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1. History

Jacques Hadamard

As an illustration of his idea, Hadamard uses the Laplace
equation

∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

= 0
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2. Inverse problems

In nature, as in mathematics, there are many pairs of prob-
lems where each of them is inverse to the other one, for in-
stance:

Direct problem: Find the zeros x1, ..., xn of a given
polynomial P (x) = a0 + a1x + · · · + anx

n

f (x) = x5 − 5x3 + 4x
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Inverse Problem: Find a polynomial of degree n with
given zeros x1, x2, · · · , xn.
Solution: P (x) = c(x− z1)(x− z2) · · · (x− zn)

Example if x = −2,−1, 0, 1, 2

p(x) = 4(x + 2)(x + 1)(x)(x− 1)(x− 2)
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Direct problem: Calculate the given polynomial
P (x) = a0 + a1x + · · · + anx

n at given x1, · · · , xn

p(x) = 4x5 − 20x3 + 16x
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Inverse problem: Find a polynomial P (x) of degree n
that assumes given values y1, · · · , yn+1 ∈ R at given points
x1, · · · , xn+1 ∈ R.

Solution: Lagrange interpolation polynomial.
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3. Well-posedness and ill-
posedness

Andrei Nicolaevich Tikhonov

There exist two kinds of inverse problems:Kx = y
1.- The first kind is when we know y and the operator K,
and we want determine x.
2.- The second kind is when we know y, x and some in-
formation about the operator K, and we want determine
explicitly K.
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Definition: Let X and Y be normed spaces and K : X →
Y a (linear or nonlinear) mapping. The inverse problem of
finding x, if y is known, such that Kx = y is called properly
posed or well-posed if the following holds.

1. Existence.

2. Uniqueness.

3. Stability.

Otherwise, the inverse problem ill-posed.
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Stability

T : X → Y .
If we have two points, x1 and x2, closes in X , then T (x1) and
T (x2) are closes in Y
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4. Example: well-posedness

Laplace Equation:
Suppose we have a disk of radius a and center in the origin
where the temperature is independent of time. Suppose we
know the temperature on the boundary of the disk. The
inverse problem is determining the temperature distribution
in the whole disk.
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It is known that the temperature u satisfies the PDE

4u = ∂2u
∂x2

+ ∂2u
∂y2

= 0

with the boundary condition

u(a, θ) = f (θ)

Definition: The functions that solve the Laplace equation
are called harmonic functions.
We can easily see that if f and g are harmonic functions then
cf + g is a harmonic function too for c ∈ R.

Maximum principles. In steady state the temperature
cannot attain its maximum in the interior (unless the tem-
perature is constant everywhere).

Analogously for the minimum.
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Claim: This is a well-posed problem.

1) Existence: It is known that the solution is

u(r, θ) =
∞∑
n=0

Anr
n cos(nθ) +

∞∑
n=1

Bnr
n sin(nθ)

0 ≤ r < a, −π ≤ θ < π
Where

f (θ) = u(a, θ) =
∞∑
n=0

Ana
n cos(nθ) +

∞∑
n=1

Bna
n sin(nθ)

A0 = 1
2π

∫ π
−π f (θ)dθ

Ana
n = 1

π

∫ π
−π f (θ) cosnθdθ

Bna
n = 1

π

∫ π
−π f (θ) sinnθdθ
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2) Uniqueness: Suppose that we have two solutions u1

and u2 for the Laplace equation with the same boundary
condition, so u1 − u2 is a harmonic function in the disk and
it satisfies the homogeneous boundary condition u1−u2 = 0.
Maximum principle implies that u1 − u2 = 0 everywhere
inside the disk, therefore u1 = u2.

3) Stability: If we change f , for f1, such that ‖f−f1‖∞ <
ε, that is max{|f (x)−f1(x)|} < ε, then we get a new solution
u1 for the Laplace equation with the condition u1 = f1 in the
boundary of the disk. Since u and u1 are harmonic functions
then u − u1 is a harmonic function too and therefore its
maximum and minimum are in the boundary, then ‖u −
u1‖∞ < ε.
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5. Example: ill-posedness

Differentiation
The direct problem is to find the antiderivative y with
y(0) = 0 of a given continuous function x on [0, 1], i.e., com-
pute

y(t) =
∫ t
0 x(s)ds, t ∈ [0, 1].

In the inverse problem, we are given a continuously differ-
entiable function y on [0, 1] with y(0) = 0 and we want to
determinate x = y′.
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This means we have to solve the integral equation Kx = y,
where K : X = C[0, 1]→ Y = C[0, 1] is defined by

(Kx)(t) :=
∫ t
0 x(s)ds, t ∈ [0, 1], for x ∈ C[0, 1]

Here we equip X with the norm ‖.‖∞
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Claim: The inverse problem of differentiation is ill-posed.

1)When we perturb the function y then the resulting func-
tion ỹ doesn’t have to be differentiable.

y g(x)

ỹ = y+ g Zoom(ỹ)
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2)Even though ỹ is differentiable, the derivative at a point
x doesn’t have to be close to the derivative of y at the same
point.

y δ sin(x/δ2)

ỹ = y + δ sin(x/δ2)
If δ is very small, then the error in the solution is huge.
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What happen if we change the norm?

Now we define Y := {y ∈ C1[0, 1] : y(0) = 0} equipped with
the norm ‖x‖C1 := max

0≤ t≤1
|x′(t)|.

If we perturb y by a function f (t), i.e., ỹ(t) = y(t) + f (t),
and we suppose f (t) =

∫ t
0 g(s)ds.

It can be shown that the error in the solution is lesser than
‖f (t)‖∞.

Therefore if ‖f‖∞ is small then the error in the solution is
small too.
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Example’s conclusions:

1)The existence and the uniqueness depend only on the
operator K and on the spaces X y Y .

2)The stability also depends of the norm in the spacesX y Y .
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6. The worst case error

Compact Operator

T : X → Y is a continous operator and T ′ : X → Y is a
compact operator.
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Theorem
Let X and Y be normed spaces and K : X → Y
a linear compact and one-to-one operator. Let the dimension
of X be infinite. Then there exist a sequence (xn) ⊂ X such
that Kxn → 0 but (xn) does not converge. We can even
choose (xn) such that ‖xn‖ → ∞. Furthermore K−1 : Y ⊃
K(X)→ X is unbounded.

Observations:

1) It can be seen that if the operator K, between spaces
with infinite dimension, is compact then the inverse problem
Kx = y is ill-posed.
2) It is known that the integral operators like (Kx)(t) :=∫ t
0 x(s)ds are compact.
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How large could the error be in the worst case if the error in
the right side y is at most δ?
The answer is already given by the previous theorem: If the
errors are measured in norms such that the integral operator
is compact, then the solution error could be arbitrarily large.

Lanczos wrote in his book ”Linear Differential Operators”
that A lack of information cannot be remedied by any
mathematical trickery!
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Let y and ỹ be twice continuously differentiable and let a
number E > 0 be available with

‖y′′‖∞ ≤ E and ‖ỹ′′‖∞ ≤ E

Set z := ỹ − y, and assume that z′(0) = z(0) = 0 and
z′(t) ≥ 0 for t ∈ [0, 1].
It can be proved that ‖x̃(t)− x(t)‖ ≤ 2

√
Ez(t)
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Definition: Let K : X → Y be a linear bounded operator
between Banach spaces, X1 ⊂ X un subspace, and ‖ · ‖1
a ”stronger” norm on X1, i.e, there exists c > 0 such that
‖x‖ ≤ c‖x‖1 for all x ∈ X1. Then we define

F(δ, E, ‖ · ‖1) := sup{‖x‖ : x ∈ X1, ‖Kx‖ ≤ δ, ‖x‖1 ≤ E}
and call F(δ, E, ‖ · ‖1) the worst-case error, for the error δ
in the date and a priori information ‖x‖1 ≤ E.
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Definitions:
1)

L2(I) := {x : I → R :
∫
I(x(s))2ds <∞}

If x ∈ L2(I) then ‖x‖L2 =
√∫

I(x(s))2ds

2)

Hp(a, b) := {x ∈ Cp−1[a, b] : x(p−1)(t) = α +
∫ t
a ψds}.

Where α ∈ R and ψ ∈ L2(a, b)
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Again, consider the problem of differentiation, but now set
X = Y = L2(0, 1),

(Kx)(t) :=
∫ t
0 x(s)ds, t ∈ (0, 1), x ∈ L2(0, 1)

and

X1 := {x ∈ H1(0, 1) : x(1) = 0}

If x ∈ X1 then x(t) = α +
∫ t
a ψds

We define ‖x‖1 := ‖x′‖L2. Then the norm ‖ · ‖1 is stronger
than ‖ · ‖L2. We can prove for every E > 0 and δ > 0

F(δ, E, ‖ · ‖1) ≤
√
δE
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Now if we define

X2 := {x ∈ H2(0, 1) : x(1) = 0, x′(0) = 0}

If x ∈ X2 then x′(t) = α +
∫ t
a ψds

And ‖x‖2 := ‖x′′‖L2. Then the norm ‖ · ‖2 is stronger than
‖ · ‖L2. We can prove for every E > 0 and δ > 0

F(δ, E, ‖ · ‖2) ≤ δ2/3E1/3
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