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• Goal: advance current understanding of nonlinear diffusion in spatially discrete systems.
 
● Specific objective: systematic study of semidiscrete models of 1d PME,

Work in progress.

 

∂u
∂ t

= ∂2um

∂ x2 ,  x , t ∈ℝ×ℝ , m1 .
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Part I: discrete models
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1. Porous medium equation (PME)

∂u
∂ t

=um , x , t ∈ℝd×ℝ , m1 .

Physical applications: flow of an isentropic gas through a porous medium, groundwater
filtration, heat radiation of plasmas, spread of a thin layer of viscous fluid under gravity, boundary 
layer theory, population dynamics, etc. (cf. [Váz07], [Aro86], [GM77]).

Will focus on 1d PME:
∂u
∂ t

= ∂2um

∂ x2 , x , t ∈ℝ×ℝ , m1 .

Part I
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1. Porous medium equation (PME)

Important quantities associated to PME:

scaled pressure:                                      satisfies                                                                                 w= m
m−1

um−1

∂w
∂ t

=m−1w ∂2w
∂ x2  ∂w∂ x 

2

, x , t ∈ℝ×ℝ , m1 . (SPE)

M-pressure:                   satisfiesv=um

∂v
∂ t

=mv
m−1
m ∂2v

∂ x2 , x , t ∈ℝ×ℝ , m1 . (mPE)

The theory of the PME can alternatively be developed from (SPE). 

Part I
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1. Semidiscrete models

(a) Discrete scaled pressure (DSP) w j :=w  jh  , h0 , j ∈ℤ

w x jh  w j1−w y−1/2h
w xx  jh  w j1−2w jw j−1/h

2

Let                                                                                                                                                          (DSP)

then                                                                                                                                                     (DSPE)

Define discrete scaled density (DSD):

                                                                                                                                                              (DSD')

then                                                                                                                                                  (DPME')

where

W t j :=w j t  , j∈ℤ

ẇ j=m−1w j w j1−2w jw j−1

4
w j1−w j−1

2 , j∈ℤ , =h−2

U t j =u j  t  :=w j t 
1

m−1 , j∈ℤ , =m−1
m 

1
m−1

u̇ j=m−1u j u j1
m−1−2u j

m−1u j−1
m−1

4
u j

2−mu j1
m−1−u j−1

m−12 , j∈ℤ

=mm−1−2

Part I
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1. Semidiscrete models

(b) Discrete m-pressure (DM-P)

v̇ j=mv j
m−1
m v j1−2v jv j−1 , j∈ℤ

V t j  :=v j t  , j∈ℤ

(DM-PE)

(DM-P)

(c) Discrete scaled density (DSD)

Let G(x) sufficiently smooth, then

Let                                                          then it follows from above that

                                                                                              .      

If                                  and                 we get 

G x =G x j∂xG x jx−x j
1
2
∂x

2G x jx−x j
2O x−x j

3 .

x j1−x j= x j−x j−1= h0

G x j1G x j−1= 2G x j∂x
2G x jh

2O h4

G x =F ux F=um ∂x
2 umx j=

1
h2 u

mx j1−2umx ju
mx j−1O h2

Part I
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1. Semidiscrete models

This suggests defining                                                                                  (DSD)

such that                                                                                                     (DPME)  “classical discretization”

Lemma: when dealing with nonnegative solutions, (DM-PE) and (DPME) are equivalent; i.e., if 
        satisfies (DPME) then                 satisfies (DM-PE); likewise, if         satisfies (DM-PE) then
                   satisfies (DPME).

Issues concerning (DPME): numerical (failure to reproduce simultaneous and non-simultaneous
Blow-up conditions, cf. [BQR05]),  there is more than one way of discretizing PME as opposed
to just one in the case of (SPE)

Questions:
Can we find other semidiscrete models for PME which do not suffer from numerical drawbacks
like its “classical” discretization (e.g.: (DPME')). What can we learn from such modes (e.g., 
existence proofs of traveling waves and diffusion phenomena)?

U t j := u j t  , j∈ℤ

u̇ j=u j1
m −2u j

mu j−1
m  , j∈ℤ , =h−2

u j v j=u j
m v j

u j=v j
1 /m

Part I
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umxx=m m−1um−2ux
2m um−1uxx

Semidiscrete models for

u j
m−2

1
m−1 ∑k=0

m−2

u j1
m−2−k u j−1

k

u j
s1

s1 ∑k=0

s

u j1
s−k u j−1

k

1
2s1∑k=0

2s

u j1
2s−k u j−1

k

mm−1 ×


4 u j1−u j−1

2


2 [u j1−u j

2u j−u j−1
2]


3 [u j1−u j

2
u j1−u ju j−u j−1

u j−u j−1
2]

u j
m−1

1
m∑

k=0

m−1

u j1
m−1−k u j−1

k

1
2s3 ∑

k=0

2  s1

u j1
2 s1 −k u j−1

k

u j
s1

s1 ∑k=0

s

u j1
s−k u j−1

k

× m× × [u j1−2u j
u j−1]

m−2=2s1

m−2=2s

m−2=2s1

m−2=2s

single-power term

odd symmetric-product avg. 

symmetric product sum

secant approximation

square average

three-point 
difference

Table A: col. 1 and 3 entries correspond. 12 models total

symmetric-product average 

Part I
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Part II: traveling wave solutions in 1d reaction-diffusion lattices
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3. Traveling wavefronts

Prototype lattice, discrete cable equation (bistable): electrical activity in myelinated nerve fibers,

where                                                or                                                                   (cf. [KS98]).

Traveling wave  with speed c:

such that

Theorem (Keener, 1987): for any bistable function f ,  there is a number         such that if                
then the discrete bistable equation has a standing solution, i.e. a solution to 

and therefore propagation fails.  

(On proof: maximum principle and comparison arguments.) 

u̇ j=u j1−2u ju j−1 f u j , j∈ℤ

f u=u u−1a−u , f u=−uH u−a ; 0a1

u j t = jct  ,∀ j∈ℤ , ∀ t∈ℝ

 :ℝ[0,1] , ∈C1 , lim∞ =0 , lim∞ =1

∗ ≤∗

Part II

0=u j1−2u ju j−1 f u j
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3. Traveling wavefronts

Part II

Some results.
                                                                                                                                      
Theorem (Zinner, 1992):  discrete Nagumo eq.
f Lipschitz continuous and such that 

                                                                                          and  

Then there exists         such that for              DN eq admits a traveling wave solution, with 
monotone increasing differentiable profile, which propagates at constant speed c > 0; i.e.,

On proof: (artisan) Brower's fixed point and a homotopy invariance arguments.          

∫0

1
f x dx0 .

u̇ j=u j1−2u ju j−1 f u j

d∗ dd∗

U∈C1 ℝ ,0,1 , U −∞=0 , U ∞=1 , U ' x0 ∀ x∈ℝ
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3. Traveling wavefronts

Zinner's proof structure has 4 steps:

Step 1: consider auxiliary system:

                                                                         Where

Auxiliary system has a monotone traveling wave solution only if finitely many              are 
different from zero or one; therefore, can consider system is finite dimensional. 

v̇ j=u j1−2u ju j−1u j−
1
4

u j= P v j
P v j :=

0 if v j0
v j if 0≤v j≤1
1 if 1v j

u j 0

Part II
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3. Traveling wavefronts

Step 2:  set up a fixed point problem for the initial value problem,

v̇ j=u j1−2u ju j−1u j−
1
4

u j= P v j
v j 0=x j ; 0≤x j≤1 , j=0, ... N ; u−1=0 ,uN1=1

ivp has a unique solution which depends continuously on the initial data

In a suitably chosen (nonempty and convex) space        of increasing sequences  
the following “shifted” Poincaré map is continuous and maps         into

                                                                                                  By Brower's fixed point theorem, T
                                                                                                  has a fixed point.  

u x ; t={u jx ; t } j=0
N

T : X ℝN1

Tx j :=
0 for j=0
u j−1 x ; for j=1 , ... , N

X {x j} j=0
N

XX

Part II
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Step 3:   fixed point of                   is a traveling wave for the auxiliary problem. 
Homotopy argument: consider sequence            converging to  f , continuously deform 
      into           so that fixed points of          are continued to fixed points of            .

Step 4: the (shifted!) sequence of fixed points              converges to a fixed point of DN eq.

Zinner 1991: Global stability of traveling waves (f can have more than one zero in (0,1) ).
Zinner et al (1993): traveling waves for the discrete Fisher equation f(0)=f(1)=0, f(x)>0 in (0,1).

    

3. Traveling wavefronts

T h=T 0
{hk}

hk hk1 T k T k1

{uk}

Part II
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Fu et al (1999): existence of traveling wavefronts for

m >1:  DPME with a Fisher-type reaction term.

“Novelty:”*  introduce Monotone Iteration Method (MIM) for              ,  extending Zinner's 
case.
 
Drawbacks: method doesn't work for 1<m<2 (but Zinner's argument does), MIM uses the 
explicit form of f.

*the concept of upper and subsolution, pivotal for MIM, appears already in [Zin93]

3. Traveling wavefronts

u̇ j=u j1
m −2u j

mu j−1
m  f u j , j∈ℤ , m≥1

f u=u 1−u

m≥2

Part II
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3. Traveling wavefronts

MIM steps:

Step 1: choose ansatz form,

u j t = jct  ∀ n∈ℤ , ∀ t∈ℝ ,

 :ℝ[0,1] , −∞=0 , ∞=1
c0 , ∈C1

Part II
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Step 2: substitute in DPM eq:                                    

                                                                                                                                                                (FW)

let                  such that                                                  and

c ' =d [m1−2mm−1]1−

∈ℝ , 2md1/c , d0

H [] := d
c
[m1−mm−1]1

c
1− , ∈ℝ

Function space  S={∣−∞=0 , ∞=1 ,  '≥0 }

Lemma 1: (H is order-preserving and nondecreasing)  
let                                       such that                      ,  then
Moreover                  is nondecreasing. 

∈S ,  :ℝℝ ≤≤1 H []t ≤H []t  ∀ t∈ℝ ;

3. Traveling wavefronts

H []

Part II
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Lemma 2:         satisfies (FW) if and only if it satisfies  

                                                                                                                                                          (IFW)

Step 3: upper and lower solutions

Def.:                             a.e. differentiable is an uppersolution of (FW) if

If instead of         one has         then         is called a  lower solution.

        

c ' ≥d [m1−2mm−1]1−

 :ℝ[0,1]

=∫
−∞



e sH [] s ds



3. Traveling wavefronts

≤≥ 

Part II
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Proposition:  

(a) let  m≥2  and                                             then

       is an upper solution of (FW).   

(b) let  m>1 , then for any ε,  0 < ε < min{m-1 , 1}  and  M  sufficiently large, 

is a lower solution of (FW).

Note that:

  

d≤4 sinh2 m/2c−1   :=min {e/c ,1}

−:=max {0,1−Me/ce/c}

0≤−≤ ≤1 ∀∈ℝ , −≠0 , −∞=0 , ∞=1 ,  ' ≥0

3. Traveling wavefronts

Part II
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Step 4:  iterative scheme 

Proposition 2: 

(a)

(b)

(c)                                            (limit exists),                                   is non decreasing,   

1  := e−∫
−∞



e sH []s ds , ∈ℝ

1 ' ≥0 , − ≤1≤ , ∀∈ℝ

k1 := e−∫
−∞



e sH [k ]s ds , ∈ℝ , k∈ℕ

k1 ' ≥0 , − ≤k1≤k ≤ , ∀∈ℝ

limk∞ k = −≤≤ , 

−∞=0 , ∞=1

3. Traveling wavefronts

Part II
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Theorem (Fu, Guo, Shieh, 2002)

For DPME

(a) for each c>0, m≥2  and                                       ,   there exists a wavefront traveling at speed c 
      
(b) for each c>0,  2>m>1  and                                                                      ,  there exists a wavefront 
traveling at speed c.

Chen and Guo (2002) Asymptotic stability of traveling wavefronts.
___________  (2003) general monostable reaction terms.
Chen, Fu and Guo (2006) uniqueness of traveling fronts for given c.  
    
      

u̇ j= d u j1
m −2u j

mu j−1
m u j1−u j , j∈ℤ

d≤4sinh2 m /2 c−1

d sup r0 rc−14sinh2mr /2−1

3. Traveling wavefronts

Part II
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4. Open questions

• Applicability of MIM is limited to                and Fisher-like reaction terms . 
Can we design a homotopy argument such that it is applicable to more general terms?

• Can MIM be applied to table A semidiscrete models? How does the dynamics of 
these models compare against the dynamics of the “classical semidiscretization”? Should we 
instead work with DSPE or DM-PE? (MIM)

• Start systematic study from DPME (no reaction terms). Interesting points: 
Single-pulse response, waiting times, confinement.  (work in progress) 

m≥2

Part II



  25

5. Bibliography

[Aro86] Aronson, D.G. The porous medium equation. LNM 1224, Springer (1986) pp. 1–46.

[BQR05] Brändle, C.; Quirós, F.; Rossi, J.D. An adaptive numerical method to handle blow-up
in a parabolic system. Numer. Math. 102 (2005) pp.39-59.

[CG02] Chen, X.; Guo, J-S; Existence and asymptotic stability of traveling waves of discrete 
quasilinear monostable equations. JDE 184 (2002) pp.549-569.

[CG03] Chen, X.; Guo, J-S; Uniqueness and existence of traveling waves for discrete quasilinear
monostable dynamics. Math. Ann. 326 (2003) pp. 123-146.

[CFG06] Chen, X.; Fu, S-G; Guo, J-S; Uniqueness and asymptotics of traveling waves of monostable
Dynamics on lattices. SIAM J. Math. Anal. Vol. 38, no. 1 (2006) pp. 233-258.
 

[FGS99] Fu, S-C; Guo, J-S; Shie, S-Y. Traveling wave solutions for some discrete quasilinear 
parabolic equations. Nonlin. Anal. 48 (2002) pp. 1137-1149.

[GM77] Gurtin, M.E.; MacCamy, R. On the diffusion of biological populations. Math. Biosc. 33 
(1977) pp. 35–49.

[Keen87] Keener, J. Propagation and its failure in coupled systems of discrete excitable cells,
SIAM Journal on Appl. Math. 47 (1987) pp.556-572.
 



  26

5. Bibliography

[KS98] Keener, J.; Sneyd, J. Mathematical Physiology. Inter. Appl. Math. 8, Mathematical 
Biology (1998) Springer-Verlag. ISBN: 0-387-98381-3.

[Váz07] Vázquez, J.L. The porous medium equation, mathematical theory. Oxford 
Mathematical Monographs. Clarendon Press-Oxford (2007) ISBN: 978-0-19-856903-9.-9.

[Zin92] Zinner, B. Existence of traveling wavefront solutions for the discrete Nagumo 
equation. JDE 96 (1992) pp.1-27.
[Zin91] Zinner, B. Stability of traveling wavefronts for the discrete Nagumo equation. SIAM J. 
Math. Anal. (1992) v.22, no. 4 pp. 1016-1020.

[Zin93] Zinner, B. Traveling wavefronts for the discrete Fisher's equation. JDE (1993) 105 
pp.46-62 



  27


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

