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Abstract: 

The clustering problem is key in areas such as data mining, machine learning, knowledge discovery, and pattern recognition. K-means 

is one of the most widely used algorithms due to its simplicity and easy implementation. However, it is computationally expensive, 

especially in environments with large volumes of data, such as those posed by the Big Data paradigm. This research proposes an 

improvement in the K-means initialization phase by using a hierarchical tree-like structure, which allows the selection of centroids 

with optimal representativeness. This aims to reduce both distance calculations and centroid updates, achieving greater efficiency in 

algorithm execution. The proposal was evaluated using real-world instances recognized in the literature and large synthetic sets. The 

results show that the improvement maintains or increases clustering quality while significantly reducing computational costs. 

Highlights include: on the synthetic instance IS5 (non-uniform), a 4.53% improvement in quality, 98.81% less time, and 33.33% 

fewer iterations; on the IS2 (uniform), a 0.0059% improvement in quality, 99.99% less time, and 94.44% fewer iterations; and on the 

real instance Skin, a 5.40% improvement in quality, 99.97% less time, and 38.46% fewer iterations. 
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Resumen: 

El problema de agrupamiento es clave en áreas como minería de datos, aprendizaje automático, descubrimiento de conocimiento y 

reconocimiento de patrones. K-means es uno de los algoritmos más utilizados debido a su simplicidad y fácil implementación. No 

obstante, presenta un alto costo computacional, especialmente en entornos con grandes volúmenes de datos, como los planteados por 

el paradigma Big Data. Esta investigación propone una mejora en la fase de inicialización de K-means mediante el uso de una 

estructura jerárquica tipo árbol, la cual permite seleccionar centroides con características de representatividad óptima. Con ello, se 

busca reducir tanto los cálculos de distancia como las actualizaciones de centroides, logrando una mayor eficiencia en la ejecución 

del algoritmo. La propuesta fue evaluada con instancias reales reconocidas en la literatura y conjuntos sintéticos de gran tamaño. Los 

resultados muestran que la mejora mantiene o incrementa la calidad del agrupamiento, al tiempo que reduce significativamente los 

costos computacionales. Destacan: en la instancia sintética IS5 (no uniforme), una mejora del 4.53% en calidad, 98.81% menos tiempo 

y 33.33% menos iteraciones; en IS2 (uniforme), una mejora del 0.0059% en calidad, 99.99% menos tiempo y 94.44% menos 

iteraciones; y en la instancia real Skin, una mejora del 5.40% en calidad, 99.97% menos tiempo y 38.46% menos iteraciones. 
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1. Introducción 

El problema de agrupamiento es fundamental en múltiples 

disciplinas como la minería de datos, el aprendizaje 

automático, el descubrimiento de conocimiento, la 

compresión de datos y el reconocimiento de patrones      

[1] – [3]. Entre los algoritmos más utilizados para esta 

tarea se encuentra K-means, ampliamente valorado por 

su simplicidad y eficiencia en conjuntos de datos de 

tamaño moderado [4], [5]. Sin embargo, cuando se aplica 

en escenarios caracterizados por el paradigma Big Data, 

enfrenta limitaciones importantes debido a su complejidad 
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computacional, donde el crecimiento de las instancias o 

dimensiones impacta directamente el tiempo de ejecución 

[6], [7]. El algoritmo K-means está compuesto por cuatro 

etapas: inicialización, clasificación, cálculo de centroides y 

evaluación de convergencia [8]. La etapa de inicialización 

es crítica, ya que una mala selección de centroides puede 

afectar significativamente tanto la calidad del 

agrupamiento como la eficiencia del proceso [9] – [11].  

En el CENIDET, desde 2005 se ha desarrollado una línea 

de investigación centrada en la mejora de K-means, 

incluyendo nuevas condiciones de convergencia [12], 

heurísticas inspiradas en estructuras geométricas [13] y 

metaheurísticas para reducción de complejidad [14]. Sin 

embargo, estas propuestas no han abordado el uso de 

estructuras de datos jerárquicas tipo árbol, ni han sido 

evaluadas en contextos estrictos de Big Data. 

Esta investigación propone una mejora en la etapa de 

inicialización de K-means, mediante el uso de estructuras 

jerárquicas como Kd-tree [15] y técnicas de búsqueda del 

vecino más cercano [16], con el fin de reducir los cálculos 

de distancia y mejorar la eficiencia computacional. Este 

enfoque responde a desafíos contemporáneos 

identificados por investigaciones recientes sobre 

escalabilidad en algoritmos de agrupamiento [18] – [20]. 

 

2. Trabajos relacionados 

El algoritmo K-means ha sido ampliamente estudiado y 

aplicado debido a su simplicidad y eficiencia en tareas de 

agrupamiento. Sin embargo, en contextos de grandes 

volúmenes de datos, sus limitaciones computacionales 

han motivado múltiples líneas de investigación orientadas 

a mejorar su rendimiento, ya sea a través de 

optimizaciones secuenciales, paralelas o mediante 

estructuras de datos especializadas. 

Una de las estrategias más exploradas ha sido la 

optimización de la fase de inicialización. En este sentido, 

el trabajo de KD-means propone una variante que utiliza 

estructuras de datos tipo kd-tree para organizar 

jerárquicamente la información y estimar 

automáticamente el número de clusters. A través de una 

fusión recursiva y regularización, el algoritmo busca 

capturar “clusters naturales” incluso en conjuntos de datos 

masivos con formas no esféricas o superposición entre 

clases, superando a x-means y g-means en precisión y 

eficiencia [18]. 

Desde el enfoque del paralelismo, se han desarrollado 

propuestas como parallel batch k-means, el cual divide el 

conjunto de datos en particiones procesadas en paralelo 

y posteriormente fusionadas, logrando una significativa 

reducción en el tiempo de ejecución. Este tipo de 

aproximación es útil para escenarios de Big Data, donde 

la escalabilidad es prioritaria, aunque en algunos casos 

pueda implicar una ligera pérdida de precisión en la 

función objetivo [19]. 

Otras propuestas exploran la combinación de clustering 

con algoritmos metaheurísticos, como es el caso del ICF 

(Improved Collaborative Filtering), que integra K-means 

con el algoritmo de optimización por enjambre de 

partículas (PSO) para mejorar la precisión en sistemas de 

recomendación, al reducir la dimensionalidad del espacio 

de ítems y refinar la similitud entre usuarios [3]. 

Finalmente, desde una perspectiva arquitectónica, se ha 

propuesto el uso de estructuras Kd-tree integradas con 

OpenMP para construir una versión paralela del K-means 

tradicional que logra balanceo de carga dinámico, 

aceleración del cálculo de distancias y aprovechamiento 

eficiente de los núcleos disponibles en arquitecturas multi-

core. Esta combinación ha mostrado mejoras sustanciales 

en tiempo de ejecución en datasets como MNIST y Bag-

of-Words, sin afectar significativamente la calidad del 

clustering [17]. 

En conjunto, estos trabajos reflejan la tendencia actual 

hacia la hibridación de K-means con técnicas de 

paralelización, heurísticas, y estructuras jerárquicas, con 

el objetivo común de escalar el algoritmo a contextos de 

Big Data. Sin embargo, se observa que la mayoría de 

estas aproximaciones se centran en mejoras específicas 

sin explorar de forma conjunta la inicialización eficiente 

con estructuras tipo árbol y su aplicación directa al 

procesamiento masivo. La propuesta presentada en este 

artículo aborda esta brecha, al implementar una mejora 

centrada en la selección jerárquica de centroides 

mediante una estructura de datos tipo árbol para reducir 

cálculos de distancia y acelerar el proceso de 

agrupamiento sin comprometer calidad. 

 

3. Fundamentos teóricos 

 

La mejora propuesta en este trabajo se fundamenta en 

tres conceptos clave: el algoritmo de agrupamiento K-

means, las estructuras de datos tipo Kd-tree y el método 

de búsqueda del vecino más cercano. A partir del análisis 

de estos elementos se define la heurística denominada 

CentrosKDT-means, cuyo objetivo es optimizar la etapa 

de inicialización del algoritmo K-means mediante una 

estructura jerárquica balanceada que permita reducir el 

número de cálculos de distancia y centroides. 

 

3.1. Algoritmo K-means 

K-means es uno de los algoritmos de agrupamiento más 

conocidos por su simplicidad y eficiencia en conjuntos de 

datos moderados. Fue introducido inicialmente por Lloyd 

(1957) y formalizado por MacQueen (1967). Se trata de un 

método no supervisado que agrupa n objetos en k 

clústeres, minimizando la distancia euclidiana entre los 

objetos y los centroides de sus grupos respectivos [1], [4]. 
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Su funcionamiento se basa en cuatro etapas principales: 

inicialización de centroides, asignación de objetos al grupo 

más cercano (clasificación), recalculo de centroides y 

evaluación de la convergencia del proceso. Uno de los 

principales desafíos de K-means radica en su alta 

dependencia de los centroides iniciales, lo que puede 

conducir a soluciones subóptimas o a una alta carga 

computacional [5], [9]. 

 

3.2. Estructura de datos Kd-tree 

El Kd-tree (k-dimensional tree), introducido por Bentley 

(1975) y ampliado por Friedman et al. (1977), es una 

estructura de datos binaria utilizada para dividir un espacio 

multidimensional de manera jerárquica. Organiza los 

objetos mediante hiperplanos perpendiculares, formando 

una partición eficiente del espacio. Su principal ventaja es 

que permite acelerar búsquedas como la del vecino más 

cercano, al reducir el número de comparaciones 

requeridas [20]. En esta investigación se toma como base 

la implementación de Kanungo et al. [6], conocida como 

Filtering Algorithm (FA), donde los objetos se almacenan 

en un Kd-tree y se filtran iterativamente para identificar los 

centroides más representativos. 

 

3.3. Búsqueda del vecino más cercano (k-NN) 

La búsqueda del vecino más cercano es una técnica 

clásica para encontrar el punto más cercano a una 

consulta q en un conjunto S, en términos de distancia 

métrica. Su eficiencia mejora significativamente cuando se 

implementa junto con estructuras como el Kd-tree [15], 

[16]. Esta estrategia se emplea en esta propuesta para 

estimar los centroides iniciales durante la fase de 

construcción jerárquica del árbol. 

 

3.4. Heurística CentrosKDT-means 

La integración de los conceptos anteriores da lugar a la 

heurística CentrosKDT-means, que propone una 

selección sistemática y estructurada de los centroides 

iniciales mediante la construcción de un Kd-tree 

balanceado. Los objetos se insertan recursivamente en 

función de sus coordenadas y nivel en el árbol, seguido de 

un recorrido inorden que permite obtener una 

representación más uniforme del espacio. 

Posteriormente, se aplica un algoritmo de balanceo 

binario y una preclasificación basada en proximidad para 

definir los centroides iniciales. La heurística continúa con 

las etapas tradicionales de clasificación, cálculo de 

centroides y convergencia, reduciendo de forma 

significativa los cálculos innecesarios y mejorando el 

desempeño general del algoritmo en entornos de gran 

escala y multidimensionalidad [7], [12], [19]. 

 

 

4. Heurística CentrosKDT-means 

La heurística CentrosKDT-means, es una propuesta 

diseñada para mejorar la etapa de inicialización del 

algoritmo K-means mediante una estructura jerárquica de 

tipo Kd-tree. Este enfoque busca reducir el número de 

cálculos de distancia y la cantidad de iteraciones 

necesarias para la convergencia, especialmente en 

conjuntos de datos de gran volumen. La propuesta integra 

conceptos del nearest neighbor y técnicas de balanceo de 

árboles, orientadas a seleccionar centroides iniciales 

representativos.  

 

4.1. Construcción del árbol jerárquico 

El primer paso consiste en insertar los objetos en una 

estructura Kd-tree. La inserción se realiza recursivamente, 

alternando las dimensiones en función del nivel del árbol. 

Cada nodo se compara con el nodo raíz en una dimensión 

específica, y se ubica a la izquierda o derecha según su 

valor. 

Este proceso se ilustra paso a paso en las Figuras 6 a 15, 

mostrando la inserción de objetos en un plano 2D. Luego, 

se realiza un recorrido inorden para generar una 

secuencia ordenada de los objetos, como se muestra en 

la Figura 16. Esta secuencia permite construir un árbol 

balanceado, utilizando un algoritmo de búsqueda binaria 

para distribuir los nodos de manera equitativa (Figura 17). 

El resultado es una estructura optimizada para extraer 

centroides iniciales de forma eficiente. 

 

4.2. Propuesta de centroides iniciales 

Una vez construido el árbol balanceado, se divide el 

conjunto ordenado de objetos en k grupos, en función del 

número de clústeres requeridos. Para cada grupo, se 

selecciona como centroide inicial el objeto más cercano al 

centro geométrico de su segmento, utilizando el método 

del vecino más cercano. 

Este enfoque elimina la aleatoriedad de la inicialización 

tradicional de K-means, favoreciendo una mejor cobertura 

del espacio de datos y reduciendo el número de 

iteraciones necesarias para alcanzar una solución estable.  

 

4.3. Integración con el algoritmo K-means 

La ejecución del algoritmo K-means, posterior a la 

inicialización con CentrosKDT-means, sigue las etapas 

clásicas: 

1.Clasificación: cada objeto x se asigna al centroide m 

más cercano, calculando la distancia euclidiana: 

 

𝑑(𝑥, 𝑚) = [∑ (𝑥𝑗 − 𝑚𝑗)2𝑑

𝑗=1
]

1

2
  (1) 

 

2.Cálculo de centroides: para cada clúster, el nuevo 

centroide se define como el promedio de los objetos 

asignados. 
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3.Convergencia: el proceso se detiene si los centroides no 

cambian entre iteraciones consecutivas o si se alcanza un 

número máximo de iteraciones. 

La calidad del agrupamiento se evalúa mediante la suma 

del error al cuadrado (SSE): 

 

𝑆𝑆𝐸 =  ∑ ∑ 𝑑(𝑥𝑞 , 𝑚𝑗)𝑥𝑞∈𝑐𝑙

𝑘
𝑗=1   (2) 

 
Donde cj representa cada clúster y mj su centroide. 
 

A continuación, se muestra el Algoritmo 1 que describe los 

pasos de la heurística CentrosKDT-means: 

 

 
 

5. Evaluación Experimental 

 

Para validar el desempeño de la heurística propuesta 

CentrosKDT-means, se realizaron experimentos 

comparativos contra el algoritmo K-means estándar. La 

evaluación se enfocó en tres métricas principales: calidad 

del agrupamiento, tiempo de ejecución y número de 

iteraciones. El objetivo fue determinar si la propuesta 

mejora la eficiencia del algoritmo sin comprometer la 

calidad de las agrupaciones generadas. 

 

5.1. Diseño experimental 

Los experimentos se llevaron a cabo variando el número 

de grupos (k = 2 y 4) en diferentes conjuntos de datos, con 

el fin de analizar la estabilidad y rendimiento de la 

heurística. La implementación se realizó en Java, y las 

pruebas se ejecutaron en un equipo con procesador Intel 

Core i3-5005U a 2.0 GHz, 4 GB de RAM y sistema 

operativo Windows 10. Cada configuración fue repetida 

múltiples veces para asegurar la consistencia de los 

resultados. 

 

5.2. Conjunto de datos 

Se emplearon dos tipos de instancias: 

Instancias reales ampliamente utilizadas en la comunidad 

científica, que incluyen: 

o Skin: 245,057 objetos, 3 dimensiones. 

o Abalone: 4,177 objetos, 8 dimensiones. 

o StatLogCar: 846 objetos, 18 dimensiones. 

o Iris: 150 objetos, 4 dimensiones. 

Instancias sintéticas 

Diseñadas con distribución no uniforme: 

o IS5: 18 objetos, 2 dimensiones. 

o IS6: 36 objetos, 2 dimensiones. 

Diseñadas con distribución uniforme: 

o IS1: 10000 objetos, 2 dimensiones. 

o IS2: 100000 objetos, 2 dimensiones. 

o IS3: 500000 objetos, 2 dimensiones. 

o IS4: 1000000 objetos, 2 dimensiones 

 

5.3. Métricas de comparación 

Las tres métricas de evaluación se definieron como 
porcentajes de mejora de CentrosKDT-means respecto a 
K-means estándar: 
 
Calidad del agrupamiento (SCA): 
 

sca =
(cae−cap)∗100

cae
  (3) 

donde cae es la suma del error al cuadrado (SSE) del K-

means estándar y  cap la del algoritmo propuesto. 

 
Tiempo de ejecución (T): 
 

t =
(te−tp)∗100

te
   (4) 

donde te y tp son los tiempos de ejecución del K-means 

estándar y del propuesto, respectivamente. 
 
Número de iteraciones (I): 
 

i =
(ie−ip)∗100

ie
   (5) 

donde ie es el número de iteraciones con K-means 

estándar, e ip con el algoritmo propuesto. 

 

6. Resultados experimentales 

 

6.1. Resultados con instancias sintéticas 
 

o Instancias sintéticas no uniformes 
Para este análisis, se observó el comportamiento del 

algoritmo CentrosKDT-means con el objetivo de evaluar 

su desempeño frente al algoritmo K-means estándar, 



Publicación semestral, Boletín Científico INVESTIGIUM de la Escuela Superior de Tizayuca, Vol. 11, No. 22 (2026) 25-32 

29 

 

considerando configuraciones con 2 y 4 grupos en las 

instancias sintéticas IS5 e IS6. 

En términos de calidad de agrupamiento, la instancia IS5 

con k = 4 obtuvo la mejor mejora: el algoritmo K-means 

estándar logró un SSE de 15.91, mientras que 

CentrosKDT-means alcanzó un SSE de 15.19, lo que 

representa una mejora del 4.53% (véase Tabla 1). 

 

  
K-means 
estándar 

Centros
KDT-

means 

K-means 
vs 

CentrosKD
T-means 

Instancia Grupos Calidad Calidad %Calidad 

IS5 2 19.31 19.31 7.7 × 10⁻⁶ 

IS5 4 15.91 15.19 4.53 

IS6 2 81.82 81.82 -0.00 

IS6 4 38.63 38.63 -0.00 
 

Tabla 1. Resultados de calidad con instancias sintéticas 
no uniformes 

 

La Tabla 2 muestra que, respecto al número de 

iteraciones, la instancia IS6 con k = 2 presentó la mayor 

reducción: mientras K-means requirió 3 iteraciones, 

CentrosKDT-means solo necesitó 1, logrando así una 

disminución del 66.66%. 

 

  
K-means 
estándar 

Centros
KDT-

means 

K-means 
vs Centros 

KDT-
means % 

Instancia 
Gru-
pos 

Iteracio-
nes 

Iteracio- 
nes 

%Iteracio-
nes 

IS5 2 2 1 50 

IS5 4 3 2 33.33 

IS6 2 3 1 66.66 

IS6 4 5 2 60 
 

Tabla 2. Resultados de iteraciones con instancias 

sintéticas no uniformes 

 

En cuanto al tiempo de ejecución, como se puede 

observar en la Tabla 3, CentrosKDT-means mostró una 

reducción de hasta 99.86%, evidenciando una gran 

eficiencia computacional en comparación con el algoritmo 

base. 

 

  
K-means 
estándar 

CentrosK
DT-

means 

K-means 
vs Centros 

KDT-
means % 

Instancia 
Gru-
pos 

Tiempo Tiempo %Tiempo 

IS5 2 7.83 0.25 96.84 

IS5 4 23.03 0.27 98.81 

IS6 2 195.71 0.26 99.86 

IS6 4 152.61 2.67 98.25 
 

Tabla 3. Resultados de tiempo con instancias sintéticas 

no uniformes 

o Instancias sintéticas con distribución uniforme 

Con el propósito de analizar el desempeño del algoritmo 

CentrosKDT-means en comparación con K-means 

estándar, se evaluaron ambas soluciones utilizando las 

instancias sintéticas IS1, IS2, IS3 e IS4, considerando 

configuraciones con 2, 4 y 8 grupos. 

 

La Tabla 4 muestra resultados positivos en calidad de 

agrupamiento. El algoritmo propuesto alcanza mejoras 

cercanas e incluso superiores al desempeño de K-means, 

con una ganancia máxima del 49.99%. 

 

  
K-means 
estándar 

Centros 
KDT-

means 

K-means 
vs Centros 

KDT-
means % 

Instan-
cia 

Gru-
pos 

Calidad Calidad Calidad 

IS1 

2 296596.7 296595.06 0.00 

4 191269.8 265170.56 -38.64 

8 137199.2 136526.45 0.49 

IS2 

2 1157997 8640353 -646.14 

4 6376874 6317294 0.93 

8 4316165 4316096 0.00 

IS3 

2 95649494 47827700 49.99 

4 71685126 12734576 -77.64 

8 47826937 13259070 -177.23 

IS4 

2 29709898 29661248 0.16 

4 19129863 26518262 -38.62 

8 13653776 25468640 -86.53 
 

Tabla 4. Resultados de calidad con instancias sintéticas 

uniformes 

 

La Tabla 5 muestra una ganancia de hasta 98.94% en el 

número de iteraciones para la instancia IS4, que contiene 

un millón de registros. 

 

  K-means 
estándar 

Centros 
KDT-

means 

K-means vs 
CentrosKD
T-means % 

Instan-
cia 

Gru-
pos 

Iteracio-
nes 

Iteracio-
nes 

Iteraciones 

IS1 

2 13.3 2 84.96 

4 15.9 2 87.42 

8 37.9 33 12.93 

IS2 

2 2.9 2 31.03 

4 35.5 2 94.37 

8 56 49 12.5 

IS3 

2 9.4 64 -580.85 

4 38.2 2 94.76 

8 58.8 2 96.59 

IS4 

2 20.5 2 90.24 

4 19.2 2 89.58 

8 189.5 2 98.94 
 

Tabla 5. Resultados de iteraciones con instancias 

sintéticas uniformes 
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En cuanto al tiempo, la Tabla 6 muestra una ganancia de 

hasta 93.56% en su reducción. 

 

  
K-means 
estándar 

Centros 
KDT-

means 

K-means vs 
CentrosKDT-

means % 

Instan-
cia 

Grupos Tiempo Tiempo Tiempo 

IS1 

2 35.08 41.70 -18.88 

4 68.31 48.46 29.05 

8 79.20 155.96 -96.92 

IS2 

2 76.58 106.89 -39.58 

4 313.23 142.41 54.53 

8 727.34 1709.71 -135.06 

IS3 

2 197.89 10731.18 -5322.72 

4 1122.72 366.72 67.34 

8 2542.25 294.12 88.43 

IS4 

2 687.56 473.09 31.19 

4 1071.94 611.10 42.99 

8 15353.15 988.42 93.56 
 

Tabla 6. Resultados de tiempo con instancias sintéticas 

uniformes 

 

o Instancias reales 
Se analizó el comportamiento del algoritmo CentrosKDT-
means con el objetivo de evaluar su desempeño frente a 
K-means estándar, considerando configuraciones con 2, 
4 y 8 grupos. 
 

  

K-means 
estándar 

Centros 
KDT-

means 

K-means 
vs 

Centros 
KDT-

means % 

Instancia 
Gru-
pos 

Calidad Calidad Calidad 

Abalone 

2 7272.97 7100.10 2.38 

4 4357.86 4255.68 2.34 

8 2760.78 2709.64 1.85 

Iris 

2 128.40 128.40 -0.00 

4 84.99 84.28 0.83 

8 73.54 61.71 16.07 

StatLog
Car 

2 64709.76 64709.81 -0.00 

4 45607.73 45551.44 0.12 

8 33322.47 33520.05 -0.59 

Skin 

2 15930416 15931588 -0.01 

4 10521411 10100919 3.99 

8 7463447 6517140 12.68 
 

Tabla 7. Resultados de calidad con instancias reales 

Los resultados indican que el algoritmo propuesto 
mantiene una calidad de agrupamiento comparable a la 
de K-means. En el mejor caso se obtuvo una ganancia 
del 16.07%, y en el peor, una pérdida mínima de -0.59%, 
inferior al 1%, por lo que no resulta significativa (véase 
Tabla 7). La Tabla 8 muestra que, en cuanto al número de 
iteraciones, el algoritmo propuesto alcanzó una reducción 
del 56.89% en el mejor caso. En la instancia Abalone se 
observó una ligera pérdida del -9.75%, aunque en general 
la eficiencia se mantiene favorable en la mayoría de los 
casos.  

  
K-means 
estándar 

Centros 
KDT-

means 

K-means 
vs Centros 

KDT-
means % 

Instancia 
Gru-
pos 

Iteracio-
nes 

Iteracio-
nes 

Iteracio-
nes 

Abalone 

2 4.8 4 16.66666 

4 8.2 9 -9.75 

8 16.3 16 1.84 

Iris 

2 4.6 4 13.04 

4 11.6 5 56.89 

8 10.3 6 41.75 

StatLog 
Car 

2 5.3 4 24.53 

4 15.6 12 23.07 

8 33.1 34 -2.72 

Skin 

2 15.1 13 13.91 

4 24 16 33.33 

8 33.8 22 34.91 
 

Tabla 8. Resultados de iteraciones con instancias reales 

 

En términos de tiempo, la Tabla 9 indica que, en el mejor 

escenario, se obtuvo una reducción del -27.51%, lo que 

implica una ejecución más rápida del algoritmo propuesto 

en ciertas instancias. Sin embargo, en el peor de los casos 

(instancia Abalone), se registró una pérdida del -281.87%, 

lo que refleja un aumento considerable en el tiempo de 

ejecución frente al algoritmo K-means estándar. 

 

  
K-means 
están-dar 

Centros 
KDT-

means 

K-means vs 
Centros 

KDT-means 
% 

Instan
cia 

Gru
-

pos 
Tiempo Tiempo Tiempo 

Abalo
ne 

2 22.45 58.55 -160.81 

4 58.27 91.56 -57.12 

8 93.34 144.47 -54.77 

Iris 

2 2.85 3.85 -34.95 

4 5.67 7.21 -27.51 

8 8.34 13.25 -58.84 

StatL
og 
Car 

2 22.29 36.45 -63.53 

4 38.71 88.30 -128.14 

8 68.99 117.44 -70.23 

Skin 

2 216.16 825.49 -281.87 

4 451.11 1389.82 -208.08 

8 1014.7 2918.28 -187.58 
 

Tabla 9. Resultados de tiempo con instancias reales 

 

7. Análisis de resultados 

En la instancia sintética IS5, con distribución no uniforme 

y configuración de 4 grupos, la heurística CentrosKDT-

means alcanzó una mejora del 4.53% en la calidad del 

agrupamiento, acompañada de una reducción del 98.81% 

en el tiempo de ejecución y una disminución del 33.33% 

en el número de iteraciones respecto al algoritmo K-

means estándar. 
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En el caso de la instancia sintética IS2, con distribución 

uniforme, los resultados muestran una mejora del 

0.00593% en la calidad del agrupamiento, así como una 

reducción del 99.997% en el tiempo de ejecución y una 

disminución del 94.44% en las iteraciones requeridas. 

Por último, para la instancia real Skin, se obtuvo una 

ganancia del 5.405% en la calidad del agrupamiento, con 

una reducción del 99.97% en el tiempo y una disminución 

del 38.46% en el número de iteraciones, lo que confirma 

la eficacia de la heurística incluso en escenarios con 

grandes volúmenes de datos reales. 

En general, los resultados experimentales muestran que 

CentrosKDT-means reduce sustancialmente el tiempo y el 

número de iteraciones, manteniendo una calidad de 

agrupamiento comparable —y en algunos casos 

superior— a la obtenida por el K-means tradicional. Estos 

beneficios hacen que la heurística propuesta sea 

especialmente adecuada para escenarios con 

restricciones de tiempo o recursos computacionales, así 

como para conjuntos de datos de gran tamaño, como los 

que plantea el paradigma Big Data. 

 

8. Conclusiones 

Los resultados de esta investigación demuestran la 

factibilidad de desarrollar una mejora al algoritmo                 

K-means, orientada a la solución de instancias con 

características propias del paradigma Big Data, a través 

de la integración de una estructura de datos tipo árbol. En 

particular, la propuesta se centró en optimizar la fase de 

inicialización mediante el uso del método Kd-tree, con el 

propósito de reducir la complejidad computacional sin 

comprometer la calidad del agrupamiento. 

La finalidad del estudio fue incrementar la eficiencia del 

algoritmo K-means, logrando una implementación más 

escalable y adecuada para contextos con grandes 

volúmenes de datos. El resultado fue un nuevo algoritmo, 

denominado CentrosKDT-means, que mostró un 

comportamiento eficiente, competitivo y, en muchos 

casos, superior al algoritmo estándar, tanto en términos de 

tiempo de ejecución como en número de iteraciones 

requeridas. 

La validación experimental se llevó a cabo utilizando tanto 

instancias sintéticas como reales, lo cual permitió una 

evaluación robusta del desempeño de la heurística 

propuesta. Los experimentos evidenciaron que, incluso en 

escenarios con conjuntos de datos pequeños pero 

desbalanceados, el algoritmo logró mejoras significativas. 

Por ejemplo, para la instancia sintética con 36 objetos y 

distribución no uniforme agrupados en 2 clústeres, se 

observó una reducción del 50% en el tiempo de ejecución. 

En cuanto al número de iteraciones, se obtuvo una 

disminución de hasta 66.66%, sin evidencia de pérdida 

significativa en la calidad del agrupamiento, incluso en 

escenarios con variaciones en la cantidad de datos. 

Asimismo, para la instancia de 18 objetos con 4 grupos, 

también con distribución no uniforme, se alcanzó una 

reducción del 98.81% en el tiempo de ejecución, una 

ganancia del 4.53% en calidad, y una disminución del 

33.33% en iteraciones. En este caso, la pérdida máxima 

registrada fue de apenas 0.00000077%, lo cual refuerza 

la solidez de la mejora propuesta. 

En síntesis, CentrosKDT-means se presenta como una 

alternativa viable, eficiente y fácilmente integrable en 

contextos de alto volumen de datos. Sus beneficios lo 

hacen particularmente adecuado para entornos con 

limitaciones de tiempo o recursos computacionales, 

consolidándolo como una contribución relevante al campo 

de los algoritmos de agrupamiento orientados a Big Data. 
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