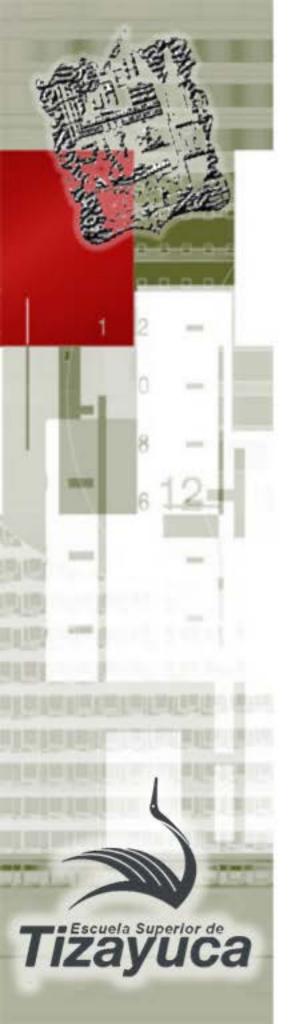


Universidad Autónoma del Estado de Hidalgo Escuela Superior de Tizayuca



Área Académica: Sistemas Computacionales

Tema: Amplificadores Operacionales (Introducción)

Profesor: M. en C. Luis Rodolfo Coello Galindo

Periodo: Enero-jJunio de 2012

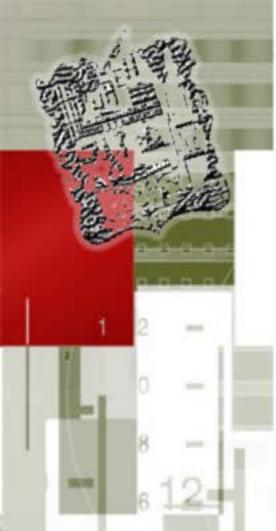
Tema: Amplificadores Operacionales (Introducción)

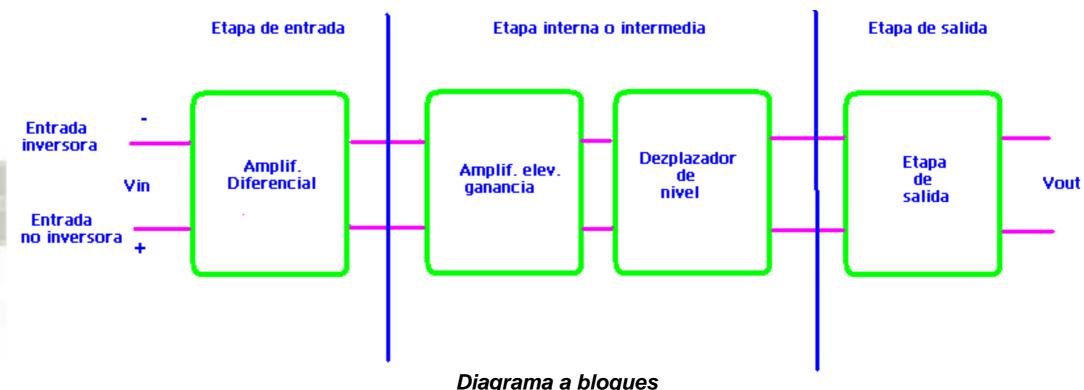
Abstract

The operational amplifier is a multifunctional device, initially created to perform basic mathematical operations, and although given their characteristics was developed to make it a high performance integrated component, so it is important to know their main features.

Keywords: Operational Amplifier, Integrated Circuit, Gain

 Circuito multi-elemento formado principalmente de elementos como resistencias, condensadores y transistores conectados en un mismo integrado.

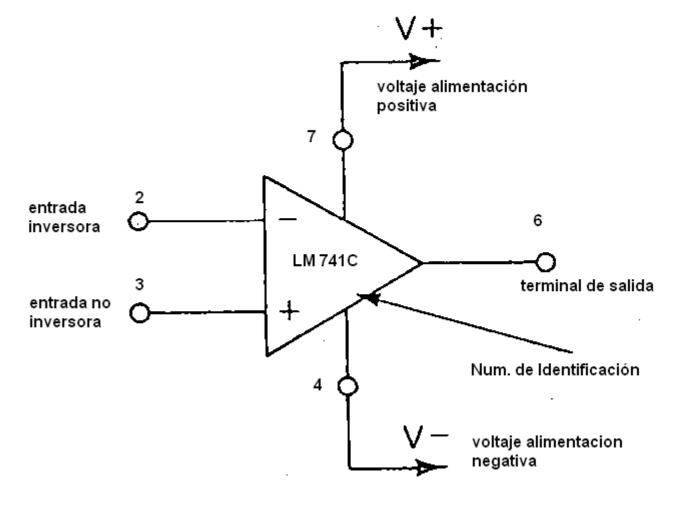

Características:

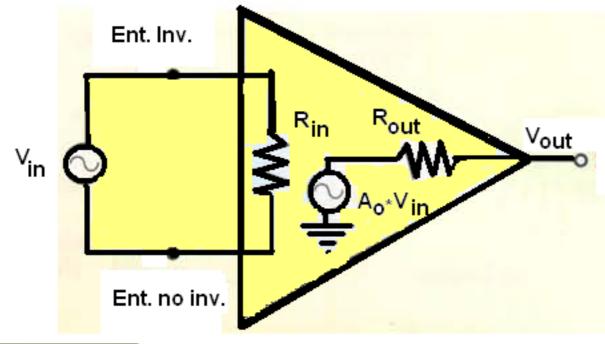

- Ganancia de tensión en lazo cerrado
 - Impedancia de entrada
 - Impedancia de salida
- Corriente de polarización de entrada
- Margen de tensiones de alimentación
 - Margen de tensiones de salida
 - Tensión offset

 Posee características tales que algunas aplicaciones se puede considerar como "ideal"

Amplificador operacional real e ideal (Diferencias):

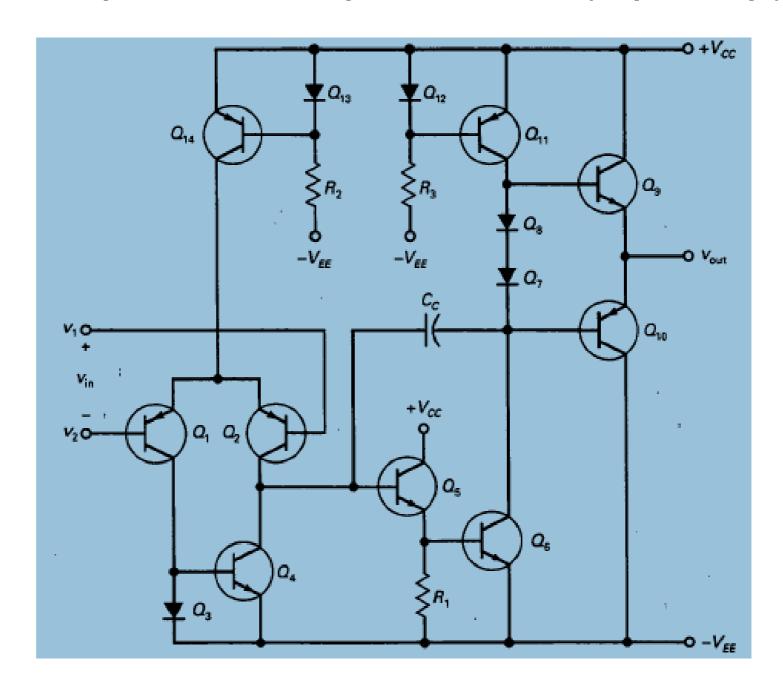
Características de un Op. Amp. Ideal	Características de un Op. Amp. Real
Resistencia de entrada (R _i): Infinita	Resistencia de entrada $R_i > 1 M\Omega$
Resistencia de Salida (R _o): Cero	Resistencia de Salida $R_o < 100 \Omega$
Ganancia de tensión en lazo abierto (A _v): infinita	Ganancia de tensión en lazo abierto $A_v = 103$ a 106
Ancho de banda (A.B.): Infinita	Ancho de banda A.B.= 1 MHz.
Ganancia en modo comun (A _c): Cero	

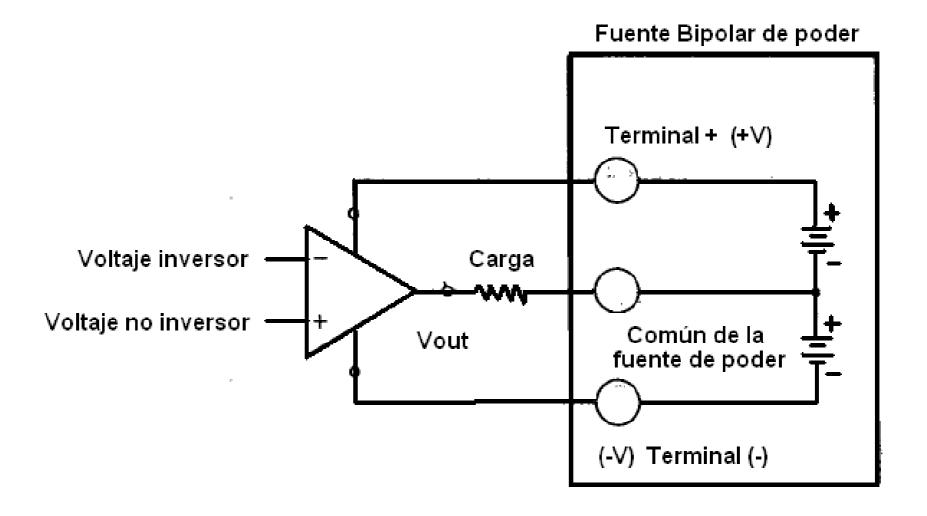


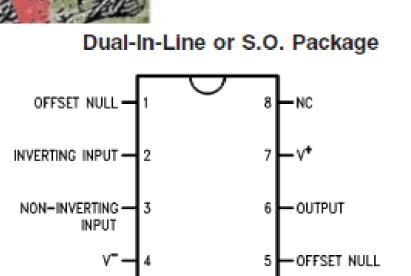

- Etapa de entrada: Zin (Impedancia entrada) muy elevada; Av (Ganancia de voltaje) muy grande.
 - Etapa intermedia: desplaza el nivel del voltaje de salida (cd) de la etapa diferencial hasta un valor optimo para polarizar la etapa de salida.
 - Etapa de salida: circuito en contrafase, permite que el Opam tenga una resistencia de salida muy baja.

Sí

Amplificador Operacional (Op-Amp)


Símbolo de circuito de propósito general (miniDIP de 8 terminales)


Circuito eléctrico interno



Circuito interno del amplificador LM741C

Cableado real de la fuente de poder de un Op. Amp

Configuración LM741C

Parameter	Conditions	L	LM741C		
		Min	Тур	Max	
Input Offset Voltage	T _A = 25°C				
	$R_S \le 10 \text{ k}\Omega$		2.0	6.0	mV
	$R_S \le 50\Omega$				mV
	$T_{AMIN} \le T_A \le T_{AMAX}$				
	$R_S \le 50\Omega$				mV
	$R_S \le 10 \text{ k}\Omega$			7.5	mV
Average Input Offset					μV/°C
Voltage Drift					
Input Offset Voltage	$T_A = 25^{\circ}C, V_S = \pm 20V$		±15		mV
Adjustment Range					
Input Offset Current	$T_A = 25^{\circ}C$		20	200	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			300	nA
Average Input Offset					nA/°C
Current Drift					
Input Bias Current	T _A = 25°C		80	500	nA
	$T_{AMIN} \le T_A \le T_{AMAX}$			0.8	μΑ
Input Resistance	$T_A = 25^{\circ}C, V_S = \pm 20V$	0.3	2.0		MΩ
	$T_{AMIN} \le T_A \le T_{AMAX}$				MΩ
	V _S = ±20V				
Input Voltage Range	$T_A = 25^{\circ}C$	±12	±13		V
	$T_{AMIN} \le T_A \le T_{AMAX}$				V

Características eléctricas

Configuración LM324A

Amplificador Operacional (Op-Amp)

Davamatav	LM324A			Unito	
Parameter	Parameter Conditions		Тур	Max	Units
Input Offset Voltage	(Note 8) T _A = 25°C		2	3	mV
Input Bias Current	$I_{IN(+)}$ or $I_{IN(-)}$, $V_{CM} = 0V$,		45	100	nA
(Note 9)	$T_A = 25^{\circ}C$		40	100	IIA
Input Offset Current	$I_{IN(+)}$ or $I_{IN(-)}$, $V_{CM} = 0V$,		5	30	nA
	$T_A = 25^{\circ}C$				
Input Common-Mode	V ⁺ = 30V, (LM2902, V ⁺ = 26V),	0	٧	' + –1.5	V
Voltage Range (Note	$T_A = 25^{\circ}C$				
10)					
Supply Current	Over Full Temperature Range				
	R _L = ∞ On All Op Amps				mA
	$V^+ = 30V \text{ (LM2902 } V^+ = 26V)$		1.5	3	
	$V^{+} = 5V$		0.7	1.2	
Large Signal	$V^+ = 15V$, $R_L \ge 2k\Omega$,	25	100		V/mV
Voltage Gain	$(V_O = 1V \text{ to } 11V), T_A = 25^{\circ}C$				
Common-Mode	DC, $V_{CM} = 0V \text{ to } V^+ - 1.5V$,	65	85		dB

Características eléctricas

Configuraciones básicas:

- Amplificador Inversor
- Amplificador No Inversor
 - Amplificador Sumador
 - Amplificador Derivador
 - Amplificador Integrador

Referencias

[1] "Amplificadores operacionales y circuitos integrados lineales". Robert F. Coughlin; frederick F. Driscoll. Edit. Prentice Hall Hispanoamericana.

[2] "Electrónica Analógica". Santiago Olvera Peralta. Edit. Paraninfo

[3] LM324 Datasheet, National Instruments.

[4] LM741 Datasheet, National Instruments.