International Journal of Pure and Applied Mathematics

Volume 48 No. 4 2008, 491-494

ON A THEOREM OF ISAACS

Fernando Barrera-Mora
Centro de Investigación en Matemáticas
Instituto de Ciencias Básicas e Ingeniería
Universidad Autónoma del Estado de Hidalgo
Carretera Pachuca-Tulancingo, km 4.5, Pachuca, Hidalgo, 42184, MEXICO
e-mail: barrera@uaeh.edu.mx

Abstract

I.M. Isaacs has proven a very interesting theorem concerning solvability of polynomials by real radicals. His result deals with an irreducible polynomial over the field of rational numbers which has a real radical element and splits in \mathbb{R}. In this note we present a short proof of a generalization of Isaacs Theorem.

AMS Subject Classification: 12E10, 12F99
Key Words: solvability of polynomials, real radicals

1. Introduction

In [5], Isaacs has proven a very interesting theorem concerning solvability of polynomials by real radicals. His result deals with an irreducible polynomial over the field of rational numbers which has a real radical element and splits in \mathbb{R}. In this note we present a short proof of a generalization of Isaacs Theorem. Our proof is based on two results: one is Capelli Theorem on irreducible binomials and the other one is a criterion for a radical extension to have a unique subfield for each divisor of its degree.

2. A Theorem of Isaacs

Definition 1. (a) An extension K / F is said to be radical if there exists $\alpha \in K$ so that $K=F(\alpha)$ and $\alpha^{n} \in F$ for some integer $n \geq 1$.
(b) An extension K / F is said to be a repeated radical extension, if there exists a sequence of fields $F=F_{0} \subseteq F_{1} \subseteq F_{2} \subseteq \cdots \subseteq F_{r}=K$ so that F_{i+1} / F_{i} is radical for all $i=0, \ldots, r-1$.

We say that the field extension K / F has the unique subfield property, abbreviated u.s.p., if for every m dividing the degree $[K: F]$, there exists a unique subfield of K / F whose degree over F is m.

In what follows, $\mu(F)$ will denote the group of roots of one in the field F and ζ_{n} will denote a primitive n-th root of one.

Theorem 2. (see [3], Theorem 1.2) Let F be a field, n a positive integer and $a \in F$. The binomial $x^{n}-a$ is irreducible iff:
(a) For every prime p dividing $n, a \notin F^{p}=\left\{b^{p}: b \in F\right\}$.
(b) If 4 divides n and char $F \neq 2,-4 a \notin F^{4}$.

Theorem 3. (see [1], Theorem 2.1) Let $x^{n}-a$ be irreducible over F, where the characteristic of F does not divide n, and let α be a root of $x^{n}-a$. Then the extension $F(\alpha) / F$ has the u.s.p. iff:
(i) for every odd prime p dividing $n, \zeta_{p} \notin F(\alpha) \backslash F$, and
(ii) if $4 \mid n$, then $\zeta_{4} \notin F(\alpha) \backslash F$.

If K / F is a separable algebraic extension of fields and αF^{*} is a torsion element in the group K^{*} / F^{*}, then α defines two numbers: $o\left(\alpha F^{*}\right)=m$ and $[F(\alpha): F]=n$. A result of Risman $[2$, Theorem A] establishes the general relationship between m and n, however, under additional assumptions on roots of unity we have that $n=m$ as the following result shows.

Theorem 4. With the assumptions and notation as above, if $\zeta_{2 p} \notin F(\alpha) \backslash$ F for every prime p dividing $o\left(\alpha F^{*}\right)$, then $[F(\alpha): F]=o\left(\alpha F^{*}\right)$.

Proof. Since $o\left(\alpha F^{*}\right)=m$, then $x^{m}-\alpha^{m} \in F[x]$. If $x^{m}-\alpha^{m}$ is reducible, separability of $F(\alpha) / F$ and Theorem 1 imply $\alpha^{m} \in F^{p}$ for some prime p dividing m, or if 4 divides m, then $-4 \alpha^{m} \in F^{4}$. If $\alpha^{m}=b^{p}$ for some $b \in F$, then $\alpha^{m / p}=\zeta_{p}^{k} b$ for some $0 \leq k<p$. Since $\zeta_{2 p} \notin F(\alpha) \backslash F$ then $\alpha^{m / p} \in F$, a contradiction. If $4 \alpha^{m}+b^{4}=0$ for some $b \in F$, then $2 \alpha^{m / 2}= \pm \zeta_{4} b^{2}$. The assumption $\zeta_{2 p} \notin F(\alpha) \backslash F$ implies $\alpha^{m / 2} \in F$, a contradiction.

Theorem 5. Let F be a field, $f(x) \in F[x]$ a separable and irreducible polynomial, α a root of $f(x)$ and E the splitting field of $f(x)$ over F. Assume that the following hold:
(i) the element α is contained in a repeated radical extension K / F,
(ii) the fields $E K$ and F have the same roots of one, that is, $\mu(E K)=\mu(F)$.

Then $\zeta_{p} \in F$ for each prime p dividing $[E: F]$ and every subfield M with $F \subset M \subset E$ and $[E: M]=p$ is radical.

In the proof of Theorem 5 we need the following:
Lemma 6. Let $F \subseteq E$ be a separable radical extension, say $E=F(\alpha)$ with $\alpha^{n} \in F$ and n minimum. Assume that $\mu(E)=\mu(F)$. If $F \subseteq L \subseteq E$ with L / F normal, then $\zeta_{p} \in F$ for every prime p dividing $[L: F]$.

Proof. Since n is minimum and $\mu(E)=\mu(F)$, from Theorem 4 one has $n=[F(\alpha): F]$, in particular $x^{n}-\alpha^{n}=x^{n}-a \in F[x]$ is irreducible. From Theorem 2 we have that $F(\alpha) / F$ has the u.s.p., hence $L=F(\sqrt[m]{a})$ with m dividing n and $[L: F]=m$, since L / F is normal we must have $\zeta_{m} \in L \subseteq F(\alpha)$, hence $\zeta_{m} \in F$.

Proof of Theorem 5. We shall use part of Isaacs proof. Let $G=\operatorname{Gal}(E / F)$ be the Galois group of E / F, then $|G|=[E: F]$. If p is a prime dividing $|G|$, let N be the subgroup of G generated by the elements of G of order p. It is clear that N is normal in G. By Cauchy Theorem, $1<N$, hence $L=E^{N} \neq E$ and by the Fundamental Theorem of Galois theory, L / F is normal hence $\alpha \notin L$, since otherwise normality of L / F would imply $L=E$. Let $H=\operatorname{Gal}(E / F(\alpha))$. The condition $F(\alpha) \nsubseteq L$ is equivalent to $N \nsubseteq H$, hence we may choose $\sigma \in N \backslash H$ of order p. Define $M:=E^{\sigma}$, hence $F(\alpha) \nsubseteq M$. The assumption on α guarantees the existence of a repeated radical extension $F=F_{0} \subseteq F_{1} \cdots \subseteq F_{r}=K$ so that $\alpha \in F_{r}$ with $F_{i}=F_{i-1}\left(\alpha_{i}\right)$ and $\alpha_{i}^{n_{i}} \in F_{i-1}$. For each $i=1, \ldots, r$ set $M_{i}=M F_{i}$ then $F_{i} \subseteq M_{i} \subseteq E F_{r}$, hence $\alpha \in M_{r}=E F_{r}$, thus there exists $s \geq 1$ so that $\alpha \in M_{s} \backslash M_{s-1}$. We also have that $M \subseteq M_{s-1} \cap E \subseteq M_{s} \cap E \subseteq E$. From the definition of $M,[E: M]=p$. Since $\alpha \notin M_{s-1} \cap E$ and $\alpha \in M_{s} \cap E$ then we must have $M=M_{s-1} \cap E$ and $E=E \cap M_{s}$.

From Galois theory we have $E M_{s-1} / M_{s-1}$ is Galois of degree p. We also have, from the definition of M_{s}, that M_{s} / M_{s-1} is a radical extension. The assumption $\mu\left(E F_{r}\right)=\mu(F)$ implies $\mu\left(M_{s}\right)=\mu\left(M_{s-1}\right)$, hence the assumptions of the previous lemma are satisfied, so $\zeta_{p} \in M_{s-1} \subseteq E F_{r}$. Applying again the assumption on n-th roots we have $\zeta_{p} \in F$.

The last conclusion follows from Kummer theory, since E / M is cyclic of degree p and $\zeta_{p} \in F$.

Remark 7. Assumption ii) in Theorem 5 can be replaced by the weaker condition: for every prime $p, \zeta_{2 p} \notin E K \backslash F$. This situation occurs in co-Galois theory, see [4] for the basic results on co-Galois extensions.

Acknowledgements

The ellaboration of the paper was partially supported by Conacyt through research project 61996.

References

[1] M. Acosta, W.Y. Vélez, The lattice of subfields of radical extensions, J. Number Th., 15 (1982), 388-405.
[2] F. Barrera Mora, On subfields of radical extensions, Communications in Algebra, 27, No. 10 (1999), 4641-4649.
[3] F. Barrera Mora, W.Y. Vélez, Some results on radical extensions, Journal of Algebra, 162, No. 2 (1993), 295-301.
[4] C. Greither, D.K. Harrison, A Galois correspondence for radical extensions of fields, J. Pure Appl. Algebra, 43 (1986), 257-270.
[5] I.M. Isaacs, Solution of polynomials by real radicals, The American Math. Monthly, 92, No. 8 (1985), 571-575.

