Growth of Algebras

Brandon George, Luis Angel Herrera Flores, Brittany Schlomer Advisor: Dr. Harold Ellingsen

SUNY Potsdam REU

July 16, 2009

Some Definitions and Notation

Throughout, $F = \mathbb{R}$ or \mathbb{C} and $0 \in \mathbb{N}$.

Definition

Let A be a vector space over F equipped with an additional binary operation from $A \times A$ to A, denoted here by \cdot (i.e. if x and y are any two elements of A, $x \cdot y$ is the product of x and y). Then A is an algebra over F (a F-algebra) if the following hold for all elements x, y, and z in A, and all elements a and b in F:

$$(x+y) \cdot z = x \cdot z + y \cdot z$$

$$x \cdot (y+z) = x \cdot y + x \cdot z$$

$$\bullet (ax) \cdot (by) = (ab) \cdot (xy).$$

More Definitions and Notation

Definition

Let A be an F-algebra. We say that A is $\underline{\text{finitely generated}}$ provided there is $\{a_1, a_2, \cdots, a_r\} \subseteq A$ such that every element of A can be written as a finite linear combination of monomials in a_1, a_2, \ldots, a_r . V will denote the F-span of $\{a_1, a_2, \ldots, a_r\}$. V is called a finite dimensional generating subspace (fdgs) for A.

Subspaces of Interest

Definition

Let A be an F-algebra with finite dimensional generating subspace $V = \operatorname{span}\{a_1, a_2, \ldots, a_r\}$. The <u>length</u> of a monomial in A is the number of letters that make up the monomial, counting repetitions. Define $V^0 = F$ and for $n \ge 1$, V^n as the F-span of monomials in a_1, \ldots, a_r of length n and $A_n = \sum_{i=0}^n V^i$.

Proposition

For the A_n 's as defined above, $A_0 \subseteq A_1 \subseteq A_2 \subseteq \cdots$ is an ascending chain of finite dimensional subspaces of A and $A = \bigcup_{n=0}^{\infty} A_n$.

Definition of a Growth Function for an Algebra

Definition

Define a growth function of A with respect to V, $d_V : \mathbb{N} \to \mathbb{N}$ by $d_V(n) = \dim(A_n) = \dim(\sum_{i=0}^n V^i)$.

Question

What types of functions can these growth functions be?

• What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?
- fdgs: $V = span\{x\}$.

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?
- fdgs: $V = span\{x\}$.
- The growth function $d_V(n) = \dim(A_n) = \dim(\sum_{i=0}^n V^i)$.

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?
- fdgs: $V = span\{x\}$.
- The growth function $d_V(n) = \dim(A_n) = \dim(\sum_{i=0}^n V^i)$.
- Each $V^n = span\{x^n\}$, so $\{x^n\}$ is a basis for V^n .

- What is a growth function for $\mathbb{R}[x]$, the commutative polynomial algebra in one variable?
- fdgs: $V = span\{x\}$.
- The growth function $d_V(n) = \dim(A_n) = \dim(\sum_{i=0}^n V^i)$.
- Each $V^n = span\{x^n\}$, so $\{x^n\}$ is a basis for V^n .
- Since $\{1, x, \dots, x^n\}$ is a basis for polynomials of at most degree n, $d_V(n) = \dim(A_n) = n + 1$.

• What is a growth function for $\mathbb{R}[x, y]$, the commutative polynomial algebra in two variables?

- What is a growth function for $\mathbb{R}[x, y]$, the commutative polynomial algebra in two variables?
- fdgs: $V = span\{x, y\}$.

- What is a growth function for $\mathbb{R}[x, y]$, the commutative polynomial algebra in two variables?
- fdgs: $V = span\{x, y\}$.
- Each basis element of V^n will be of the form x^ay^b , where a+b=n. There are n+1 choices for a and one corresponding b for each a, so each V^n will have n+1 basis elements.

- What is a growth function for $\mathbb{R}[x, y]$, the commutative polynomial algebra in two variables?
- fdgs: $V = span\{x, y\}$.
- Each basis element of V^n will be of the form x^ay^b , where a+b=n. There are n+1 choices for a and one corresponding b for each a, so each V^n will have n+1 basis elements.
- $d_V(n) = \sum_{i=0}^n (i+1) = \frac{n^2+3n+2}{2}$.

• What is a growth function for $\mathbb{R}\langle x,y\rangle$, the free algebra in two variables? Note that x and y do not commute.

- What is a growth function for $\mathbb{R}\langle x,y\rangle$, the free algebra in two variables? Note that x and y do not commute.
- fdgs: $V = span\{x, y\}$.

- What is a growth function for $\mathbb{R}\langle x,y\rangle$, the free algebra in two variables? Note that x and y do not commute.
- fdgs: $V = span\{x, y\}$.
- Each V^n has 2^n basis elements since there are two choices for each letter of a monomial of length n.

- What is a growth function for $\mathbb{R}\langle x,y\rangle$, the free algebra in two variables? Note that x and y do not commute.
- fdgs: $V = span\{x, y\}$.
- Each Vⁿ has 2ⁿ basis elements since there are two choices for each letter of a monomial of length n.
- Thus $d_V(n) = \sum_{i=0}^n 2^i = 2^{n+1} 1$.

Ideals, Free Algebras, Representation

Definition

A subspace I of A is called an <u>ideal</u> if for all $a \in A$ and $x \in I$, $ax \in I$ and $xa \in I$.

Theorem

Every finitely generated algebra is isomorphic to a quotient of a finitely generated free algebra. In particular,

$$A \approx F\langle x_1, x_2, \dots, x_r \rangle / I$$
, for some ideal I of $F\langle x_1, x_2, \dots, x_r \rangle$.

• We can view elements of I as "zero".

Ideals, Free Algebras, Representation

Definition

A subspace I of A is called an <u>ideal</u> if for all $a \in A$ and $x \in I$, $ax \in I$ and $xa \in I$.

Theorem

Every finitely generated algebra is isomorphic to a quotient of a finitely generated free algebra. In particular,

$$A \approx F\langle x_1, x_2, \dots, x_r \rangle / I$$
, for some ideal I of $F\langle x_1, x_2, \dots, x_r \rangle$.

- We can view elements of I as "zero".
- In order to calculate the growth function for various finitely generated algebras, we may calculate them for quotients of finitely generated free algebras.

Ideals Generated by Monomials

• In particular, we will look at quotients whose ideals are generated by finitely many monomials in x_1, x_2, \ldots, x_r . We will refer to monomials as words and denote them by m_1, m_2, \ldots, m_k .

Ideals Generated by Monomials

- In particular, we will look at quotients whose ideals are generated by finitely many monomials in $x_1, x_2, ..., x_r$. We will refer to monomials as words and denote them by $m_1, m_2, ..., m_k$.
- An ideal generated by the set $\{m_1, m_2, \ldots, m_k\}$ is the set of linear combinations of monomials who contain at least one of m_1, m_2, \ldots, m_k as a factor (subword) denoted $I = (m_1, m_2, \ldots, m_k)$. Such ideals are called monomial ideals.

- From now on, we will let $A = F\langle x_1, x_2, \dots, x_r \rangle / I$ where I is a monomial ideal.
- Since words in I are considered zero, every element of A can be written as a linear combination of words not in I.
- Let \mathcal{B} be the collection of words not in I including 1, i.e., \mathcal{B} consists of the words that do not have any of m_1, m_2, \ldots, m_k as a subword.

Proposition

 \mathcal{B} is a basis for A.

- $V = \operatorname{span}\{x_1, x_2, \dots, x_r\}$ is a fdgs.
- V^n = the span of words in \mathcal{B} of length n.
- So, $\dim V^n = \text{number of words in } \mathcal{B} \text{ of length } n$.
- Since $A_n = \sum_{i=0}^n V^i$ and \mathcal{B} is a basis for A, $\dim A_n = \text{the number of words in } \mathcal{B}$ of length at most n.

Determine a growth function for $\mathbb{R}\langle x,y\rangle/I$ where I=(xy).

• Any word with xy as a subword is zero.

n	Words in \mathcal{B} of length n
0	1
1	x, y
2	x^2, y^2, yx
3	x^3, y^3, y^2x, yx^2

Determine a growth function for $\mathbb{R}\langle x,y\rangle/I$ where I=(xy).

• Any word with xy as a subword is zero.

n	Words in \mathcal{B} of length n
0	1
1	x, y
2	x^2, y^2, yx
3	x^3, y^3, y^2x, yx^2

• Given $n \ge 1$, there is only one word of length n in \mathcal{B} beginning with x, namely x^n . There are n such words beginning with y, namely $y^k x^{n-k}$ for $1 \le k \le n$.

Determine a growth function for $\mathbb{R}\langle x,y\rangle/I$ where I=(xy).

• Any word with xy as a subword is zero.

n	Words in \mathcal{B} of length n
0	1
1	x, y
2	x^2, y^2, yx
3	x^3, y^3, y^2x, yx^2

- Given $n \ge 1$, there is only one word of length n in \mathcal{B} beginning with x, namely x^n . There are n such words beginning with y, namely $y^k x^{n-k}$ for $1 \le k \le n$.
- So there are n+1 words of length n in \mathcal{B} , i.e., $\dim V^n = n+1$. Thus, $d_V(n) = \sum_{i=0}^n (i+1) = \frac{n^2+3n+2}{2}$.

We need a better way to count our words. One way involves using a directed graph.

Definition

A directed graph is a set V of vertices with a set E of ordered pairs of vertices called <u>arrows</u>.

Definition

Let u, v be words. We say u is a <u>prefix</u> of v provided there is a word w for which v = uw. We say u is a <u>suffix</u> of v provided that there is a word z for which v = zu.

Example

 x^2y is a prefix of x^2y^3x and yx is a suffix of x^2y^3x

- Let d+1, where $d \ge 2$, be the maximum length of the generators in I and $\{w_1, w_2, \ldots, w_k\}$ be words in \mathcal{B} of length d. We use this set of words as vertices for a directed graph.
- We draw an arrow from w_i to w_j provided there is a word in \mathcal{B} of length d+1 whose prefix of length d is w_i and whose suffix of length d is w_j . We will call our graph the <u>overlap graph</u> for \mathcal{B} , and denote it by Γ .

$$I = (yx^2, y^2x, xyx, yxy)$$

d+1 = maximum length of generators in I = 3

 $d = \max length - 1 = 2$.

vertices: x^2, y^2, xy, yx

 $x^2 \rightarrow xy$ provided there is a word of length 3 in \mathcal{B} whose prefix is x^2 and suffix is xy.

Words of length 3 in \mathcal{B} : x^3, y^3, x^2y, xy^2

Cycles

Definition

A <u>path</u> in a directed graph is a sequence of arrows in the same direction. We call path $u_1 \to u_2 \to \cdots \to u_t \to u_1$ a <u>cycle</u> provided $u_i \neq u_j$ for $i \neq j$. The <u>length</u> of a path is the number of arrows in it.

Proposition

Each path of length j, for $j \ge 0$, corresponds to a unique word in $\mathcal B$ of length d+j. Each word in $\mathcal B$ of length d+j corresponds to a unique path in our graph with j arrows.

$$\begin{array}{ccc} \mathbf{path} & \mathbf{word} \\ x^2 \to xy & x^2y \\ x^2 \to xy \to y^2 & x^2y^2 \end{array}$$

Theorem (Ufnarovski)

If Γ has two intersecting cycles, then the growth function for A is exponential.

If Γ has no intersecting cycles, then the growth function for A is bounded above and below by two polynomials of degree s where s is the maximal number of distinct cycles on a path in Γ .

Example Revisited

Example

$$I = (yx^2, y^2x, xyx, yxy)$$

d+1 = maximum length of generators in I = 3

 $d = \max length - 1 = 2$.

vertices: x^2, y^2, xy, yx

The overlap graph for \mathcal{B} has two cycles, so the growth function is bounded by a polynomial of degree 2.

Exponential Growth

It is known that growth functions for our algebras are either exponential or polynomial. We would like to know more specifically, for a given d, what types of growth functions are attainable.

Proposition

For some ideal I generated by words of at most length d+1, the corresponding algebra $F\langle x,y\rangle/I$ has exponential growth.

Proof.

Consider $I=(y^{d+1})$. Then the following cycles intersect: $x^d \to x^d$ and $x^d \to x^{d-1}y \to x^{d-2}yx \to x^{d-3}yx^2 \to \cdots \to yx^{d-1} \to x^d$. So by Ufnarovski's Theorem, $F\langle x,y \rangle/I$ has exponential growth.

Dr. Ellingsen's Conjecture

Conjecture (Dr. Ellingsen's)

If I is generated by words of at most length d+1, then the growth function is either exponential or is bounded by a polynomial with degree at most d+1.

We have shown for d=2 that the growth function must be either exponential or bounded by a polynomial of degree at most 3.

$$I = (y^2x, yx^2)$$

Additionally, we have shown that for d=3, the growth function must be either exponential or bounded by a polynomial of degree at most 4.

$$I = (yx^4, xyxy, yxyx, y^2x^2, y^3x)$$

What about d = 4?

$$yx^{3} \qquad x^{2}y^{2} \qquad y^{3}x$$

$$xyx^{2} \qquad yxyx \qquad y^{2}xy$$

$$x^{4} \qquad yx^{2}y \qquad xy^{2}x \qquad y^{4}$$

$$x^{2}yx \qquad xyxy \qquad yxy^{2}$$

$$x^{3}y \qquad x^{2}y^{2} \qquad xy^{3}$$

$$yx^{3} \qquad x^{2}y^{2} \qquad y^{3}x$$

$$xyx^{2} \qquad yxyx \qquad y^{2}xy$$

$$x^{4} \qquad yx^{2}y \qquad xy^{2}x \qquad y^{4}$$

$$x^{2}yx \qquad xyxy \qquad yxy^{2}$$

$$x^{3}y \qquad x^{2}y^{2} \qquad xy^{3}$$

$$I = (yx^4, xyx^3, yxyx^2, y^2x^2y, yx^2y^2, x^2y^3, yxy^2x, y^2xyx, y^3x^2, xy^2xy, y^4x)$$

 $I = (yx^4, xyx^3, yxyx^2, y^2x^2y, yx^2y^2, x^2y^3, yxy^2x, y^2xyx, y^3x^2, xy^2xy, y^4x)$ Thus, the conjecture fails for d = 4 because of the 6 cycles!

High Upper Bound

We would like to look at maximum possible degrees of polynomial growth functions.

$\mathsf{Theorem}\;(\mathsf{Ellingsen})$

If there are d + i words of length d, the growth function is either exponential or bounded by a polynomial of degree i + 1.

This gives us a really high upper bound on the possible degrees for our growth functions. There are 2^d words of length d, which we can write as $d+(2^d-d)$ words, so the growth of our algebra with corresponding ideal generated by words of length at most d+1 is either exponential or bounded by a polynomial of degree 2^d-d+1 .

Definitions

Definition

Let v be a word of length p and w a word of length $d \ge p$. w is periodic provided w is a prefix of v^j from some positive integer j. We call v a base for w and the length p is a period for w. The smallest possible period is the minimal period.

Example

- 1.) Let $w = x^2yx^2yx$. Then w has minimal period 3 with base x^2y . Note that w also has period 6 with base x^2yx^2y .
- 2.) Let $u = x^2yx^2$. Interestingly u has periods 3 and 4 with bases x^2y and x^2yx respectively.

Definitions

Definition

Let $w = a_0 a_1 \dots a_{d-1}$ be a word of length d. Then any word of the form $a_i a_{i+1} \dots a_{d-1} a_0 \dots a_{i-1}$ is called a cyclic permutation of w.

Note that we can draw an arrow from any word to exactly one cyclic permutation of itself, namely $a_0a_1 \dots a_{d-1} \rightarrow a_1a_2 \dots a_{d-1}a_0$.

Example

Let $w = xy^2xy$. Then the cyclic permuations of w are xy^2xy , y^2xyx , yxyxy, $xyxy^2$, yxy^2x . Note these all connect and give us a cycle: $xy^2xy \rightarrow y^2xyx \rightarrow yxyxy \rightarrow xyxy^2 \rightarrow yxy^2x \rightarrow xy^2xy$.

High Upper Bound Definitions for Periodic Words Lower Bound on Finding Upper Bound Maximum Possible Degree for d=4 and d=5 Counting Cycles

Lemma

Let w be a word of length d. If the minimal period of w is d, then w and its cyclic permutations form a cycle of length d.

Proposition

For some ideal I generated by words of length at most d + 1, the corresponding algebra has growth function of degree d + 1.

Proof.

Consider the path

$$x^d \to x^{d-1}y \to x^{d-2}y^2 \to \cdots \to x^2y^{d-2} \to xy^{d-1} \to y^d$$
. We have cycles of length 1 at x^d and y^d . Let $1 \le i \le d-1$. Each $x^{d-i}y^i$ has period d . By the lemma, they are on cycles of length d . Each vertex on a cycle has $d-i$ x 's and the different number of x 's makes the cycles distinct.

Case d = 4

We would like to know the maximum possible degree that is attainable for d=4. We can do this by putting as many distinct cycles on a path as possible by using the smallest cycles first. For d=4, there are $2^4=16$ possible vertices to use in cycles. We want to start by finding all the cycles which contain only one vertex, namely, x^4 and y^4 . By exhaustion, we can find all cycles containing 2, 3, and 4 vertices.

Number of vertices in a cycle	Number of cycles
1	2
2	1
3	2
4	3

Case d = 4

• Two distinct cycles with one vertex

$$yx^{3} \qquad x^{2}y^{2} \qquad y^{3}x$$

$$xyx^{2} \qquad yxyx \qquad y^{2}xy$$

$$x^{4} \qquad yx^{2}y \qquad xy^{2}x \qquad y^{4}$$

$$x^{2}yx \qquad xyxy \qquad yxy^{2}$$

$$x^{3}y \qquad x^{2}y^{2} \qquad xy^{3}$$

Case d=4

• One distinct cycle with two vertices

$$yx^{3} \qquad x^{2}y^{2} \qquad y^{3}x$$

$$xyx^{2} \qquad yxyx \qquad y^{2}xy$$

$$x^{4} \qquad yx^{2}y \qquad \downarrow \qquad xy^{2}x \qquad y^{4}$$

$$x^{2}yx \qquad xyxy \qquad yxy^{2}$$

$$x^{3}y \qquad x^{2}y^{2} \qquad xy^{3}$$

Case d=4

• Two distinct cycles with three vertices

$$yx^{3} \qquad x^{2}y^{2} \qquad y^{3}x$$

$$xyx^{2} \qquad yxyx \qquad y^{2}xy$$

$$x^{4} \qquad \downarrow \qquad yx^{2}y \qquad xy^{2}x \qquad y^{4}$$

$$x^{2}yx \qquad xyxy \qquad yxy^{2}$$

$$x^{3}y \qquad x^{2}y^{2} \qquad xy^{3}$$

Case d = 4

Three distinct cycles with four vertices

Case d = 4

By using two cycles with 1 vertex, one cycle with 2 vertices, two cycles with 3 vertices, and one cycle with 4 vertices, we use 14 out of the total 16 possible vertices 1(2) + 2(1) + 3(2) + 4(1) = 14. Thus, we could potentially connect these 6 cycles in a path which would correspond to a maximum possible degree of 6 for the growth function.

High Upper Bound Definitions for Periodic Words Lower Bound on Finding Upper Bound Maximum Possible Degree for d=4 and d=5 Counting Cycles

Counting Cycles

We need a better way to count cycles of small lengths.

Lemma

Let w be a word of length d. If w has a minimal period $p \le d$, w is a vertex on a cycle of length p. Additionally, every vertex on a cycle of length $p \le d$ must be periodic with period of length p. Moreover, the bases of length p for any two words on these cycles are cyclic permutations of each other.

Case d = 5

Using the previous lemma, we are able to count the cycles with up to 5 vertices.

Number of vertices in a cycle	Number of cycles
1	2
2	1
3	2
4	3
5	≥ 4

Similarly to the d=4 case, we can count the number of distinct cycles that we can put in a path using only $2^5=32$ vertices. 1(2)+2(1)+3(2)+4(3)+5(2)=32. This gives us an upper bound of 10 cycles.

Prime Cyclic Permutation

Proposition

For d prime, there are $\frac{2^d-2}{d}$ disjoint cycles of length d.

Example

- For d = 5, we have $\frac{2^5-2}{5} = 6$ cycles of length 5.
- We have connected all 6 cycles of length 5 on a path.

- We have also done this for d = 7 and obtained a growth of degree 20!
- We are currently working on finding an algorithm that allows us to do this for any d prime.
- We are also looking for a better way to count the cycles of small lengths and use them to find upper bounds on the degrees of our growth functions.

Conjecture

For d prime, all of the $\frac{2^d-2}{d}$ cycles of length d can be connected on a path.

Bibliography

- Ellingsen, Harold W. Jr., Growth of algebras, words, and graphs, Ph.D. Dissertation, April 1993.
- Krause, G.R. and T.H. Lenagan. Growth of algebras and Gelfand-Kirillov dismension, volume 116 of Research Notes in Mathematics. Pitman Publishing Inc., London, 1985.
- Ufnarovski, V.A., A growth criterion for graphs and algebras defined by words. Math. Notes, 31(3):238-241, March 1982.