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RADICAL EXTENSIONS AND CROSSED HOMOMORPHISMS

FERNANDO BARRERA-MORA AND PABLO LAM-ESTRADA

If Q./F is a Galois extension with Galois group G and /x(fi) denotes the group of roots
of unity in Q, we use the group Z1{G,fi(Q)) of crossed homomorphisms to study
radical extensions inside Q. Furthermore, we characterise cubic radical extensions,
and we provide an example to show that this result can not be extended for higher
degree extensions.

1. INTRODUCTION

In the last decade, several authors [1, 3, 4] have approached the study of radical
extensions by using the group of one cocycles or crossed homomorphisms. More precisely,
in [4] Barrera and Velez proved a result, [4, Theorem 2.1] which characterises the radical
subextensions inside a finite Galois extension, as those subfields associated, under the Ga-
lois correspondence, to subgroups which are kernels of crossed homomorphisms. Another
connection between crossed homomorphisms and radical extensions occurs in a Theorem
of Dummit, which has been extended in [3]. This result establishes an isomorphism from
Zl{G,n(K)) to cog(K/F) = T(K/F)/F*, where K/F is a Galois extension, (j,(K) de-
notes the group of roots of unity in K and T(K/F) := {a € K \ an € F for some n ^ 1}.
The mentioned results, show a close connection between the group of one cocycles and
the radical extensions inside a Galois extension.

In this paper we present some results characterising radical extensions inside a Galois
extension, using as a main tool the group of crossed homomorphisms. Also, using previous
results on radical extensions, we are able to characterise cubic fields which are radical
extensions and show by an example that this result can not be extended to extensions of
higher degree.

2. NOTATION, TERMINOLOGY AND PRELIMINARY RESULTS

Given a field F, F* = F\ {0} will denote the group of nonzero elements in F, n(F)
denotes the group of roots of unity in F, and for a given n, fin(F) denotes the group of n-
th roots of unity in F. When this group has order n, £„ will denote a fixed generator and it
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will be called a primitive n-th root of unity. If K/F is a Galois extension (finite or infinite),
then G — Gal(A"/F), equipped with the Krull's topology, is a compact topological group.
We shall consider n{K) as a discrete topological group. A crossed homomorphism of
G with coefficients in fi(K) is a continuous function x '• G -* V-{K) which satisfies
X(OT) = x(a)x(T)a: f° r every a and r in G. The set of all crossed homomorphisms
of G with coefficients in (i(K) will be denoted by Zl{G,n(K)). For a given element
£ € n(K), the function, which is assumed to be continuous, given by Xc(CT) = o'COC"1

is called an inner crossed homomorphism or a coboundary. The set of all inner crossed
homomorphisms is denoted by B1 (G, n(K)). We have that B1 (G, /x(K)) ^ Zl (G, n{K)).
If K/F is a field extension, we set cog(K/F) = T(K/F)/F*, where T(K/F) = {a G
K \ an € F for some n ^ 1}. If a is a nonzero element of the field F, y/a will denote a
fixed root of xn — a in the algebraic closure of F. For an odd prime p, we shall denote
by Fp(p_i) the holomorph of the cyclic group of order p and we shall call it the Frobenius
group of order p(p — 1).

DEFINITION 2.1: A finite field extension K/F is called a radical extension of expo-
nent dividing n, if there exists a finite subgroup A/F* of cog(K/F) of exponent dividing
n so that K = F(A). If A/F* is cyclic, K/F is called a simple radical extension.

Thus, K/F is a simple radical extension, or simply radical extension, if there exists
a € F so that K = F( ^/a) for some n € N.

DEFINITION 2.2: We say that the extension K/F has the unique subfield property,
if for every m dividing the degree [K : F], there exists a unique subfield of K/F whose
degree over F is m.

THEOREM 2 . 1 . [4, Theorem 1.5] Let xn -a be irreducible over F, with charF
not dividing n, and let a be a root ofxn -a. Then the extension F(a)/F has the unique
subfield property if and only if

(i) for every odd prime p dividing n, £p £ F(a) \ F, and
(ii) if 4 | n, then Q & F{a) \ F.

COROLLARY 2 . 1 . Let F be a real field, a € F so that xn - a is irreducible over
F and y/a e M. Then the extension F{tfa)/F has the unique subfield property.

THEOREM 2 . 2 . [4, Theorem 1.6] Let F be a field such that charF does not
divide n,C,n^F and xn - a, x" - b are irreducible over F. Then F[ {YE) - F( \Vb) if and
only if a = blc", where gcd(i, n) = 1 and ce F.

THEOREM 2 . 3 . [4, Theorem 2.3] Let K/F be a separabie extension of degree
n with Q the Galois closure of K/F. Suppose that char F does not divide n and there
exists a finite extension L/F with the following properties:

(a) fi(Cn)nL = F .
(b) LK = L (yYa) for some a € L.

Then K = F({Ya) for some a€ F.
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We need a bit of terminology to state the following theorem.

Let K/F be a separable extension of degree n. Asssume that (i) char F does not

divide n, (ii) K n F ( C ) = F, (iii) Jf(C»)/F(Cn) is cyclic and K{C,n)/F is Galois. Let

n = if(Cn)- Prom Kummer Theory we have that fi = L{</a), where L = F (£ , ) and

a € L. By Theorem 2.2, we have that if a € H - Gai(K(Q)/K) then o(ct) = 7" o6",

where 7 € L and (6ff,n) = 1. Therefore cr( \ /a) = Cn° 7 (\/a)b° for some iCT. Then with

(T) = Gal(fi /L), r(-y/a) = Cn >/» we have that a" 1 r a = r " ' ' 6 " where <r(Cn) = Cn° a n d

from this, one concludes that

a r a-1

With the previous notation we have:

THEOREM 2 . 4 . [4, Theorem 2.4] Let K/F be a separable extension of degree
n so that charF and n are reJativeiy prime. Set H = Gal(K(£n)/K). Assume:

(a) KnF((n) = F.

(b) K(Cn)/F(Cn) is cyclic with Galois group Gal(tf (C)/F(CB)) = <T>.

Then

(i) K{Qn)/F is normal. Moreover, K(C,n)/F is Abelian if and only if K/F is

cyclic.

(ii) ore'1 = Ta"b' , for some integers aa, ba, and for every a € H.

(iii) K/F is radical if and only ifba = 1 (mod n), for all a € H.

THEOREM 2 . 5 . [4, Proposition 2.6] Let K/F be an extension of degree p, p
a rational prime different from charF, and suppose that (i) F{C,P)/F is a quadratic
extension, (ii) t ie Galois closure of K over F is K($p) and (iii) Gal(K(Q/F) - Dp =
(T, a : TP = a2 = 1, OTCT"1 = T " 1 ) . Then K/F is a radical extension.

COROLLARY 2 . 2 . [4, Corollary to Proposition 2.6] Let K/F be a cubic exten-
sion with the property that K(£3) is the Galois closure of K over F and charF ^ 3.
Then K/F is radical.

DEFINITION 2.3: An extension K/F is said to be a repeated radical extension, if
there exists a sequence of fields F = Fo C Fi C • • • C Fr = K so that Fj + 1/Fj is radical
for all i = 0 , . . . , r — 1. In addition, if [Fi+i : Fi\ = n*, where Fi+i = Ft( V"t)i f°r s o m e

a, € Fi, and for ali i = 0 , . . . , r — 1, then K/F is said to be a radical tower; if r = 1, then
K/F is said to be a simple radical tower.

THEOREM 2 . 6 . [2, Theorem 3.4] Let fi/F be a repeated radical Galois exten-
sion and suppose that fl\ F contains no pth root of unity for any prime p. Then F
contains a primitive pth root of unity for every prime divisor of [fi : F].

THEOREM 2 . 7 . (Hilbert's Theorem 90) Let K/F be a Galois extension (finite
or infinite). Then Z\G,K') = B\G,K').
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3. RADICAL SUBFIELDS INSIDE A GALOIS EXTENSION

Studying radical extensions when enough roots of unity are present in the ground
field is done by Kummer Theory, hence it is natural to consider the case when the ground
field lacks enough roots of unity.

In what follows we assume that for a given positive integer n, the ground field F
does not contain a primitive n-th root of one.

Let n be a positive integer, F a field whose characteristic does not divide n. Let
fin = *"(<„, vhCn))- Then fin is the splitting field of 7n = {/„(*") : fa{x) =
i rr(a,F), a € F((n )} over F, hence O n /F is a Galois extension, in general infinite.
If Fn denotes the Galois group of Cln/F, it is endowed with Krull's topology. Since
F(£n)/F is normal, we have that Gal(f2n/F(Cn)) is a normal subgroup of Fn, and the
short exact sequence

1 —> Gal(nn/F(Cn)) —> r n —> Gal(F(Cn)/F) —> 1.

A result of Dummit states that if K/F is a Galois extension, then cog(K/F) =
Z1 (G, fi(K)). The isomorphism induces a one to one correspondence between the lattice
of subgroups ofcog(K/F) and Zl(G,n(K)). The correspondence is given by

<f>: {A | F* ̂  A ̂  T(K/F)} —> [u \ U < Zl(G,n{K))}

where Xa(&) = o(a)/a. With the assumptions as above, there is a map

B:GxZl(Gtfi(K))—+n(K)

B(<r,x) = x(<r)-

Given a subgroup U < Z1(G,fj,{K)) we define UL = {u G G \ x(^) = Mor all
X € £/}. If U is cyclic generated by x (in the algebraic sense), we shall use the notation
U1- = x x a n d caH ^ *n e kernel of x- Notice that this is an open subgroup of G.

The next result establishes a connection between these subgroups and the finite
radical extensions inside Qn.

The following theorem generalises [4, Theorem 2.1]

THEOREM 3 . 1 . Let K/F be a finite extension contained in Qn. Then K/F is a
simple radical extension of exponent dividing n if and only ifGa\(Cln/K) = x1 for some

xzzl(rn,nn(nn)).
P R O O F : Assume that K/F is a simple radical of exponent dividing n. Then there

exists a 6 Cln so that an € F and K = F(a). Define Xa • Fn -» Mn(^n) by Xa(^) =
o(a)/a. It would be clear that Xa € ^(F,,,/*„(£}„)), provided that Xa is continuous.
Let C € /^n(f2n). We shall prove that XQMO is a n °P e n subset in Fn. We may assume
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XZl(O i s n o t empty and let a € X Q H O . that is, a(a) = C,a. Let K be the normal
closure of K which is necessarily contained in fin, and Ga\{Q.n/K) ^ G&\(Cln/K). Given
p € Gal(nnfK), we have that Xa{p) = 1, and hence Xa(^/>) = C hence op € XaMO-
Therefore, aGal(nn/tf) C XaHO, and Gal(Qn/Ar) = x i -

Assume now that Gal(fin/A") = H = \ L , for some x € Z1 (Tn, nn(£ln)). Then #
is open and closed, hence [Fn : H] < +00, since Fn is compact. Let K = Q%, since
H is closed then Gal{nn/K) =Ti = H. From Hilbert's Theorem 90 (Theorem 2.7),
we have x € Z ' ( F n , / i n ( n n ) ) = Bl(Tn,nn(Q,nj). Therefore there exists a € 9,'n so that
X = XQ> that is Xa(<7) = x M = <r(ai)/a, for every <r € F n . Let CTI, . . . ,<T4 € Fn be the
representatives of left cosets of H in F n . Since Oi(a)/a € /xn(f2n) for every i = 1,...,t,
there exists m dividing n so that [<Ji(a)/a]m = 1 for every i. Given a € F n , a = CiT
for some i and some r € if, we have (r(am) = c*m for every a € F n , then a m € F. The
equivalence r(a)/a — 1 if and only if r € # = xx> guarantees K = F(a) since H is
closed, that is K is a simple radical of exponent dividing n. D

THEOREM 3 . 2 . Let A ' /F be a finite extension, A" < Qn. Then K/F is a
radical extension of exponent dividing n if and only if there exists a subgroup U ^
Zl(rn,nn(Sln)) so that Gal(fin/A") - U1.

PROOF: Assume K — F(A), where A/F* is a finite subgroup of cog(K/F) of
exponent dividing n, and let U = {xQ | ce € A}. One verifies that U is a subgroup of
Z1(rn,nn(£ln)). We have, UL = f] X"1"- We also have that every x € U is continuous

(previous theorem) and x 1 — X~l{^)- Thus x x is open and closed. Therefore UL

is a closed subgroup of Fn. We also have that the relation a € U1- is equivalent to
a(a)/a = x<*(0O = 1 for every a € A, that is a(a) = a for every a € A", or equivalently
a € Ga\{Qn/K), so Gal(fin/A") = Ux.

Conversely, assume there exists U ^ Z1 (Tn, (i(Qn)) so that Gal(ftn/Af) = U1. Let
A = {a € n n I Xa € U).

It is straightforward to show that A is a subgroup of fi*. Since K/F is finite then
t / 1 is open in Fn> so compactness of Fn implies [Fn : U1} < +00, actually UL is open
and closed. Let T\, ..., rt be a set of representatives of the left cosets of U1 in Fn, hence
given a € Fn, a = np for some i and some p € UL. If a € A then Xa{o) € /i(fin)
implies that there exists na € N so that [a (a ) /a ]" ' = 1. Since p G C/x, it follows
that XO(CT) = Xa(riP) = Xc(ri)TiXa{p) = Xo(ri). Hence [a{a)/a]ni = [^(aj/a]"1 = 1,
for some n ! , . . . , n ( positive integers. Let N — lcm{n!,... , n ( } . Then [a(a)/a]N =
a{aN)/aN = 1, for every a € Fn. Thus aN e F, that is A < T{Sln/F). It is clear
that F(A) is the fixed field of U1 and since UL is closed and UL = Gal(fin/A'), then
K = F(A). D

When studying radical extensions F(a)/F, where a" € F for some positive integer
n, it is important to know when the order of aF* is equal to the degree [F(a) : F ] . Also,
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in solving various problems related to radical extensions, it might be the case that a field
extension is not radical, but a repeated radical extension. The question is: How can
we use crossed homomorphisms to determine if a given extension is a repeated radical
extension? The next result goes into that point.

THEOREM 3 . 3 . Let E/F be a finite and separable extension of degree n so that
charF does not divide n. Let f2 be the Galois closure of the extension E(£n) over F with
G = Gal(Q/F) and H = Ga\(Sl/E). Let K = En F (C) . Then E/K is a radical tower
if and only if there exists a tower of Selds

such that

(i) o{Li) = Li for each a € H and for alli = 0,...,r,

(ii) Li+i/Li is a cyclic extension for all i — 0 , . . . , r - 1,

(iii) if Gal(Li+i/Li) = (TJ) and dt — [Li+i : Lt], then (TJ) is H-isomorphic

to (C*) where H acts by conjugation over (TJ) under restriction and by

canonical action over (CdJ for all i = 0 , . . . , r - 1.

PROOF: Observe that E(£n)/E is a Galois extension with Ga\(E(^n)/E)
S Ga.l{F(Cn)/K). Therefore [£(G) : E] = [F(C) : K) and [£(<;„) : F(C)] ={E:K].

We assume that E/K is a radical tower. Let KQ = K C Kx C • • • C Kr — E
be a tower of fields such that for all i = 0,. . . , r — 1, there exists $ € K,+i such that
Ki+1 = Ki{pi) with #*< € Kt where dt = [Ki+i : K{]. Let L{ = K^) for all i = 0 , . . . ,r.
We have that /fjF(C) = L{ with ff4nF(Cn) = K for which Gal(Li/Ki) = Gal(F(Cn)//C).
Then [Li : K{] = [F(C) : K] and d{ = [Ki+1 : Kt] = [Li+1 : L{]. Since KiCE = QH and
Li+l = Ki+Mn) = Ki{Qn){pi) = Liifc) with tf € /T,- C 1^ we obtain that o{Li) = I ,
for all a € H and Li+\/Li is a cyclic extension. Therefore, (i) and (ii) of the theorem
hold. Now we establish (iii). Let rt be a generator of the Galois group of the extension
Li+i/Li such that Ti(/?j) = CdjA- Let a e H and we write a(Q{) = ££ for some aff.
Then, a(pi) = ft and aTia-1!*^, e Gal(Li+1/Li) where ( a n a " 1 ) ^ ) = QPi = Tf-(ft),
that is, OTjCr"1! .̂,., = T,a". Therefore, we have (iii).

Conversely, assume the conditions. By Kummer Theory, there exists aj € Li+l

such that Z/j+i — Li(ai) with irr(ai, L{) = i * - a{ (a,- 6 Li). Let Tj e Gal(Li+1/Li)
be such that T;(c*i) = Crfia«- For each element a € H, we write a(Cn) = C w i t n

(aff,n) = 1, and hence a(Q{) = Q'{. Since cr(Li) = L{ (for all i = 0, . . . , r ) , we have
that Li+i = Li(ai) = L{{ V ^ K ) ) - B y Theorem 2.2, <r(ai) = 7*oJ° with j a e L; and
(6,,,^) = 1. Hence,

(1) ate) - Cl7.a*'

for some i,,. Let M* = Gal(fi/Li) (for each i - 0 , . . . , r ) . We have that Mi+1 < M{

with Gal(Li+i/Lj) = Mi/Mi+i. Also aMjcr"1 = Mj, since a(Lt) = L .̂ Extending Tj to
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a Li-automorphism of Q, we have that OTiO~l € M,-. Moreover, it is easy to check that

\ii+x = rf"6" . From (iii), we must have that

(2) ba = 1 mod di

that is oTiO-l\Li+l = rf* for each CT € # . Thus # < NG(Mj) and # M , < NG(M{).

Let K{ - Q,HMi for each i - 0 , . . . , r. Then we have the tower of fields Ko = K C

Ki C • • • C KT = E. Since Li+\/Li is a radical extension, we choose Xt € ^ ( M j . ^ f i ) )

so that x/" = Mi+i and x.(^) = 8{ai)/ai for each 5 € M,- (Theorem 3.1). We define

X7 : HMi — t n(Q,) given by xi(aO) :— o(xi{8)) for each a € H and for each 0 € Mj.

Firstly x7 is well defined. If a, o\ € H and 0, #i € M, with CT^ = O\0i, then a f V =

^il?"1 € HHMt = G&l{n/ELi) = Gai(n/E(Cn)) = MT C Afi+X. This implies that

0(c*j) = ^!(aj) and <7(£) = ui(C) for any n th root of unity £• Therefore

Secondly xi € Zl(HMi,n(Cl)). In fact, we shall prove that for all S,y € / fM,

(3)

We write 6 = 06 and 7 = CT^I where CT, CTJ € / / and ^, 6\ e M,-. By (1) and (2), we have

that (ai(oj))/a, € Lit and hence 0(oi(a,)/a,) = (ai(aj)/aj), equivalently

(4)

Let 62 = o^Oo! € M{. Then

0oi0i(ai)

• crXi(6) = <r9(Ti

Therefore, the relation (3) holds.

Finally \ t = HMi+i- W e h a v e t h a t for o € H and 6 G M{

ad e HMi+i
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Hence xt Q HMi+l. Conversely, if oO € HMi+i, then there exist o\ € H and #1 € Mi+i

such that 06 = oxQ\. Hence Xi(a0) = Yi{°\8\) = °i{Xi(8i)) = ^i( l) = 1- Therefore,

°e e xt-
Thus we have proved that the extension Ki+i/Ki is radical for all i. Let Pi € Ki+\

be such that Ki+i = K^fr) with X7(CT0) = (a8(Pi)/Pi) f o r e a c n CT e # a n d ^ € Mt.
Observe that £,< D Ki+1 = fiM- n nHMi+' = fi<M""M'«> = fi"Mi = Ku and (6>(A)/A) =
X7(#) = Xt(#) = ^("i)/a« f o r e a c h ^ € Afj, that is, ft/a* € Lj. Let bt € Lj be so that
Pi = biai. Then $ = bfaf G ̂  n A:i+i = #<. Therefore [A"i+1 : Ki) < d*. Since

r - l r-1

i=0 t=0

we have that [#i+i : AT,-] = d{ with x* - Pf - \xx{Pi,Ki). Therefore the extension E/K

is a radical tower. D
With analogous notation, to that of Theorem 2.4, we have:

COROLLARY 3 . 1 . Let E/F be a finite and separable extension of degree n so
that char F does not divide n. Assume E n F(Qn) = F and E{(,n)/F(^n) is cyclic with
Galois group generated by r. Then, the following conditions are equivaient

(i) E/F is a radical extension.

(ii) 0T0-1 = r°" for all a € Gal(£(C)/£), where <T(C») = C -
(iii) £ / F is a simple radical tower.

PROOF: We have that E{C,n)/F is normal, and (i) is equivalent to (ii) [Theorem 2.4].
By Theorem 3.3, (ii) implies (iii). It is clear that (iii) implies (i). D

4. RIGHT NORMAL CLOSURE, NOT NECESSARILY RADICAL

It is well known that if K/F is a radical extension, say K — F( \/a), then the normal
closure of K over F is K{C,n). A natural question is if the condition is also sufficient.
In [4] (at the end of the paper), an example was given to show that with the above
condition, K is not necessarily a radical extension of F. However, we shall see that for
extensions of degree 3 over <Q>, this condition is equivalent to one on the discriminant of
the polynomial defining the field K, which is necessary and sufficient for K to be radical
over Q. We also present an example to show that in general, not only is K not radical,
but K is not contained in a real repeated radical extension. This example also shows
that the condition on p in the following theorem is necessary.

THEOREM 4 . 1 . [5, Theorem 9.2] Let Q be a real Geld and suppose that f €
Q[X] is a solvable irreducible polynomial of degree p over Q, where p is a Fermat prime.

If f does not split over R, then f has a root that lies in a reaJ repeated radical extension

ofQ.
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THEOREM 4 . 2 . Let p be an odd prime. f(x) € Q[x) an irreducible and solvable
polynomial of degree p. Assume that f(x) has only one real root a. Then there exists a
real field L so that

« Q(a)CL,
(ii) L contains a subfeld F so that [L : F] =p and L/F is radical.

PROOF: Since f(x) is solvable of degree p. then its Galois group Gf is isomorphic
to a subgroup of the Probenius group .Fp(p-i) = Cv x Cp-\. If fi denotes the splitting
field of f(x), the condition Gj •-»• -Fp(p-i) guarantees the existence of a subfield K of H
so that K/<Q is cyclic and \K : Q] divides p — 1. If a denotes the real root of f(x) then
n = KQ(a) = K{a). We also have [K(Q : Q] is relatively prime to p. Set L = RnQ((p)
and F = R n if (Cp)- We have a £ i and since / does not split in K neither it does in L.
Hence L/Q is not normal, so F ^ L (otherwise L/Q would be a subfield of an Abelian
field, particularly normal over Q).

Since H(Cp)/Q is normal, we have L •£ fi(CP), moreover, [fi(CP) : L] = 2 and [L : F] =
p. We have L — F(a) and f(x) is irreducible over F. Thus L/F is not normal and the
normal closure of L/F is fi(Cp) = £(Cp)- An easy calculation shows that Gal(L((p)/F) =
Dp, the dihedral group of order 2p. Applying Theorem 2.5 one concludes that L/F is a
radical extension. D

THEOREM 4 . 3 . Let p be an odd prime and f(x) € Z[i] a monic and irreducible
polynomial of degree p. If a is a root off(x) and Q(a)/Q is radical then the discriminant
Df off is given by D} = (-l)p<J>-1)/2pm2 for some m e z

PROOF: Assume Q(a) = Q(</a) with n minimum and a € Z. Let /3 = </a and
g(x) = irr(0,Q), then g{x) divides x " - a = Il?=l(x-QP). If m is the degree of g(x), then
C*,0m € Q for some fe ̂  1. Also C* £ Q(a). Let C* = Q- If Ci 0 Q then Q(a) = Q(0), thus
p = [Q(a) : Q] = [Q(Ci) : Q] = <p(0. however, 0(0 is prime only for 2 = <j>{l) = tf>($).
Since p is odd this is not possible. Hence Q € Q and /9"1 € Q. The minimality of n
implies n = m and g(x) = xp — a. We also have

Dg = (-

since p - 1 = 0 (mod 2). It is well known that if Q(a) = Q(/?) with / (a ) = ^(^) with
/ and g irreducible polynomials, then Df = Dgm\ for some m\ € Z. From this the
conclusion follows. • D

THEOREM 4 . 4 . [5, Theorem 9.4] Let f(x) € Z[i] be a cubic irreducible monic
polynomial and K = Q(Q) with / ( a ) = 0. Tien K/Q is radical if and only ifDj = -3m2

for some m € Z.

P R O O F : The necessity follows immediately from the last theorem. Conversely, since
Df = -3m 2 , it follows that £3 belongs to the normal closure of Q(a). Now apply
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Corollary 2.2. D

THEOREM 4 . 5 . Let f(x) € l\x\ be a monk irreducible cubic polynomial and
K = Q(a) with f(ct) = 0. If Q denotes the normal closure of K over Q, then the
following statements are equivalent.

(i) n = A-(Cs).
(ii) K/Q is a radical extension.

(iii) Df = —3m2, for some m € Z

PROOF: (i) <£=*• (ii) by Corollary 2.2. (ii) <*=> (iii) by Theorem 4.4. D

Next, we shall use some terminology from cyclotomic fields, which is provided here.

Let p be an odd prime, <Q(CP) the pth cyclotomic field. The elements of Gal (Q(CP) /Q)
are: aa, 1 < a < p— 1, where <ro(CP) = Cp- As usual, Q(CP)+ will denote the maximal real
field of Q(CP), and h and h+ denote the class number of Q(CP) and Q(CP)+ respectively.
Let g be a fixed primitive root mod p and let i be an even integer, 2 ^ i ^ p - 3. Define

It is straightforward to show that Et is a unit in Q(CP)+-

With the above notation the following theorem holds [6, Theorem 8.14].

THEOREM 4 . 6 . p | h+ if and only if some Et is a pth power of a unit of Q(CP)
 + -

Let £ denote a fixed primitive 7th root of unity, and let K — Q(C)+ be the maximal
real subfield of Q(C), that is, K = Q(( + C"1)- If OK and UK denote the ring of
integers of K and the group of units of OK respectively, then by Dirichlet's Unit Theorem,
OK — (±1) x (wi) x ("2)1 where u\ and u2 generate infinite cyclic groups. With the
previous notation, we have:

LEMMA 4 . 1 . K is not contained in a reai repeated radical extension.

P R O O F : We shall prove the assertion by contradiction. Assume K is contained in a
real repeated radical extension. Choose one with minimum length. So we may assume
that Q C Mi C M2 C R is a tower of fields so that Mi/Q is a real repeated radical
extension, Mi fl K = Q, M2/Mi is radical K C M2. We also have that all subfields of
M2/M1 are radical (Corollary 2.1), hence the minimality of M2 and K/Q being normal
imply [M2 : Mi] = 3. Note that K(£3)/Q is a cyclic extension of degree 6 and the only
real subfield of K(£3)/Q is K which is not contained in Mi. Hence M! n K{C,3) = Q.
From Theorem 2.3, we have that K/Q is a radical extension, a contradiction. D

LEMMA 4 . 2 . Let Fi2 be the Frobenius group of order 42. Then, F42 has at least

two subgroups of order 3.

THEOREM 4 . 7 . Let u e UK n R be so that
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(i) x7 - u is an irreducible polynomial over Q(C),

(ii) ft/Q is a Galois extension, where ft = Q(£, J/u) and y/u is the real root of
x7-u.

Then,

(a) K(J/u)/Q is not a Galois extension,

(b) Gal(ft/Q) = F42, where Fi2 is the Frobenius group of order 42,

(c) there exists an extension F/Q of degree 7, F C ft, and F is not a radical
extension over Q,

(d) K{J/u)/Q is not a real repeated radical extension,

(e) the normal closure of the extension F/Q is ft,

(f) F is not contained in a real repeated radical extension.

P R O O F : Let G = Gal(ft/Q).

(a): If K(j/u)/Q is a Galois extension, then, in particular, K(-tfu)/K would be
so. Therefore, £ € K(y/u) C R. But, this is a contradiction.

(b): We have that [ft : Q] = 42. Hence, from (a), we have that G = F42.

(c): Note that Gal(Q/K( J/u)) is a subgroup of G of order 2, and hence, there
exists H, a subgroup of G of order 6 so that H D Gal(f t /# (^u)) (Hall's Theorem
on solvable groups). Let F = ClH. Then, F/Q is an extension of degree 7 so that
F C K^y/u). If F/Q were a radical extension, then F = Q(\/a) for some a € Q. Hence,
Q(C, ^ a ) = ft = Q(C, \/u) and a = u{c7 for some c € Q(C) with (i, 7) = 1 (Theorem 2.2).
Let N denote the norm of Q(£) to Q. Taking norm in the previous equation, we have
that a6 = ±N(c)7, since u is a unit in K and N(u) = ±1 . Hence, a6 is a 7th power in Q.
But this contradicts the irreducibility of x7 — a over Q. Therefore, F/Q is not a radical
extension.

(d): We have that A"( J/u) has only two proper subfields: F and K. By Lemma 4.1,
K is not contained in a real repeated radical extension. Therefore, K(j/u)/Q is not a
real repeated radical extension.

(e): Let fti be the normal closure of F over Q. Assume [fti : Q] = k, and let
a € F be so that F = Q(a). Then, ftj C Q(o,C) = ft- Since F/Q is not a Galois
extension, we have that A; — 14,21 or 42. On the other hand, by Hall's Theorem on
solvable groups, all the subgroups of F42 of order 42/A; are conjugates, and by Galois'
theory, fti is the only subfield of the extension ft/Q of degree k over Q. If A; = 14,
then F42 would have only one normal subgroup of order 3, contradicting Lemma 4.2. If
k — 21, then flj = K(a) = K{J/u), again a contradiction, since K(J/u)/Q is not a Galois
extension. Therefore, the normal closure of F/Q is ft.

(f): We shall prove the assertion using Theorem 2.3 as we did in Lemma 4.1.
Assume F is contained in a real repeated radical extension. We may assume that
Q C L\ C L2 C K is a tower of fields so that L\/Q is a repeated radical extension,
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L2/Li is radical, L\ D F = <Q> and F C L2. We shall prove that L\ n f2 = Q, where
n = Q(a, C) is the normal closure of F over Q (by (e)). Writing L = Lx Dfi(C) = Li nfi,
we have that L C R , since Lj C R. Hence, I C t , n /f(a) C A"(a) = K{l/u). By the
choice of L\, we have that L ^ F, K(a), and so the only possibility is L = Q or L = K.
By Lemma 4.1, L ^ K, and hence L = Q. Therefore, applying Theorem 2.3, F/Q would
be a radical extension, a contradiction. D

THEOREM 4 . 8 . With the preceding notation, there exists u € W*- D R so that

(i) x7 — u is irreducible over Q((),

(ii) fi/Q is a Galois extension, where fi = Q(C, \/u) with J/u the real root of

x1 — u.

P R O O F : We have tha t Gal(Q(C)/Q) = {aa | aa(C) = C . a = l , - - - , 6 } and

Gal(A-/Q) = (a 2 | K ) . Define

0 = 1

Then u is a unit in K which is not a 7th power of a unit of K (Theorem 4.6). Let
Cl = Q(£, \/U). Then, fi/Q(C) is a cyclic extension of degree 7. This proves (i). For (ii),
note that it is easy to see that o~2{u) — u4c7 for some c € K. Thus, by Theorem 2.2, f2/Q
is a normal extension whose Galois group is the Frobenius group F42 of order 42. D

COROLLARY 4 . 1 . There exists a solvable irreducible polynomial f(x) € Q(x)
of degree 7 which does not split over R and the only real root of f(x) does not lie in a
real repeated radical extension of Q.

PROOF: By. Theorem 4.8, and keeping the notation as above, we have that there
exists u € UK n R which satisfies the hypothesis of Theorem 4.7. Therefore, if f(x) —
irr(a,Q) (F = Q(a)), then / is a solvable irreducible polynomial over Q of degree 7
which does not split over R (otherwise, K(tfu) would be the normal closure of F over
Q, a contradiction), and / has not a root that lies in a real repeated radical extension of
Q (Theorem 4.7). D

REMARK. The discussion above also provides an example of a number field not contained
in a cyclotomic one, where the only finite ramified prime is seven, that is, its discriminant
is of the form 7e for some positive integer e.
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