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Abstract An asymptotic model is proposed for the analysis of a long-wave dynamic
model for a layered structure with an imperfect interface. Two layers of
isotropic material are connected by a thin and soft adhesive: effectively
the layer of adhesive can be described as a surface of discontinuity for the
longitudinal displacement. The asymptotic method enables us to derive
the lower-dimensional differential equations that describe waves associated
with the displacement jump across the adhesive.

1. INTRODUCTION
This paper is based on the work [1], [2], [3] on modelling of thin-walled

layered structures with high contrast in the elastic properties of the layers.
In real physical structures, these models describe adhesive joints. The chal-
lenge in the asymptotic analysis is that the problem involves two small pa-
rameters: a geometrical parameter characterising the normalised thickness
of the beam, and a physical small parameter corresponding to a normalised
Young’s modulus of the interior adhesive layer. The limit problems depend
on the relation between these parameters. The study of the corresponding
static problems was presented in [3].
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The new development given here is in the analysis of the wave propa-
gation problem for a layered structure containing an adhesive joint. We
shall study discontinuity waves propagating along the adhesive joint. It
is appropriate to mention the relevant work [4] and [5] on the vibrational
response of plates in vacuo and vibrations of multi-layered beams.

The paper is organised as follows. Sections 2 and 3 describe the geome-
try and governing equations. Section 4 contains an outline of the structure
of the asymptotic expansions. The formal asymptotic algorithm is imple-
mented in Section 5. Section 6 gives an example, which illustrates the
lower-dimensional asymptotic model.

2. THE GEOMETRY OF THE SANDWICH
BEAM

In this section we define the geometry of a two-dimensional isotropic thin
layered structure with an adhesive joint. The formulation of the problem
includes two small parameters: the normalised thickness of the structure
and the relative stiffness of the adhesive (similar to [1] and [3]).

Let us consider a thin rectangular domain which consists of three layers:

Ω1 = {x ∈ R
2 : |x1| < l , ε(h/2− h1) + ε2h0 < x2 < εh/2 + ε2h0},

Ω2 = {x ∈ R
2 : |x1| < l , −εh/2 < x2 < −εh/2 + εh2},

Ω0 = {x ∈ R
2 : |x1| < l , −ε(h/2− h2) < x2 < −ε(h/2− h2) + ε2h0},

where l and hi , i = 0, 1, 2, have the same order of magnitude. Also
we define h as h = h1 + h2. The elastic materials of the regions Ωi are
characterised by the Youngs moduli Ei and by the values νi of the Poisson
ratio. The index i throughout the paper takes the values 0, 1 and 2. By λi,
µi we denote the Lamé constants of the elastic materials which are given
as

λi =
Eiνi

(1 + νi)(1− 2νi)
, µi =

Ei

2(1 + νi)
. (2.1)

The interface boundary includes two parts, S+ and S−, specified by

S+ = {x : |x1| < l , x2 = −ε(h/2− h2) + ε2h0},
S− = {x : |x1| < l , x2 = −ε(h/2− h2)}.

(2.2)

The upper and lower surfaces of the compound region are

Γ+ = {x : |x1| < l , x2 = ε2h0 + εh/2},
Γ− = {x : |x1| < l , x2 = −εh/2}.

3. FORMULATION OF THE PROBLEM
In this section we consider propagation of elastic waves and the state of

plane strain in the three-layered medium introduced in Section 2. Thus, the
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displacement field given by u(i) = (u(i)
1 (x, t), u(i)

2 (x, t)) with x = (x1, x2),
satisfies the system

µi∇2u(i) + (λi + µi)∇∇ · u(i) = ρi
∂2

∂t2
u(i),x ∈ Ωi; i = 0, 1, 2. (3.1)

Here t denotes the time variable and ρi the density of the material at
the region Ωi.

For the surfaces of the compound region Ωε we prescribe free-traction
conditions:

µi

(
∂u

(i)
2

∂x1
+

∂u
(i)
1

∂x2

)
= 0, (2µi + λi)

∂u
(i)
2

∂x2
+ λi

∂u
(i)
1

∂x1
= 0, on (3.2)

on Γ+ (i = 1) and Γ− (i = 2). On the interface surfaces, the displacement
and traction continuity conditions are given by

µi

(
∂u

(i)
2

∂x1
+

∂u
(i)
1

∂x2

)
= µ0

(
∂u

(0)
2

∂x1
+

∂u
(0)
1

∂x2

)
, (3.3)

(2µi + λi)
∂u

(i)
2

∂x2
+ λi

∂u
(i)
1

∂x1
= (2µ0 + λ0)

∂u
(0)
2

∂x2
+ λ0

∂u
(0)
1

∂x1
,

u(i) = u(0),

on S+ (i = 1) and S− (i = 2). We are interested in the analysis of time-
harmonic vibrations of the beam and propagation of waves along the thin
interface layer.

4. THE STRUCTURE OF THE ASYMPTOTIC
EXPANSIONS

In this section, additionally to the analysis given in [6], two time-scales
are defined for each component of the displacement vector.

Stretched variables ξi, i = 0, 1, 2, are introduced to describe the trans-
verse behaviour of the fields across the thickness of the beam and are given
as

ξ0 = ε−2(x2 + ε(h/2− h2)− ε2h0/2),
ξ1 = ε−1(x2 − ε2h0 − εh2/2),
ξ2 = ε−1(x2 + εh1/2).

(4.1)

In this way one can verify that

ξi ∈ [−hi/2, hi/2], i = 1, 2; ξ0 ∈ [−h0/2, h0/2] (4.2)

and

∂x2 = ε−2∂ξ0 , ∂x2 = ε−1∂ξi , i = 1, 2, (4.3)
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where the notation ∂α means the partial derivative with respect to α.
Longitudinal vibrations of a thin-walled structure occur at higher fre-

quencies compared to flexural vibrations; slow and fast time variables are
used to describe flexural and longitudinal vibrations, respectively.

The displacement field u(i) is sought in the form of the following asymp-
totic expansions

u(i) ∼ u(i,0)(x1, ξi, τ, T ) + εu(i,1)(x1, ξi, τ, T ) + ε2u(i,2)(x1, ξi, τ, T )(4.4)

where T and τ are scaled variables. Assuming that T = εt, (the slow
variable) and τ ≡ t (the fast variable), we obtain

∂2
t = ∂2

τ + 2ε∂2
τT + ε2∂2

T . (4.5)

The displacement field is split into two terms as follows

u
(i)
j (x1, ξi, t) = ũ

(i)
j (x1, ξi, τ) + ū

(i)
j (x1, ξi, T ). (4.6)

If one substitutes the series (4.4) into (3.1), the boundary conditions (3.2),
and analyses the coefficients near like powers of ε, it follows that the fol-
lowing recurrence relations hold on the cross-section

µi∂
2
ξi

u
(i,k)
1 + (λi + µi)∂2

ξix1
u

(i,k−1)
2 + (λi + 2µi)∂2

x1
u

(i,k−2)
1 =

ρi

{
∂2

τ u
(i,k−2)
1 + ∂2

T u
(i,k−4)
1

}
, (4.7)

(2µi + λi)∂2
ξi

u
(i,k)
2 + (λi + µi)∂2

ξix1
u

(i,k−1)
1 + µi∂

2
x1

u
(i,k−2)
2 =

ρi

{
∂2

τ u
(i,k−2)
2 + ∂2

T u
(i,k−4)
2

}
, (4.8)

for Ωi, i = 1, 2. Due to the fact that the middle layer is softer than the
others, we use the relationship E0 = ε3E, where E ∼ E1 ∼ E2 (see (2.1))
and obtain

µ∂2
ξ0u

(0,k)
1 + (λ + µ)∂2

ξ0x1
u

(0,k−2)
2 + (λ + 2µ)∂2

x1
u

(0,k−4)
1 =

ρ0

{
∂2

τ u
(0,k−1)
1 + ∂2

T u
(0,k−3)
1

}
, (4.9)

(2µ + λ)∂2
ξ0u

(0,k)
2 + (λ + µ)∂2

ξ0x1
u

(j,k−2)
1 + µ∂2

x1
u

(0,k−4)
2 =

ρ0

{
∂2

τ u
(0,k−1)
2 + ∂2

T u
(0,k−3)
2

}
, (4.10)

in Ω0. As for the static case (see [1]), we have the following interface
boundary conditions

µi(∂ξ1u
(i,k)
1 + ∂x1u

(i,k−1)
2 ) = µ(∂ξ0u

(0,k−2)
1 + ∂x1u

(0,k−4)
2 ),

(2µi + λi)∂ξ1u
(i,k)
2 + λi∂x1u

(i,k−1)
1 = (2µ + λ)∂ξ0u

(0,k−2)
2 + λ∂x1u

(0,k−4)
1 ,

u
(0,k)
j = u

(i,k)
j j = 1, 2, (4.11)
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on S+ (i = 1) and S− (i = 2).
For the upper and lower surfaces we have

µi(∂ξ1u
(i,k)
1 + ∂x1u

(i,k−1)
2 ) = 0, (4.12)

(2µi + λi)∂ξ1u
(i,k)
2 + λi∂x1u

(i,k−1)
1 = 0,

on Γ+ (i = 1) and Γ− (i = 2).

5. FORMAL ASYMPTOTIC ALGORITHM
At each step of the asymptotic algorithm, solvability conditions of the

model boundary value problems (BVP) on the cross-section are formulated
and analysed.

For the transverse components, the following condition for the slow com-
ponents is obtained

ū
(1,0)
2 = ū

(2,0)
2 = ū

(0,0)
2 ≡ ū

(0)
2 . (5.1)

This means that to the leading-order, all points on the cross-section of
the beam have the same transverse displacement in slow motions. This
agrees with the Kirchhoff hypothesis adopted in the classical theory of
flexural motions of elastic beams. For the fast components the solvability
conditions of relevant model problems give a system of ordinary differential
equations

ρ1h0h1

λ + 2µ
∂2

τ ũ
(1,0)
2 + ũ

(1,0)
2 − ũ

(2,0)
2 = 0, (5.2)

ρ2h0h2

λ + 2µ
∂2

τ ũ
(2,0)
2 + ũ

(2,0)
2 − ũ

(1,0)
2 = 0. (5.3)

These equations describe the transverse x1-independent motion within a
composite beam. With these conditions taken into account, the functions
u

(i,2)
2 are given by

u
(1,2)
2 =

λ1

2µ1 + λ1

[
ξ2
1

2
(∂2

x1
ũ

(1,0)
2 + ∂2

x1
ū

(1,0)
2 )− ξ1(∂x1 ṽ

(1) + ∂x1 v̄
(1))
]

+
ρ1

2µ1 + λ1

[
ξ2
1

2
− ξ1h1

2

]
∂2

τ ũ
(1,0)
2 , (5.4)

u
(2,2)
2 =

λ2

2µ2 + λ2

[
ξ2
2

2
(∂2

x1
ũ

(2,0)
2 + ∂2

x1
ū

(2,0)
2 )− ξ2(∂x1 ṽ

(2) + ∂x1 v̄
(2))
]

+
ρ2

2µ2 + λ2

[
ξ2
2

2
+

ξ2h2

2

]
∂2

τ ũ
(2,0)
2 . (5.5)
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We note that

u
(i,1)
1 = −ξi

[
∂x1 ũ

(i,0)
2 + ∂x1 ū

(i,0)
2

]
+ ṽ(i)(x1, τ) + v̄(i)(x1, T ), i = 1, 2

The functions v̄(i) satisfy second-order differential equations derived as
solvability conditions (when k = 3) for model problems associated with
“slow” motions.

4(λ1 + µ1)
2µ1 + λ1

h1∂
2
x1

v̄(1) =
µ

µ1h0

{
h1 + h2

2
∂x1 ū

(0)
2 + v̄(1) − v̄(2)

}
, (5.6)

4(λ2 + µ2)
2µ2 + λ2

h2∂
2
x1

v̄(2) = − µ

µ2h0

{
h1 + h2

2
∂x1 ū

(0)
2 + v̄(1) − v̄(2)

}
. (5.7)

For the fast motions we obtain

4(λ1 + µ1)
2µ1 + λ1

h1∂
2
x1

ṽ(1) +
ρ1h1

µ1

{
λ1h1

2(2µ1 + λ1)
∂3

x1τ2 ũ
(1,0)
2 − ∂2

τ ṽ(1)

}
=

µ

µ1h0

{
h1

2
∂x1 ũ

(1,0)
2 +

h2

2
∂x1 ũ

(2,0)
2 + ṽ(1) − ṽ(2)

}
,

(5.8)

4(λ2 + µ2)
2µ2 + λ2

h2∂
2
x1

ṽ(2) +
ρ2h2

µ2

{
λ2h2

2(2µ2 + λ2)
∂3

x1τ2 ũ
(2,0)
2 − ∂2

τ ṽ(2)

}
= − µ

µ2h0

{
h1

2
∂x1 ũ

(1,0)
2 +

h2

2
∂x1 ũ

(2,0)
2 + v̄(1) − v̄(2)

}
.

(5.9)

Taking into account solvability conditions for the Neumann BVP on the
cross-section at the step k = 4 for the transverse displacement components
we can establish the following equations:

1
3

µ1(µ1 + λ1)
2µ1 + λ1

h3
1∂

4
x1

ū
(0)
2 − 2µ1

λ1 + µ1

2µ1 + λ1
h2

1∂
3
x1

v̄(1) + ρ1h1∂
2
T ū

(0)
2

+
2µ + λ

8h2
0

{
λ1h1

2h0(2µ1 + λ1)
∂x1 v̄

(1) +
λ2h2

2h0(2µ2 + λ2)
∂x1 v̄

(2)[
λ1h1h0

2µ1 + λ1
− λ2h2h0

2µ2 + λ2

]
∂2

x1
ū

(0)
2

}
= 0,

(5.10)

1
3

µ2(µ2 + λ2)
2µ2 + λ2

h3
2∂

4
x1

ū
(0)
2 + 2µ2

λ2 + µ2

2µ2 + λ2
h2

2∂
3
x1

v̄(2) + ρ2h2∂
2
T ū

(0)
2

−2µ + λ

8h2
0

{
λ1h1

2h0(2µ1 + λ1)
∂x1 v̄

(1) +
λ2h2

2h0(2µ2 + λ2)
∂x1 v̄

(2)[
λ1h1h0

2µ1 + λ1
− λ2h2h0

2µ2 + λ2

]
∂2

x1
ū

(0)
2

}
= 0.

(5.11)
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We remark that these equations do not involve fast functions ũ
(i,4)
2 , i =

1, 2.

6. ILLUSTRATIVE EXAMPLE AND
CONCLUDING REMARKS

As shown in the previous section, the asymptotic algorithm allows one
to find explicitly lower-dimensional differential equations describing longi-
tudinal and flexural vibrations within a composite beam.

Slow motions occur in accordance with the equations (5.6),(5.7),(5.10)
and (5.11). The equations for the transverse components involve the fourth-
order derivative in x1, which is consistent with classical results of the theory
of elastic beams (see, for example, [8]). However the presence of an imper-
fect interface provides a coupling between the longitudinal and transverse
displacements associated with a slow motion.

Fast motions are described by the second-order differential equations
(5.2), (5.3), (5.8) and (5.9). These motions may involve a longitudinal
displacement jump, and discontinuity waves might propagate along the soft
interface. Since the transverse fast motions occur according to equations
(5.2) and (5.3), which do not include derivatives with respect to x1, the
transverse vibrations do not generate waves propagating along the adhesive
joint.

Next, we consider an illustrative example. Assume that the upper and
lower layers have the same thickness h1 = h2 and made of the same material
(µ1 = µ2, λ1 = λ2, ρ1 = ρ2). Combining equations (5.10) and (5.11), and
using equations (5.6) and (5.7), we obtain

h3
1

3
µ1(µ1 + λ1)
2µ1 + λ1

∂4
x1

ū
(0)
2 + ρ1h1∂

2
T ū

(0)
2 = 0. (6.1)

Seeking a solution of this equation in the form

ū
(0)
2 = A exp (ikx1 − iΩT )

we derive the corresponding characteristic equation

2h3
1

3
µ1(µ1 + λ1)
2µ1 + λ1

k4 − 2ρ1h1Ω2 = 0.

The previous equation reduces to the standard dispersion relation attributed
to the Kirchhoff theory:

Dk4 − ρlh1Ω2 = 0, (6.2)

where D = Eh3
1

12(1−ν2
1 )

.
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For the case of fast motions we obtain the following system of differential
equations:

4(λ1 + µ1)
2µ1 + λ1

h1∂
2
x1

ṽ(1) +
ρ1h1

µ1

{
λ1h1

2(2µ1 + λ1)
∂3

x1τ2 ũ
(1,0)
2 − ∂2

τ ṽ(1)

}
− µ

µ1h0

{
h1

2
∂x1 ũ

(1,0)
2 +

h1

2
∂x1 ũ

(2,0)
2 + ṽ(1) − ṽ(2)

}
= 0, (6.3)

4(λ1 + µ1)
2µ1 + λ1

h1∂
2
x1

ṽ(2) +
ρ1h1

µ1

{
λ1h1

2(2µ1 + λ1)
∂3

x1τ2 ũ
(2,0)
2 − ∂2

τ ṽ(2)

}
+

µ

µ1h0

{
h1

2
∂x1 ũ

(1,0)
2 +

h1

2
∂x1 ũ

(2,0)
2 + v̄(1) − v̄(2)

}
= 0, (6.4)

ρ1h0h1

2µ + λ
∂2

τ ũ
(1,0)
2 + ũ

(1,0)
2 − ũ

(2,0)
2 = 0, (6.5)

ρ1h0h1

2µ + λ
∂2

τ ũ
(2,0)
2 + ũ

(2,0)
2 − ũ

(1,0)
2 = 0. (6.6)

A solution for the homogeneous problem (6.3)–(6.6) is sought in the form

ṽ(j) = Aj exp (ikx1 − iωτ),

ũ
(j,0)
2 = Bj exp (ikx1 − iωτ),

where j = 1, 2. The corresponding characteristic equation has the roots
given by

ω2
1 = 0, (6.7)

ω2
2 =

2(2µ + λ)
ρ1h1h0

. (6.8)

The first root (6.7) is related to a uniform transverse displacement of
all three layers, and the second root (6.8) corresponds to an anti-phase
vibration of the upper and lower layers, relative to each other.

The equation

ω2 =
4µ1(µ1 + λ1)
ρ1(2µ1 + λ1)

k2, (6.9)

corresponds to uniform longitudinal motions of the whole layered structure,
with no displacement jump across the adhesive layer.

The equation

ω2 =
4µ1(µ1 + λ1)
ρ1(2µ1 + λ1)

k2 +
2µ

ρ1h1h0
(6.10)
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describes anti-phase longitudinal motions of the upper and lower layers,
representing shear mode of motions.

We can see that there exists a cut-off frequency which is given by

ω = ω3 =
√

2µ
ρ1h1h0

. (6.11)

If the frequency of the signal does not exceed the critical value ω3, the
displacement jump may not propagate along the imperfect interface. Let

k1 =
µ1 + λ1√

2h1h0µ1(µ1 + λ1)
, (6.12)

k2 =
2µ1 + λ1√

2h1h0µ1(µ1 + λ1)
. (6.13)

The intersection points of the dispersion curves given by (k1, ω2) and
(k2, ω2), correspond to the resonance modes involving transverse and lon-
gitudinal vibrations.
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