

Con-Ciencia Serrana Boletín Científico de la Escuela Preparatoria Ixtlahuaco

Con-Ciencia SERRANA ISSN: 2683-1899

Publicación semestral, Vol. 6, No. 12 (2024) 01-03

Conducción de calor en un solido de area constante Heat Conduction in a Constant Area Solid

Epifanio Reyes-Flores^a

Abstract:

Heat transmission is very useful in daily life; however, it is given a greater application in the industry, there are different types of heat transmission, convection that is when there is no direct contact with the surface, radiation that the best example are the rays of the sun and finally and on which we are going to base ourselves is the transmission by conduction, and within this type of transmission there are also different cases, one of them is the conduction by a solid of constant area, where we will study the temperature and its behavior.

Keywords:

Transmission, Heat, Industry, Different, Convection, Radiation, Conduction, Solid, Area, Constant, Temperature

Resumen:

La transmisión de calor es de mucha utilidad en la vida diaria; sin embargo, se le da una mayor aplicación en la industria, existen deferentes tipos de transmisión de calor, por convección que es cuando no se tiene un contacto directo con la superficie, por radiación que el mejor ejemplo son los rayos del sol y por ultimo y en el que nos vamos a basar es la transmision por conducción, y dentro de este tipo de transmisión existen tambien diferentes casos, uno de ellos es la conducción por un solido de area constante, donde estudiaremos la temperatura y su comportamiento.

Palabras Clave:

Transmisión, calor, industria, diferentes, convección, radiación, conducción, sólido, área, constant, temperatura

Introducción

La transmisión de calor por conducción es una de las formas mas utilizadas en la actualidad ya que que su aprovechamiento es muy grande y ademas facil de hacerlo respecto a las otras formas, se puede utilizar desde el calentamiento de algun metal para tranformarlo en una figura especial hasta la industria, como en las centrales termoelectricas donde se calienta el agua para tener un mayor rendimiento del Sistema y es tambien aqui donde se utilizan mas los cilindros o solidos con un area constante, de ahi la inquietud por estudiar el comportamiento de la temperatura.

Desarrollo

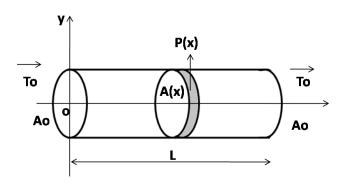


Figura1.Sólido de área constante, con variación de la temperatura en dirección x

Considerando un sólido, de área constante, como muestra la figura 1, donde se asume que el gradiente de temperatura se encuentra solo a lo largo de la dirección en x, debido a que el mismo es muy pequeño sobre el plano y-z.

^a Autor de Correspondencia, Universidad Autónoma del Estado de Hidalgo, https://orcid.org/0000-0002-8885-3846, Email: epifanio_reyes@uaeh.edu.mx

A partir de un balance de energía en el disco de espesor

$$\Delta X$$
, en dirección x, se obtiene la ecuación 1:
$$\frac{1}{A(x)} \frac{\partial}{\partial x} \left(A(x) \frac{\partial \theta}{\partial x} \right) - \frac{h}{k} \frac{P(x)}{A(x)} \theta = \frac{\partial \theta(x,t)}{\partial t}$$
 (1) Para estado estacionario, la ecuación 1 queda expresada

$$\frac{1}{A(x)} \frac{\partial}{\partial x} \left(A(x) \frac{\partial \theta(x)}{\partial x} \right) - \frac{h}{k} \frac{P(x)}{A(x)} \theta(x) = 0 \tag{2}$$
 Asumiendo un área constante, es decir, A(x)=Ao, la

ecuación 2, se reduce a:

$$\frac{\partial^2 \theta(x)}{\partial x^2} - \frac{h}{k} \frac{P}{A} \theta(x) = 0 \tag{3}$$

 $\frac{\partial^2 \theta(x)}{\partial x^2} - \frac{h}{k} \frac{P}{A} \theta(x) = 0$ (3) La ecuación 3 es adimensionalizada a partir de las siguientes escalas características:

$$X^* = \frac{x}{L}$$
, $\theta^* = \frac{\theta(x)}{\theta_c} = \frac{T(x) - T_{\infty}}{T_0 - T_1}$

$$(T_0-T_{\propto})\frac{\partial^2\theta^*}{\partial x^2}-\frac{h}{k}\frac{P}{A_c}(T_0-T_{\propto})\theta^*=0 \tag{4}$$
 Dividiendo la ecuación 4 entre $(T_0-T_{\propto})/L^2$, se reduce a:

$$\frac{\partial^2 \theta^*}{\partial x^2} - \left(\frac{hL}{k}\right) \left(\frac{PL}{A_C}\right) \theta^* = 0 \tag{5}$$

Donde
$$Bi = \frac{hL}{k}$$
, $\varepsilon = \frac{PL}{A_C}$

 $\frac{\partial^2 \theta^*}{\partial x^2} - \left(\frac{hL}{k}\right) \left(\frac{PL}{A_c}\right) \theta^* = 0 \tag{5}$ Donde $Bi = \frac{hL}{k}$, $\varepsilon = \frac{PL}{A_c}$ Sustituyendo los parámetros adimensionales Bi, ε la ecuación 5 queda expresada como:

from 5 queda expresada como:
$$\frac{\partial^2 \theta^*}{\partial x^2} - Bio\varepsilon\theta^* = 0 \tag{6}$$

Para este problema las condiciones de frontera son las siguientes:

$$T(x = 0) = T_0, (T_0 - T_{\infty})\theta^* + T_{\infty} = T_0$$

$$\theta^* = \frac{T_0 - T_{\infty}}{T_0 - T_{\infty}} = 1$$

$$T(x = L) = T_0, (T_0 - T_{\infty})\theta^* + T_{\infty} = T_0$$

$$\theta^* = \frac{T_0 - T_{\infty}}{T_0 - T_{\infty}} = 1$$

La solución matemática de la ecuación diferencial 6, se encuentra expresada como la ecuación 7, donde a partir de las condiciones de frontera se determinaran las constantes C₁ y C₂

$$\frac{\partial^{2}\theta^{*}(x)}{\partial x^{*2}} - Bi\varepsilon\theta^{*}(x) = 0$$

$$r^{2} - Bio\varepsilon = 0 , r = \pm\sqrt{Bio\varepsilon}$$

$$\theta^{*}(x) = C_{1}e^{\sqrt{Bio\varepsilon}x} + C_{2}e^{-\sqrt{Bio\varepsilon}x} = 1$$
 (7)
$$\theta^{*}(x = 0) = C_{1} + C_{2} = 1$$
 (8)
$$C_{1} = 1 - C_{2}$$
 (9)
$$\theta^{*}(x = 1) = C_{1}e^{\sqrt{Bio\varepsilon}} + C_{2}e^{-\sqrt{Bio\varepsilon}} = 1$$
 (10)

Sustituyendo la ecuación 9 en la ecuación 10 se obtiene el constante C2

$$\begin{split} (1-C_2)e^{\sqrt{Bio\varepsilon}} + C_2e^{-\sqrt{Bio\varepsilon}} &= 1\\ e^{\sqrt{Bio\varepsilon}} - C_2e^{\sqrt{Bio\varepsilon}} + C_2e^{-\sqrt{Bio\varepsilon}} &= 1\\ C_2(e^{\sqrt{Bio\varepsilon}} - e^{-\sqrt{Bio\varepsilon}}) &= 1 - e^{\sqrt{Bio\varepsilon}}\\ C_2 &= \frac{1 - e^{\sqrt{Bio\varepsilon}}}{e^{-\sqrt{Bio\varepsilon}} - e^{\sqrt{Bio\varepsilon}}} \end{split}$$
 Sustituyendo C₂ en la ecuación 8, se obtiene la constante

C₁:

$$\begin{aligned} C_1 + \left(\frac{1 - e^{\sqrt{Bio\varepsilon}}}{e^{-\sqrt{Bio\varepsilon}} - e^{\sqrt{Bio\varepsilon}}}\right) &= 1\\ C_1 &= 1 - \left(\frac{1 - e^{\sqrt{Bio\varepsilon}}}{e^{-\sqrt{Bio\varepsilon}} - e^{\sqrt{Bio\varepsilon}}}\right) \end{aligned}$$

$$C_1 = \frac{e^{-\sqrt{Bio\varepsilon}} - 1}{e^{-\sqrt{Bio\varepsilon}} - e^{\sqrt{Bio\varepsilon}}}$$

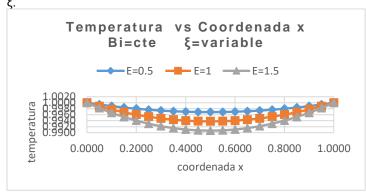
Sustituyendo las constantes C₁ y C₂ en la ecuación 7, la ecuación para la temperatura quedaría como:

$$\theta^*(x) = \left(\frac{e^{-\sqrt{Bio\varepsilon}} - 1}{e^{-\sqrt{Bio\varepsilon}} - e^{\sqrt{Bio\varepsilon}}}\right) e^{\sqrt{Bio\varepsilon}x} + \left(\frac{1 - e^{\sqrt{Bio\varepsilon}}}{e^{-\sqrt{Bio\varepsilon}} - e^{\sqrt{Bio\varepsilon}}}\right) e^{-\sqrt{Bio\varepsilon}x}$$
(11)

A partir de la ecuación 11, se obtuvieron dos graficas de temperatura vs coordenada X, utilizando un rango para ambos de 0 a 1.

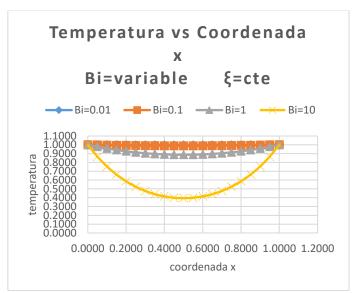
La Gráfica 1. Se obtuvo para un número de Biot constante y diferentes valores de ξ, mientras que la Gráfica 2. fue obtenido a partir de un ξ constante y diferentes valores de Biot como se muestra a continuación.

Gráfica 1. Comportamiento de la temperatura en un área constante, para un número de Biot constante y variables



Mediante el análisis de la Gráfica 1, se concluye que, para un Biot constante de 0.05 dependiendo de la relación entre la superficie con el área transversal (ξ), mientras mayor sea el área de la superficie, por lo que la transferencia de calor será mayor, originando cambios en la temperatura más considerables.

Gráfica 2. Comportamiento de la temperatura en un área constante, con un ξ constante y variando el número de Biot.



A partir de la Gráfica 2. Se puede concluir que para valores pequeños de Biot la distribución de la temperatura no sufre cambios considerables, mientras que a mayor número de Biot, es decir, que el coeficiente de convección es mayor que el coeficiente de conducción, la pérdida de calor será mayor, lo que es igual, el sólido se enfriará.

Referencias

- [1] Holman, J. P. (1999). Transferencia de calor. Mexico: Continental S.A
- [2] Pita, M. J. (2015). Teoria y problemas de transmisión de calor. Madrid: UNED.
- [3] Maladez, J. Á. (2002). Transferencia de calor. México: Oxford
- [4] Kreith, D. F. (2012). Principios de transferencia de calor. CENGAGE Learning, 2012.