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Algoritmo de Buchberger en el cálculo de bases de Gröbner 

Buchberger's algorithm in Gröbner basis calculation  
Dariela L. Benavides Mendoza a, Maryleth del Rosario Rugama Hernández b, Cliffor J. Herrera 

Castrillo 
Abstract: 

This paper addresses Buchberger's algorithm in the calculation of Gröbner bases, highlighting mainly its applications in the 

computational field. This algorithm constitutes a systematic method for generating a Gröbner basis of an ideal in the polynomial ring 

and is widely used in computational algebra systems to solve problems of membership in ideals and polynomial systems. Although 

Gröbner bases have applications in areas such as algebraic geometry, code theory, and cryptography, this paper emphasizes the 

computational perspective. It also discusses aspects related to the complexity of the algorithm, such as the order of the problem, 

execution time, and memory resources, factors that condition its viability in practice. 
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Resumen: 

El presente ensayo aborda el algoritmo de Buchberger en el cálculo de bases de Gröbner, destacando principalmente sus aplicaciones 

en el ámbito computacional. Este algoritmo constituye un método sistemático para generar una base de Gröbner de un ideal en el 

anillo de polinomios, y es ampliamente utilizado en sistemas de álgebra computacional para resolver problemas de pertenencia a 

ideales y sistemas polinomiales. Si bien las bases de Gröbner tienen aplicaciones en áreas como la geometría algebraica, la teoría de 

códigos o la criptografía, en este trabajo se enfatiza la perspectiva computacional. Asimismo, se discuten aspectos relacionados con 

la complejidad del algoritmo, como el orden del problema, el tiempo de ejecución y los recursos de memoria, factores que condicionan 

su viabilidad en la práctica. 
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Introducción 

El presente ensayo elaborado sobre el algoritmo de 

Buchberger en el cálculo de bases de Gröbner contiene la 

siguiente información. El algoritmo nos permite hacer 

cálculos sobre el anillo de polinomios, es una manera 

sistemática de producir un conjunto de generadores (una 

base de Gröbner) para un ideal (1). 

El mismo B. Buchberger dio un criterio para eliminar 

términos redundantes dentro del algoritmo y así obtener 

un proceso mejorado (2). La base de esta optimización es 

saber qué se debe agregar al conjunto de generadores del 

ideal en cuestión para obtener de ahí una base de 

Gröbner. 

Las bases de Gröbner, nos permiten resolver problemas 

sobre ideales polinomiales, de una manera algorítmica o 

computacional. Las bases de Gröbner se usan en muchos 

sistemas algebraicos computacionales poderosos para 

estudiar ideas específicas ideas polinomiales que 

aterrizan en diversas aplicaciones. 

 

Notación y convenciones 

En este apartado se definen los símbolos y términos 

usados de manera recurrente en el ensayo: 

• 𝕂: campo base (ej. ℚ, ℝ, ℂ). 

• 𝕂[x₁, …, xₙ]: anillo de polinomios en n variables 

con coeficientes en 𝕂. 
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• I ⊂ 𝕂[x₁, …, xₙ]: ideal generado por un conjunto 

de polinomios. 

• G = {g₁, …, gₜ}: conjunto de polinomios, posible 

base de Gröbner de I. 

• LT(f): término líder (Leading Term) de un 

polinomio f. 

• LM(f): monomio líder (Leading Monomial) de f. 

• LC(f): coeficiente líder (Leading Coefficient) de f. 

• S(f, g): S-polinomio de f y g. 

• ≤: orden monomial elegido (ej. lexicográfico, 

graduado lexicográfico, lexicográfico reverso). 

• ⟨f₁, …, fₛ⟩: ideal generado por los polinomios f₁, 

…, fₛ. 

• ∑ x𝑖 : sumatoria  

• ∈: pertenece a  

• ≻ Orden monomial  

Nota: Todas las demostraciones y cálculos se desarrollan 

con respecto a un orden monomial admisible previamente 

fijado, salvo indicación contraria. 

 

Desarrollo 

Algoritmo de Buchberger en el cálculo de bases de 

Gröbner 

“Las matemáticas puras son, en su forma, la poesía de las 

ideas lógicas” 

Las bases de Gröbner fueron introducidas por Bruno 

Buchberger en su tesis doctoral en 1965, realizada bajo la 

dirección de Wolfgang Gröbner. Los principios básicos 

subyacentes a la noción de bases de Gröbner se 

remontan al fin del siglo XIX, pero la contribución principal 

de Buchberger ha sido la de idear un algoritmo finito que 

transforma un sistema de generadores dados de un ideal 

en una base de Gröbner del ideal. Este algoritmo está 

actualmente implementado en muchos sistemas de 

álgebra computacional (3), (4). 

 El algoritmo de Buchberger para el cálculo de Bases de 

Gröbner se ha convertido en una poderosa herramienta 

para la solución de aquellos problemas que se pueden 

expresar en términos de la teoría de ideales de polinomios 

con coeficientes en un cuerpo; en esta teoría los ideales 

son finitamente generados como consecuencia del 

Teorema de la Base de Hilbert. 

El algoritmo de Buchberger permite hacer cálculos sobre 

el anillo de polinomios. Para poder trabajar con polinomios 

se necesita poder saber cuándo un polinomio dado 

pertenece o no a un ideal fijo. En el caso de k[x] el 

problema es resuelto fácilmente por el algoritmo de la 

división que se tiene gracias a que k[x] es un anillo 

Euclidiano. Lo que hace que en el caso de una variable 

las cosas funcionen, es que se tiene un invariante (el 

grado) y un proceso que reduce el invariante (5).  

En este algoritmo de la división para una variable, lo que 

se hace es dividir el polinomio entre el término inicial, por 

lo que, para el caso de varias variables, lo que se necesita 

es una noción de término inicial, por ejemplo, ¿cuál es el 

término inicial de x 2y +y 2x? Resulta que esto significa 

que se debe ordenar los monomios de k [x1, . . ., xn], esto 

es casi inmediato. Desafortunadamente se encuentra que, 

aunque se haya encontrado un algoritmo de la división 

aún no se puede resolver el problema de pertenencia 

planteado previamente. La pieza faltante es un análogo al 

algoritmo Euclidiano para el caso de varias variables que 

nos produzca un buen conjunto de generadores (uno en 

el caso de una variable) (6). Pero hay una simple y bella 

solución para el obstáculo; el algoritmo de Buchberger es 

una manera sistemática de producir un conjunto de 

generadores (una base de Gröbner) para un ideal de tal 

manera que el algoritmo de la división funcione. 

El algoritmo de Buchberger [Buc85] para el cálculo de una 

base de Gröbner de un ideal dado por un sistema de 

generadores. La herramienta fundamental son los S-

polinomios que esencialmente son la combinación más 

simple de dos polinomios que cancela sus términos 

líderes (7). 

(S-polinomio). Sean f, g ∈ R dos polinomios no nulos y ≻ 

un orden monomial. El S-polinomio de f y g es: 

𝑆(𝑓, 𝑔) =
𝓍𝛾

𝑙𝑡≻(𝑓)
 ∙  𝑓 −

𝓍𝛾

𝑙𝑡≻(𝑔)
 ∙  𝑔,  

Donde 𝓍𝛾 = mcm{lm≻(f),lm≻(g).  

Notar que el S-polinomio depende del orden monomial ≻

 elegido, aunque para aliviar la notación no utilizaremos 

S(f, g) ≻ más que cuando sea estrictamente necesario. El 

siguiente resultado muestra que cualquier cancelación de 

términos líderes entre polinomios con el mismo multigrado 

es producto de una cancelación de S-polinomios (8). 

Teorema de Buchberger 

Demostración. Asumiendo que el algoritmo termina, 𝐺 

siempre es generador de 𝐼, pues siempre contiene a 𝑓1 , 

…, 𝑓𝑠 , y, a partir de ahí, en el algoritmo solo se le añaden 

elementos de 𝐼, i.e., restos de dividir sizigias de elementos 

de 𝐼 por elementos de 𝐼. 

Por otra parte, si el algoritmo termina, todos los restos de 

las sizigias por la división por 𝐺 son 0, luego 𝐺 ∈ Gröbner 

(𝐼). 

Por último, veamos que el algoritmo termina, ya que, si 𝐺′ 

y 𝐺″ se corresponden a estados sucesivos del conjunto 𝐺, 

tenemos 𝐺′ ⊆ 𝐺″ , y por tanto ⟨LT (𝐺′ )⟩ ⊆ ⟨LT (𝐺″ )⟩. Es 

decir, los estados sucesivos de 𝐺 inducen una cadena 

ascendente de ideales ⟨LT (𝐺)⟩ de 𝕂 [x], que se estabiliza 

como consecuencia del Teorema de la Base de Hilbert, 

luego en alguna repetición del bucle se tiene que ⟨LT (𝐺′ 

)⟩ = ⟨LT (𝐺″ )⟩. 

Queremos ver entonces que 𝐺′ = 𝐺″, i.e., 𝑆 = 𝐺″ ∖ 𝐺′ = ∅. 

Suponemos por reducción al absurdo que 𝑟 ∈ 𝑆, i.e., 𝑟 es 

el resto de dividir alguna sizigia por 𝐺′ . Como 𝑟 ∈ 𝐺″ , o 
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bien 𝑟 = 0 o LT (𝑟) ∈ ⟨LT (𝐺″ )⟩. Sin embargo, como ⟨LT (𝐺″ 

)⟩ = ⟨LT (𝐺′ )⟩, y 𝑟 es resto de dividir por 𝐺′ , necesariamente 

𝑟 = 0. No obstante, es imposible que 𝑟 = 0 ∈ 𝑆, por 

construcción del algoritmo. 

 

Como consecuencia, los siguientes problemas son 

decidibles para ideales de 𝕂 [x], usando bases de 

Gröbner: 

 1. Pertenencia a un ideal  

2. Contención en un ideal 

 3. Igualdad entre ideales (7) 

En general, las bases de Gröbner obtenidas por el 

algoritmo de Buchberger no son únicas para un ideal, ya 

que dependen de los generadores usados. Sin embargo, 

existe una forma de reducir bases de Gröbner con 

clausura única. 

 

Sea G = {g1, . . . , gt} ⊂ K[x1, . . . , xn] con gi no nulo para i 

∈ {1, . . . , t}. Entonces, G es una base de Gröbner del ideal 

I = 〈𝑔1, . . . , 𝑔𝑡〉   si y solo   si S(gi , gj )G = 0, ∀1 ≤ i < j ≤ t. 

 

Demostración  

Supongamos que G = {g1, . . . , gt} es una base de Gröbner 

del ideal I =〈𝑔1, . . . , 𝑔𝑡〉. Se tiene 

 

(9), (10) 

 

Por ser G una base de Gröbner y por el teorema sea I ⊂ 

K[x1, . . . , xn] un ideal distinto de cero y sea G = {g1, . . . , 

gt} ⊂ I. Son equivalentes: 

 

Bases de Gröbner 

 

 Denotamos por K[X1, . . . , Xn] el anillo de polinomios en 

las indeterminadas X1, . . . , Xn con coeficientes en K, y por 

≤   un orden admisible sobre Nn.  

Si I es un ideal de K[X1, . . ., Xn], una base de Gröbner de 

I es un conjunto finito de elementos no nulos, G = {G1, . . 

., Gt} ⊆ I, verificando que 

 Exp(I) = {exp(G1), . . ., exp(Gt)} + Nn = Exp(G) + Nn. 

respecto de un orden monomial admisible. 

i. Cada ideal no nulo de K[X1, . . ., Xn] tiene una 

base de Gröbner. 

ii. Toda base de Gröbner de un ideal no nulo es un 

sistema de generadores.  

iii. Teorema de la base de Hilbert. Todo ideal de 

K[X1, . . . , Xn] es finitamente generado. 

 

Demostración. Supongamos que exp(F1) = β(i), entonces 

α(i) + β(i) = δ. Hacemos el siguiente desarrollo: 

∑ 𝐶𝑖

𝑖

⋅ 𝑥𝑎(ⅈ)𝐹𝑖 = ∑ 𝑐𝑖𝑙𝑐

𝑖

(𝐹𝑖)
𝑥𝑎(ⅈ)𝐹𝑖

𝑙𝑐(𝐹𝑖)
= ∑ 𝑐𝑖𝑙𝑐(𝐹𝑖)𝐻𝑖

𝑖

 

Donde 
𝑥𝑎(ⅈ)𝐹ⅈ

𝑙𝑐(𝐹ⅈ)
 =𝐻𝑖. Podemos completar este desarrollo de 

la siguiente forma (1): 

 

∑ 𝐶𝑖

𝑖

⋅ 𝑥𝑎(ⅈ)𝐹𝑖 = ∑ 𝑐𝑖𝑙𝑐(𝐹𝑖)𝐻𝑖

𝑖

 

= c1lc(F1)(H1 – H2) + (c1lc(F1) + c2lc(F2))(H2 – H3) + · · · + 

(c1lc(F1) + · · · ct-1lc(Ft-1))(Ht-1 – Ht) + + (c1lc(F1) + · · · + ct 

lc(Ft))Ht. 

Base de Gröbner G minimal:  

Una base de Gröbner G es minimal si se cumplen las 

siguientes condiciones: 

1) para todo g ∈ G se tiene LC(g ) = 1; 

2) para todo g ∈ G se tiene LT (g ) ∉ (LT (G \ {g })). 

Se dice que G es reducida si se cumple la condición 1) y 

en lugar de 2) se cumple la condición más fuerte: 2´) para 

todo g ∈ G ningún monomio de g pertenece al ideal (LT (G 

\ {g })). 

Notamos que toda base reducida es automáticamente 

minimal. Está claro que todo ideal no nulo I ⊆ k[x1,...,xn] 

posee una base de Gröbner minimal: hay que tomar 

cualquier base de Gröbner G, normalizar sus elementos 

para que se cumpla la condición 1), y luego quitar uno por 

uno todos los polinomios innecesarios hasta que se 

cumpla la condición 2). Es un poco más difícil construir 

una base reducida (7). 

Propiedades de las bases de Gröbner: 

Una de las propiedades más importantes de las bases de 

Gröbner, y que de hecho motivó su definición, es la 

siguiente proposición, que establece que usando como 

divisores los elementos de una base de Gröbner de un 

ideal, el resto del algoritmo de la división de un polinomio 

dado no depende del orden elegido para los divisores. 

Fijemos un orden monomial. Sea G = {g1, . . . , gt} una base 

de Gröbner de un ideal I ⊂ K[x] y sea f ∈ K[x] un polinomio. 

Entonces existen un único par de polinomios r, g ∈ K[x] 

que verifican las siguientes propiedades: 

(1) g ∈ I, y es tal que f = g + r, y 

 (2) si r 6= 0, ningún monomio de r es divisible por ninguno 

de los LT(gi), i ∈ {1, . . . , t}.  

Siendo 𝛽(𝒾) := MGRAD(gi), LT(gi)= 𝑑𝑖𝓍
𝛽(𝒾), para cada i. 

Por hipótesis, tenemos que 𝛼(𝑖) + 𝛽(𝑖) = 𝛿, y entonces el 

monomio LM(gi) = 𝓍𝛽(𝒾) divide a 𝓍𝛿 . Consecuentemente, 

𝓍γ(𝒿k)=lcm(LM(gj), LM(gk)) también divide a  𝓍𝛿 . Por tanto, 

podemos escribir: 
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𝓍𝛿−𝛾(𝑗𝑘). 𝑆(𝑔𝑗 , 𝑔𝑘) = 𝓍𝛿−𝛾(𝑗𝑘). (
𝓍𝛾(𝑗𝑘)

𝐿𝑇(𝑔𝑗)
𝑔𝑗 −

𝓍𝛾(𝑗𝑘)

𝐿𝑇(𝑔𝑘)
𝑔𝑘) 

=
𝓍𝛿

𝑑𝑗𝓍𝛽(𝑗) 𝑔𝑗 −
𝓍𝛿

𝑑𝑘𝓍𝛽(𝑘) 𝑔𝑘 =
𝓍𝛼(𝑗)𝑔𝑗

𝑑𝑗
−  

𝓍𝛼(𝑘)𝑔𝑘

𝑑𝑘
= 𝑝𝑗 − 𝑝𝑘; (6) 

Usando esta relación, y que ∑ 1𝑐ⅈ𝑑ⅈ = 0,𝑡
𝑖  la suma 

telescópica anterior se escribe: 

∑ 𝑐𝑖 . 𝓍𝛼(𝑖). 𝑔𝑖 = 𝑐1𝑑1.

𝑡

𝑖=1

𝓍𝛿−𝛾(12). 𝑆(𝑔1, 𝑔2) + (𝑐1𝑑1

+ 𝑐2𝑑2) . 𝓍𝛿−𝛾(23). 𝑆(𝑔2, 𝑔3) + ⋯ 

. . . + (𝑐1𝑑1+. . . +𝑐𝑡−1𝑑𝑡−1) . 𝓍𝛿−𝛾(𝑡−1,𝑡). 𝑆(𝑔𝑡−1, 𝑔𝑡), 

Que es una suma de la forma deseada. Como pj y pk tienen 

multigrado δ y coeficiente principal 1. La diferencia 𝑝𝑗 − 𝑝𝑘 

tiene multigrado menor que δ. Esto permite concluir que 

𝓍𝛿−𝛾(𝑗𝑘)S(𝑔𝑗 . 𝑔𝑘) también tiene multigrado menor que δ. 

Este lema demuestra que toda cancelación puede llevarse 

a cabo utilizando sizigias (10). 

Problemas fundamentales de la teoría de las bases de 

Gröbner (4).   

A continuación, se presenta una introducción al concepto 

de variedad sobre un anillo de polinomios, el cual es 

fundamental para establecer un puente entre el concepto 

algebraico y la interpretación geométrica de conjuntos de 

polinomios. A partir de ahora K denotará un campo.  

Para un entero positivo n, se define el n-espacio afín como 

𝐾𝑛 = {(𝒶1, . . . , 𝒶𝑛): 𝒶𝒾 ∈ 𝐾 𝑝𝑎𝑟𝑎 𝑡𝑜𝑑𝑜 1 ≤ 𝒾 ≤ 𝑛}. 

Ejemplo: Cuando K = ℝ, ℝ𝑛 Se conoce como el espacio 

euclídeo n-dimensional.  

Órdenes monomiales  

Sea I ⊂ k[x] un ideal y < un orden monomial. Un conjunto 

finito {g1, . . . , gs} de elementos en I se llama una base de 

Gröbner de I con respeto a < si 

𝑖𝑛<(𝐼) = (𝑖𝑛<(𝑔1), . . . , 𝑖𝑛<(𝑔𝑠)). 

Ejemplo: 

Sea <=<𝑙𝑒𝑥 el orden lexicográfico en 𝑆 = 𝑘[𝑥1, . . . , 𝑥7] con 

respecto a 𝑥1 >∙∙∙> 𝑥7 y sean 𝑓 = 𝑥1𝑥4 −  𝑥2𝑥3  y  𝑔 =

𝑥4𝑥7 −  𝑥5𝑥6. Entonces, 𝑖𝑛<(𝑓) = 𝑥1𝑥4 𝑦 𝑖𝑛<(𝑔) = 𝑥4𝑥7. El 

conjunto {f, g} no es una base de Gröbner para el ideal I = 

(f, g):  

 𝑡𝑜𝑚𝑎 ℎ = 𝑥7𝑓 − 𝑥1𝑔, 𝑝𝑢𝑒𝑠 𝑖𝑛<(ℎ) = 𝑥1𝑥5𝑥6 ∉

 (𝑖𝑛<(𝑓), 𝑖𝑛<(𝑔)). (5) 

 

Para poder definir apropiadamente un orden en el proceso 

de división, se necesita definir algunas ideas. Sea 𝛼 = (𝛼1 

, …, 𝛼𝑛) ∈ ℕ𝑛, definimos su monomio asociado como 

                                      𝑥𝑎=𝑥1
𝑎1, …, 𝑥𝑛

𝑎𝑛   ∈ 𝕂 [x]. 

Esta asociación establece una correspondencia entre el 

conjunto de monomios de 𝕂 [x] y ℕn 𝑛, por lo que, para 

ordenar monomios nos basta con tener una forma de 

ordenar ℕn. En primer lugar, tenemos que definir lo que es 

un orden. 

Un orden ≤ sobre un conjunto 𝑆 es una relación reflexiva, 

transitiva y antisimétrica, i.e., para todos 𝛼, 𝛽, 𝛾 ∈ 𝑆: 

              𝛼 ≤ 𝛼, 𝛼 ≤ 𝛽 ≤ 𝛾 ⟹ 𝛼 ≤ 𝛾, 𝛼 ≠ 𝛽 ∧ 𝛼 ≤ 𝛽 ⟹ 𝛽 ≱ 𝛼. 

 

Diremos que el orden es total si relaciona a todos los 

elementos, i.e., para todos 𝛼, 𝛽 ∈ 𝑆 se tiene 𝛼 ≤ 𝛽 o 𝛽 ≤ 𝛼, 

y en caso contrario diremos que es parcial. Otra propiedad 

importante de un orden es que nos proporcione un criterio 

para elegir elementos. Si para todo subconjunto no vacío 

de 𝑆, este subconjunto tiene mínimo, decimos que el orden 

es un buen orden. (7) 

 Vamos a definir un orden en los monomios del anillo de 

polinomios K[x1, ..., xn] ya que ello es necesario para definir 

posteriormente un algoritmo de división. 

 Si nos fijamos en casos particulares ya conocidos como 

el algoritmo de división de polinomios en K[x] o la 

eliminación Gaussiana para polinomios lineales en K[x1, . 

. . , xn] implícitamente estamos utilizando un orden en los 

monomios. Para dividir polinomios de una variable, 

usamos el grado de los monomios, de modo que . . . > xn+1 

> xn > . . . > x2 > x > 1, mientras que cuando hacemos el 

método de Gauss seguimos usualmente el orden de las 

variables x1 > x2 > . . . > xn. Ahora pretendemos ampliar 

este concepto al anillo de polinomios K[x1, . . . , xn]. 

Sea f ∈ K[x1, . . . , xn], entonces f es una suma finita de la 

forma: 

𝑓 = ∑ 𝑎𝛼

𝛼

𝑥𝛼 = ∑ 𝑎𝛼

𝛼

 𝑥1
𝛼1 … 𝑥𝑛

𝛼𝑛 

con 𝑎𝛼  ∈ 𝐾, 𝛼 = (𝛼1, . . . , 𝛼𝑛 )  ∈  𝑁𝑛  

Podemos establecer una correspondencia biunívoca entre 

los monomios mónicos de K[x1, . . . , xn] y Nn , de modo 

que si tenemos un orden establecido en Nn , tendremos un 

orden en los monomios. 

Definamos 𝑇𝑛 =  {𝑋𝛼 =  𝑥1
𝛼1. . . 𝑥𝑛

𝛼𝑛 | 𝛼 =  (𝛼1, . . . , 𝛼𝑛)  ∈

𝑁𝑛} 

De todas las formas existentes de ordenar Tn, nosotros 

tenemos que considerar aquellas que sean consistentes 

con el algoritmo de división en K[x] y de eliminación 

Gaussiana en K[x1, . . . , xn]. 

Para ordenar los términos de un polinomio necesitamos 

una relación de orden total (es decir, donde dos elementos 

cualesquiera se pueden comparar). Y por ´ultimo, cuando 

usemos un algoritmo de división, queremos acabar en un 

número finito de pasos, lo que nos lleva a la noción de un 

buen orden. (8) 

El orden lexicográfico y lexicográfico reverso 

El orden lexicográfico  <𝑙𝑒𝑥 es el orden monomial definido 

como 𝑥𝑎 <𝑙𝑒𝑥 𝑥𝑏 si y solo si 𝑎𝑗 − 𝑏𝑗 < 0 𝑝𝑎𝑟𝑎 𝑗 =

𝑚𝑖𝑛{𝑖: 𝑎𝑖 − 𝑏𝑖 ≠ 0}. 

El orden lexicográfico graduado <𝑑𝑒𝑔𝑙𝑒𝑥 es el orden 

monomial definido como 𝑥𝑎 <𝑑𝑒𝑔𝑙𝑒𝑥 𝑥𝑏 si y solo si 

1. ∑ 𝑎𝑖 < ∑ 𝑏𝑖 , 𝑜𝑛
𝑖=1

𝑛
𝑖=1  

       2.  ∑ 𝑎𝑖 = ∑ 𝑏𝑖 𝑦 𝑎𝑗 − 𝑏𝑗 <
𝑛

𝑖=1
0 𝑝𝑎𝑟𝑎 𝑗

𝑛

𝑖=1

= 𝑚𝑖𝑛{𝑖: 𝑎𝑖 − 𝑏𝑖 ≠ 0} 



Publicación semestral, Boletín Científico INVESTIGIUM de la Escuela Superior de Tizayuca, Vol. 11, No. 22 (2023) 33-38 

37 

 

El orden lexicográfico reverso <𝑟𝑒𝑣𝑙𝑒𝑥 es el orden 

monomial definido como 𝑥𝑎 <𝑑𝑒𝑔𝑙𝑒𝑥 𝑥𝑏 si y solo si  𝑎𝑗 −

𝑏𝑗 < 0 𝑝𝑎𝑟𝑎 𝑗 = 𝑚𝑎𝑥{𝑖: 𝑎𝑖 − 𝑏𝑖 ≠ 0}. 

Algoritmo de la división  

Para conseguir un algoritmo para dividir f ∈ K[x1, . . . , xn] 

entre f1, . . . , fn ∈ K[x1, . . . , xn]. Esto es, conseguir una 

expresión de la forma 

f = a1f1 + · · · + asfs + r, (9) 

 

Donde los “cocientes” a1, . . . , as y el resto r pertenecen a 

K[x1, . . . , xn]. La idea básica del algoritmo es cancelar el 

término principal de f usando el término principal de algún 

fi, y repetir este proceso hasta que no se pueda hacer. 

 

Consideraciones computacionales 

Aunque el algoritmo de Buchberger es fundamental en 

álgebra computacional, su aplicación práctica enfrenta 

retos asociados a la complejidad algorítmica. En general, 

el tiempo de ejecución puede crecer de manera 

exponencial con respecto al número de variables y al 

grado de los polinomios considerados, lo que implica que 

problemas aparentemente simples se vuelvan intratables 

en la práctica. Además, la memoria requerida aumenta de 

forma significativa a medida que se generan nuevos 

polinomios durante el proceso de reducción (Aráuz et al., 

2024). 

Estas limitaciones hacen necesario analizar la factibilidad 

de implementación en sistemas de cómputo, 

considerando los recursos disponibles. Por ello, en 

contextos computacionales es habitual complementar el 

algoritmo con optimizaciones, como criterios de 

Buchberger para descartar cálculos redundantes o 

variantes mejoradas (F4, F5, entre otras) que permiten 

estimar de manera más eficiente los tiempos de ejecución 

y el consumo de memoria. 

 

Conclusiones  

 

Para concluir se puede decir que el algoritmo de 

Buchberger es muy importante para hacer cálculos sobre 

anillos de polinomios. Se puede decir que En el caso de 

k[x] el problema es resuelto fácilmente por el algoritmo de 

la división que se tiene gracias a que k[x] es un anillo 

Euclidiano. Lo que hace que en el caso de una variable 

las cosas funcionen.  

También se puede decir que este algoritmo es muy 

importante en el álgebra computacional ya que se pueden 

resolver o calcular anillos de polinomios en diferentes 

softwares matemáticos, así como diferentes ejercicios 

derivados del álgebra, sabemos que para poder trabajar 

con polinomios necesitamos poder saber cuándo un 

polinomio dado pertenece o no a un ideal fijo.  

Este algoritmo de Buchberger en el cálculo de las bases 

de Gröbner fue diseñado para dar solución a anillos de 

polinomios algebraicos lo cual permite resolver con 

facilidad distintos problemas ya sea en álgebra 

computacional o álgebra.  

De esta manera concluimos que el algoritmo de 

Buchberger en las bases de Gröbner es de suma 

importancia para el álgebra y matemática en general.   
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