73]. La 
recuperación industrial parte de la solubilización ácida de las sales tartrato, 
precipitación selectiva como tartrato cálcico, reacidificación y cristalizaciones 
sucesivas, lo que permite valorizar residuos enológicos con un proceso 
ambientalmente favorable y rendimientos adecuados frente a vías 
fermentativas o enzimáticas menos extendidas [74,75]. 
 
Ácido láctico 
El ácido láctico (C₃H₆O₃; ácido 2-hidroxipropiónico) se identificó originalmente 
en leche agria. Aunque existe síntesis química, la vía dominante es 
biotecnológica mediante fermentaciones homofermentativas con bacterias 
ácido lácticas (Lactobacillus spp.), en modo discontinuo o continuo, debido a su 
menor costo y a la posibilidad de emplear materias primas económicas y 
renovables. La recuperación típicamente combina precipitación, destilación, 
membranas y ultrafiltración; técnicas como cromatografía y cristalización se 
reservan para etapas de refinado y estandarización del grado alimentario 
[68,76]. 

 
Ácido fumárico 
El ácido fumárico (C₄H₄O₄; (E)-2-butanodioico) es el isómero trans del ácido 
maleico y se considera un químico plataforma derivable de azúcares, con 
múltiples aplicaciones industriales [77]. La producción comercial procede 
mayoritariamente de la isomerización catalítica del ácido maleico con sistemas 
basados en ácidos minerales, compuestos peroxídicos con bromuros/bromatos 
o agentes azufrados (p. ej., tiourea), seguida de cristalización para purificación. 
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Existen rutas fermentativas, pero su penetración industrial es menor frente al 
proceso de isomerización [78,79]. 
 
Cremor tártaro (bitartarato de potasio) 
El cremor tártaro o bitartrato de potasio (KC₄H₅O₆; 188.17 g/mol) es un 
subproducto ácido y cristalino de la vinificación que se acumula en lías junto 
con levaduras y sólidos finos [73]. La recuperación se realiza por cristalización 
por enfriamiento en agua, con lavado y secado para purificación, y molienda 
para su acondicionamiento. A escala reducida, los cristalizadores discontinuos 
minimizan incrustaciones y sedimentación, resultando más robustos que 
opciones continuas en este tipo de corrientes [80,81]. 

 
Bicarbonato de sodio 
La fabricación del bicarbonato de sodio (NaHCO₃; 84.01 g/mol) se integra al 
proceso Solvay: preparación de salmuera (NaCl), calcinación de caliza para 
obtener CO₂ y CaO, absorción de amoníaco en la salmuera y carbonatación 
con el CO₂ para precipitar NaHCO₃, con coproducto NH₄Cl en la torre de 
carbonatación; la “leche de cal” (Ca(OH)₂) se emplea para recuperar NH₃ en la 
etapa de destilación. El producto se purifica por cristalización. Alternativamente, 
puede provenir de mineral de trona mediante rutas térmico-hidrometalúrgicas 
[82–84]. 
 
Propiedades fisicoquímicas de los agentes acidulantes 
 
Los acidulantes y reguladores de pH poseen rasgos que determinan su 
desempeño en matriz: disociación ácida (pH/pKa y capacidad tampón), 
solubilidad y cinética de disolución, higroscopicidad, volatilidad (cuando aplica) 
e interacciones con minerales y macromoléculas. En confitería, estos atributos 
inciden en inversión de sacarosa, gelificación (gelatina/pectina), estabilidad de 
color y perfil temporal de la acidez percibida (Tabla 3). Dado que suelen 
incorporarse en solución, conviene comparar el pH de referencia en 
disoluciones al 1% y el estado físico comercial; la solubilidad en agua es clave 
por el contenido acuoso habitual de los alimentos y por su efecto en tiempos de 
proceso [85].  
 
En la Tabla 3, el “pH de referencia” orienta comparaciones rápidas, por lo que 
se deben ajustar con los datos analíticos y temperatura/°Brix del proceso. La 
solubilidad condiciona la funcionalidad y los tiempos de disolución; el ácido 
cítrico, además, favorece la solubilidad de minerales con impacto en 

biodisponibilidad y estabilidad sensorial frente a notas metálicas por su 
quelación [86]. Con relación a la higroscopicidad, el ácido cítrico y el ácido 
láctico muestran tendencia a absorber humedad, lo que puede modificar textura 
y vida útil en matrices como panificación y quesos; el diseño debe contemplar 
empaque y actividad de agua del sistema [87]. Finalmente, en relación con la 
astringencia, ciertos ácidos contribuyen a astringencia y sequedad oral, 
deseables en vinos o jugos específicos; su modulación depende de 
concentración, pH y matriz [88]. 
 
Tabla 3. Matriz fisicoquímica orientada a formulación (1% p/p en agua, 20–25 

°C; categorías cualitativas) 
Compuesto pH de 

referencia* 
Capacidad 

tampón 
Solubilidad 

en agua Higroscopicidad Volatilidad 
/ Olor 

Interacciones 
tecnológicas 

típicas 
Referencia 

Ácido acético ~2.3–2.6 
Media 

(cerca del 
pKa) 

Alta Baja Alta (olor a 
vinagre) 

Ajuste fino del pH 
en jarabes; 
contribución 

sensorial 
punzante 

[8] 

Ácido cítrico ~2.2–2.5 Alta 
(poliácido) Alta Media–Alta Nula 

Quelación de 
metales; control 
de inversión de 

azúcares; soporte 
a pectinas 

[20,73] 

Ácido málico ~2.2–2.6 Media–Alta Alta Media Nula 
Realce frutal 
“redondo”; 

modulación del 
impacto ácido 

[89] 

Ácido 
tartárico ~2.0–2.4 Media Media–Baja Baja Nula 

Notas “vinosas”; 
estabilización de 

espumas con 
clara 

[73] 

Ácido láctico ~2.3–2.6 Media Alta (líquido) Media–Alta Nula 

Redondeo de 
acidez en 

matrices lácteas y 
cremosas 

[68] 

Ácido 
fumárico ~2.0–2.3 Alta en 

rango bajo 

Baja 
(disolución 

lenta) 
Baja Nula 

Golpe ácido 
intenso y 

persistente; 
liberación lenta 

[77] 

Cremor 
tártaro 

(KHC₄H₄O₆) 

~3–4 
(solubilidad 

limitada) 
Baja–Media Baja Baja Nula 

Estabilización de 
espumas; agente 
leudante junto con 

bicarbonato 

[73,81] 

Bicarbonato 
de sodio ~8–8.5 — (base 

débil) Alta Baja Nula 

Regulador de pH 
y agente 

gasificante al 
reaccionar con 

ácidos 

[82–83] 

 
Perfiles de sabor de los ácidos 
 
Los perfiles de sabor influyen en la aceptación y diferenciación del producto. El 
láctico aporta notas suaves y cremosas típicas de matrices lácteas; el acético 
domina en encurtidos; el cítrico entrega brillo y “frescura” en perfiles frutales 
[90,91]. Además del nivel de acidez, la estabilidad del ácido y su interacción con 
grasas y proteínas determinan la generación de volátiles durante procesos 
térmicos; en fritura, la oxidación lipídica puede originar notas fuera de perfil si 
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no se controla el sistema ácido-base y el entorno de proceso [92]. En cuanto al 
mecanismo, la percepción del agrio en humanos se explica por la activación de 
canales de protones OTOP1 frente al influjo de H⁺, con la participación de 
canales iónicos sensibles a ácido (ASICs) y la inhibición de canales de K⁺; estos 
procesos, en conjunto, modulan la intensidad y la temporalidad del agrio que 
aportan ácidos frecuentes en alimentos como cítrico, málico, láctico, acético y 
fumárico [93–97]. 
 
La elección del ácido debe alinearse con el “mapa temporal” buscado: impacto 
inicial (fumárico), brillo corto (cítrico), cuerpo/persistencia (málico) y redondeo 
cremoso (láctico), con ajustes por sinergias y por la capacidad tampón del 
sistema [93,98]. 
 
El análisis sensorial comparativo de los acidulantes evidencia diferencias en 
impacto inicial, cualidad dominante y duración del estímulo ácido que orientan 
el diseño de perfiles equilibrados de acidez y dulzor en bebidas y confitería 
(Tabla 4) [4,89].  
 
En la Tabla 4a, construída sobre soluciones modelo a pH≈3, se aprecia que el 
fumárico ofrece un golpe intenso y persistente adecuado para productos “sour” 
de larga duración, mientras que el cítrico aporta un brillo breve y refrescante 
compatible con matrices frutales y efervescentes [20,77]. El málico añade 
“cuerpo” y una acidez redonda que prolonga notas afrutadas, y el láctico suaviza 
el conjunto confiriendo una sensación cremosa útil en matrices lácteas o 
rellenos [4,89]. La elección debe considerar sinergias con edulcorantes de alta 
intensidad y agentes de textura, así como la capacidad tampón del sistema, por 
su efecto en la liberación del sabor y en la relación acidez–dulzor [73,99]. 
 
La Tabla 4b detalla efectos dinámicos sobre sabor y aroma en condiciones 
estandarizadas (pH 3.0; 1.0 % p/v), mostrando que los ácidos de alta volatilidad, 
como el acético, generan respuesta inmediata y penetrante, mientras que 
polihidroxilados como málico y láctico prolongan la acidez y suavizan el perfil 
global [4,91]. Esta comparación permite trazar un “mapa temporal” aplicable a 
formulación: inicio (fumárico), brillo corto (cítrico), cuerpo/persistencia (málico) 
y redondeo (láctico), con ajustes por sinergias y por la fuerza tampón de la 
matriz [93,98]. Además, las diferencias fisicoquímicas y su interacción con la 
matriz durante el proceso, incluida la estabilidad térmica y la posible generación 
de volátiles, condicionan la expresión sensorial final; en fritura, por ejemplo, el 

entorno ácido–base y la oxidación lipídica pueden derivar en notas fuera de 
perfil si no se controlan las condiciones de proceso [90,92]. Finalmente, el 
entendimiento reciente de los mecanismos de percepción del agrio, 
participación de OTOP1, ASICs e inhibición de canales de K⁺, ayuda a explicar 
por qué la misma acidez nominal produce temporalidades distintas según el 
ácido y la matriz, reforzando la utilidad del enfoque por mapa temporal para 
seleccionar combinaciones y niveles [94–97]. 
 

Tabla 4a. Mapa sensorial y perfil temporal de los principales acidulantes 
alimentarios 

Ácido Impacto 
inicial 

Cualidad 
principal 

Arrastre 
/ 

Duración 
Sinergias 

útiles 
Riesgos / 

Consideraciones Ref. 

Acético Alto, 
punzante 

Ácido–
vinagre 

Media–
Larga 

Perfiles 
salados y 
encurtidos 

Alta volatilidad; 
domina si se 

excede 
[91] 

Cítrico 
Medio–

alto, 
nítido 

Brillante, 
“refrescante” 

Corta–
Media 

Cítricos; 
frutos rojos; 
quelación 

que reduce 
notas 

metálicas 

Puede “lavar” el 
dulzor si se 

sobredosifica 
[20] 

Málico Medio, 
redondo 

Frutal 
maduro y 

suave 

Media–
Larga 

Manzana; 
sandía; 
sinergia 
con HIS* 

Puede aplanar 
perfiles cítricos si 

se excede 
[89–99] 

Tartárico Medio, 
seco 

Agrio 
“vinoso” Corta Uva; frutos 

morados 
Astringencia si se 

excede [73] 

Láctico Medio, 
suave 

Lechoso / 
cremoso Larga 

Matrices 
lácteas y 

cremosas; 
genera 
“acidez 

redonda” 

Suaviza perfiles 
excesivamente 

cítricos 
[4] 

Fumárico Muy alto Seco, 
penetrante Larga 

Caramelos 
“sour” de 

larga 
duración 

Disolución lenta; 
posible sensación 

granulada 
[77] 

Nota: *HIS = High-Intensity Sweeteners (edulcorantes de alta intensidad) 
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Tabla 4b. Efecto de los acidulantes sobre el sabor y el aroma 
(pH 3.0; 1.0 % p/v) 

Ácido Sensación 
de acidez 

Descripción 
(perfil temporal) 

Modificación 
del sabor Temporalidad Ref. 

Acético Muy intensa Pungente, tipo 
vinagre Muy alta Larga [91] 

Cítrico Moderada 
Limpio, 

refrescante, 
brillante 

Muy baja Corta [93–
98] 

Fosfórico Baja Bajo impacto Muy baja Corta [99] 

Fumárico Intensa 
Limpio, seco, 
penetrante, 
persistente 

Moderada Larga [77] 

Láctico Intensa 
Suave, 

persistente, 
lácteo 

Baja Larga [4] 

Málico Moderada Maduro, suave, 
afrutado Muy alta Larga [89] 

Tartárico Moderada Brusco, seco Muy baja Corta [73] 
 
Aplicaciones en la industria de alimentos 
En la práctica, los acidulantes se seleccionan por su capacidad de ajustar y 
amortiguar variaciones del pH durante el proceso, mientras aportan efectos 
útiles en color, textura y estabilidad aromática; estos roles ya se discutieron en 
las secciones de propiedades y perfiles, por lo que aquí se prioriza su uso 
estratégico para perfilar sabor en matrices reales [4,100]. 
 
En bebidas, el “mapa temporal” guía la mezcla: el ácido cítrico aporta brillo 
breve y compatibilidad con sabores frutales; el málico añade cuerpo y 
persistencia; el fosfórico define perfiles tipo cola; en bebidas alcohólicas y 
bebidas gasificadas con alcohol frutales “hard seltzers”, el málico contribuye a 
una acidez redondeada y estable [1,101]. La combinación cítrico–málico es 
habitual para equilibrar acidez–dulzor y sostener notas de cítricos o pepita, 
mientras el ácido láctico suaviza formulaciones cremosas y el ácido tartárico 
ancla perfiles uva/vinosos cuando procede [73,89]. 
 
En confitería, el ajuste de pH condiciona gelificación, pegajosidad y 
cristalización, pero el valor diferencial está en dirigir el perfil sensorial: en 
gomitas sabor limón optimizadas con diseño simplex-lattice, el málico intensificó 
la acidez y su duración, el cítrico aportó limpieza y “frescura”, y el láctico moduló 
el impacto total, con mayor aceptación de la mezcla frente a ácidos aislados 
[102]. En goma de mascar funcional con extractos de té verde y jengibre, el 

cítrico equilibró notas bioactivas y mejoró la aceptación en una matriz 
sensorialmente compleja  [21]. Esta evidencia coincide con análisis técnicos 
que vinculan rasgos fisicoquímicos con resultados sensoriales y orientan el uso 
de sistemas ácido–buffer y quelación para minimizar notas metálicas [4,93]. En 
caramelos y gomitas, la tríada cítrico–málico–láctico suele funcionar, 
manteniendo el málico en proporciones moderadas para evitar un impacto 
excesivo y controlando la cinética de disolución cuando se recurre a fumárico 
para un golpe ácido prolongado [77,89]. 

Aspectos tecnológicos transversales (conservación por fracción no disociada; 
efectos reológicos sobre pectinas, gelatina y conversión de azúcares) se 
asumen como conocidos por el lector y se remiten a las secciones previas; en 
términos prácticos, su control evita pérdidas de masticabilidad en gomitas o 
defectos de textura durante cocción y templado [103–105]. En síntesis, perfilar 
el sabor con combinaciones dirigidas, inicio: fumárico; brillo corto: cítrico; 
cuerpo/persistencia: málico; redondeo: láctico, y compatibilizarlas con 
edulcorantes y agentes de textura permite cumplir objetivos sensoriales sin 
comprometer la estabilidad del sistema [4,89,98]. La Tabla 5 traduce el “mapa 
temporal” en decisiones operativas: qué ácido elegir, en qué rango y en qué 
momento añadirlo según matriz y proceso. 

Tabla 5. Funciones y ejemplos de aplicación con lectura tecnológica 

Compuesto 
Funciones 

tecnológicas 
prioritarias 

Ejemplos y apuntes de proceso Ref. 

Cítrico 
Acidulante; tampón 
poliácido; agente 

quelante 

Bebidas, gomitas y jaleas; controla 
la inversión de azúcares; estabiliza 

color; útil en presencia de iones 
metálicos 

[20,73] 

Málico 
Modulador de impacto; 

aporta “cuerpo” y 
persistencia 

Bebidas y caramelos frutales; 
sinergia con ácido cítrico; mejora la 

aceptabilidad en combinaciones 
[4,89] 

Tartárico 
Perfil agrio seco; 
estabilizador de 

espumas 

Productos sabor uva; batidos y 
merengues; coadyuvante junto con 

cremor tártaro 
[73] 

Láctico 
Redondeo ácido; 

sensación cremosa; 
conservación suave 

Toffees, rellenos lácteos y matrices 
cremosas [4] 

Fumárico 
Alta intensidad y larga 

duración; liberación 
lenta 

Caramelos “sour”; requiere 
premezcla y prehidratación para 

mejorar la disolución 
[77] 

Cremor 
tártaro 

Regulador y 
estabilizante; pareja 

Espumas estables; galletería; 
confitería batida [81] 
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tecnológica del 
bicarbonato 

Bicarbonato 
de sodio 

Regulador de pH; 
agente gasificante en 
presencia de ácidos 

Panificación y bases horneadas; 
aumento de volumen y porosidad 

[82–
83] 

 
Proceso y formulación de alimentos adicionados con acidulantes 
 
Criterios de formulación en confitería y bebidas 
 
En confitería y bebidas, la elección y dosificación del acidulante se define por la 
matriz, el perfil sensorial objetivo (impacto inicial, brillo, cuerpo y arrastre) y las 
condiciones de proceso (pH meta, °Brix, temperatura, orden de adición). El 
punto de partida es seleccionar el estado físico adecuado: líquidos para líneas 
líquidas y jarabes; sólidos para mezclas en polvo (bebidas instantáneas, bases 
para caramelos), vigilando la disolución y la cinética de liberación [20]. En 
matrices frutales, combinaciones cítrico–málico suelen equilibrar acidez–dulzor 
y sostener notas frutales; en matrices cremosas, el láctico “redondea” picos de 
acidez; cuando se busca un “sour” prolongado en caramelos, el fumárico 
requiere premezcla o prehidratación para evitar granulado y asegurar liberación 
homogénea [4,89]. 
 
El orden de adición es crítico: en confitería blanda (gomitas, jaleas), dosificar 
ácidos en etapas tardías o vía premezclas para no comprometer redes 
gelificadas y masticabilidad; el exceso de acidez puede debilitar gelatina y 
desbalancear hidrocoloides, por lo que el pH debe ajustarse junto con sólidos 
solubles y temperatura de cocción [103,104]. En bebidas, la quelación del cítrico 
ayuda a controlar notas metálicas y estabilizar color, mientras que la inversión 
de sacarosa (acelerada por acidez y calor) afecta viscosidad, pegajosidad y 
cristalización en jarabes y caramelos; los sistemas tampón moderan estas 
variaciones [20,73]. 
 
La compatibilidad con edulcorantes condiciona la selección: el aspartamo gana 
solubilidad a pH bajo pero es térmicamente lábil; la sucralosa mantiene potencia 
dulce en amplio rango de pH/temperatura; los glicósidos de esteviol requieren 
gestionar estabilidad y posibles notas residuales en medios ácidos. En color y 
aroma, el pH controla estados de pigmentos (p. ej., antocianinas) y la liberación 
aromática; en bebidas ácidas, manejar pH y antioxidantes evita decoloraciones 
o pérdida de brillo [106–110]. 

 
Para reducir iteraciones y alcanzar un perfil sensorial reproducible, conviene 
usar diseños de mezclas y superficies de respuesta que exploren proporciones 
de ácidos y su interacción con edulcorantes/aromas, integrando variables de 
proceso (pH, °Brix, temperatura, tiempo de cocción/enfriado) en el mismo 
experimento [111]. Este enfoque estadístico, combinado con prácticas de planta 
(premix, secuencia y ventana de pH), acelera la convergencia hacia 
formulaciones estables que traduzcan el “mapa temporal” de la acidez en 
producto terminado [4,89]. 
 
Aunque el desempeño sensorial-tecnológico guía la formulación, la 
disponibilidad y el origen de los acidulantes condicionan costos y selección: por 
ejemplo, el cítrico de producción microbiana requiere sustratos cuyo precio y 
huella pueden variar; integrar subproductos agroindustriales como sustratos 
alternativos es una vía reportada para contener costos y mejorar el perfil 
ambiental, sin alterar los criterios de calidad exigidos por bebidas y confitería 
[9,112]. 
 

Conclusiones y perspectivas 

A lo largo del presente trabajo se proporcionó una visión integral de los agentes 
acidulantes y reguladores de pH utilizados en la industria alimentaria, con 
énfasis particular en sus aplicaciones dentro del sector de la confitería. Se 
describieron sus rutas de producción, además de sus propiedades 
fisicoquímicas y sensoriales, las cuales determinan su funcionalidad en diversas 
matrices alimentarias. Los resultados analizados muestran que los acidulantes 
orgánicos como los ácidos cítrico, málico, tartárico, láctico y fumárico presentan 
ventajas diferenciales que permiten modular el sabor, la textura y la estabilidad 
en productos como caramelos, gomitas y galletas. En especial, el ácido cítrico 
destacó por su alta solubilidad, su perfil ácido refrescante y su marcada sinergia 
con otros compuestos. Por su parte, el ácido málico aportó una acidez 
persistente y capacidad para realzar perfiles frutales, mientras que el ácido 
láctico contribuyó al desarrollo de notas suaves y redondeadas en matrices 
complejas. Más allá de su efecto sensorial, se confirmó su utilidad como 
agentes conservadores, quelantes, reguladores de gelificación y moduladores 
de la cristalización del azúcar. 
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Las aplicaciones tecnológicas revisadas estuvieron respaldadas por estudios 
experimentales recientes que demostraron el impacto sensorial y funcional de 
combinaciones específicas de acidulantes, como en formulaciones optimizadas 
de gomitas sabor limón. Asimismo, se abordaron consideraciones regulatorias 
y de inocuidad, destacando que su empleo debe cumplir criterios toxicológicos 
y de calidad establecidos por normativas internacionales. 

Las tendencias actuales en la producción de acidulantes apuntan hacia el 
aprovechamiento de residuos agroindustriales mediante procesos de 
fermentación avanzada y bioconversión sostenible. Estos enfoques reducen la 
huella ambiental y permiten obtener ingredientes funcionales con propiedades 
ajustadas a las demandas sensoriales de nuevos desarrollos. En este contexto, 
futuras investigaciones pueden orientarse al diseño de matrices de confitería 
funcional mediante combinaciones sinérgicas de acidulantes con compuestos 
bioactivos, evaluando su impacto sensorial, tecnológico y la aceptación del 
consumidor. Además, el uso de herramientas de inteligencia artificial y 
metodologías de diseño experimental representa una oportunidad para 
optimizar perfiles de sabor y acidez adaptados a diferentes preferencias 
culturales y condiciones fisiológicas del consumidor. 
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