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Abstract. A matrix completion problem involves completing a partially specified matrix to

satisfy a given property. The focus of this paper is completing the partially specified matrix so
that it will commute with a fully specified matrix. In particular, given a fully specified matrix A,

and a partially specified matrix X, when can we complete the remaining entries in X so that the

equation AX − XA = 0 will be satisfied? The three approaches used to complete matrices are
the Polynomial Approach, the Matrix Equation Approach, and the Graph Theoretic Approach.

The main theorem classifies all admissible patterns for a Jordan block. This allows us to identify

all patterns in a partially specified matrix X such that X can be completed to commute with
a Jordan block. The Classification Theorem is also extended to matrices with multiple Jordan

blocks and matrices that are permutation similar to a Jordan block.

1. Introduction

Matrix completion problems explore whether partially specified matrices can be completed in a
strategic way so that the completed matrix has a given property. Some examples of linear matrix
equations involving completions are: AX=B, AXB=C, AX+YB=0, AX+XB=0 and AX-XA=0
where X and Y are partially specified matrices, and A and B are the given fully specified matrices.
The last equation is of special interest since it is another way of writing AX=XA which defines the
commutative property between matrices. If X has no specified entries, then we can choose X to be
the identity matrix, A-1 if it exists, a power of A or a polynomial of A, and it will commute with
A. This is the easiest case. However, what if we one entry is specified? What about 2? What if n
entries in X are specified?

We explored the question: under what circumstances can the unspecified entries of a partial
matrix X be chosen so that X commutes with a fully specified matrix A? Or, when can X be
completed so that AX-XA=0? Geoffrey Buhl (1996) attempted to answer this question using
a Polynomial Approach and a Matrix Equation Approach. Buhls results and approaches were
extensively used during our research. We used the Polynomial Approach, the Matrix Equation
Approach as well as a less developed Graph Theory Approach. The Graph Theory Approach
involved using graph theory methods used by Leslie Hogben (2000).

Using these three methods, our research group created and proved numerous results involving
admissible patterns for Jordan blocks, permutations of Jordan blocks, matrices composed of direct
sums and matrices in Jordan canonical form. The Classification Theorem gives all the admissible
patterns of specified entries for a partial matrix X that allow it to be completed to commute with a
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matrix A when A is a Jordan block. Using the results from the Classification Theorem, we derived
new admissible patterns for partial matrices that commute with a matrix A when A is permutation
similar to a Jordan block. We built admissible patterns for a matrix equal to the direct sum of two
matrices. There is a peek at the general solution for the set of matrices that commute with a given
matrix A. The conditions under which X will commute with A are explored throughout this paper.

2. Prelimaries

Definition 2.1. A partial matrix pattern for an m× n matrix is a set of specified entry locations
α = {(i1, j1), . . . , (ik, jk)} ⊆ {(i, j)|1 ≤ i ≤ m and 1 ≤ j ≤ n}.

Definition 2.2. Given a partial matrix pattern α, an α-partial matrix A is a matrix where aij is
a specified entry if and only if (i, j) ∈ α.

In general the term ‘admissible’ is used to describe a partial matrix pattern that has a completion
that satisfies the given property of interest. Our property of interest is commutativity with a given
matrix A.

Definition 2.3. A partial matrix pattern α is an admissible pattern for an n× n matrix A if any
α-partial matrix X has a completion X̂ that commutes with A.

Definition 2.4. A partial matrix pattern α is a maximal admissible pattern for an n × n matrix
A if there exists no admissible patterns with size strictly larger than |α|.

Definition 2.5. Let A ∈ Mm,n(F), α ⊆ {1, . . . ,m} and β ⊆ {1, . . . , n}. The matrix Aβ is the
m× |β| submatrix of A lying in the columns β. The matrix αA is the |α| × n submatrix of A lying
in the rows α.

Definition 2.6. Let A ∈ Mn,n(F), α ⊆ {1, . . . , n} and β ⊆ {1, . . . , n}. The matrix A[α, β] is the
|α| × |β| submatrix of A obtained by deleting entries (i, j) if i is not in α or j is not in β. If α = β,
denote this principle submatrix A[α].

Definition 2.7. Let A = (aij) ∈Mm,n(F), then the vector vec(A) ∈ (F )mn is defined as vec(A) =
[a11, . . . , am1, a12, . . . , am2, . . . , a1n, . . . , amn]T .

This is an invertible linear transformation from Mm,n(F) to (F )mn given by the standard basis
element of Mm,n,Eij , being mapped to the standard basis vector for (F )mn, ei+(j−1)m. This
conversion from matrix positions to the vec ordering is used often, using the formula vec(i, j) =
i+ (j − 1)m for the (i, j) position in a m× n matrix.

Definition 2.8. The dimension of the eigenspace of A ∈ Mn(F) corresponding λ is the geometric
multiplicity and is denoted mg(λ). The multiplicity of λ as a zero of the characteristic polynomial
is the algebraic multiplicity and is denote ma(λ).

Definition 2.9. A n × n matrix A is nonderogatory if the geometric multiplicity of each distinct
eigenvalue is one.

Definition 2.10. Si is the set of columns from Ω(A) corresponding to the entries of the diagonal.
In general, we have:

Si = {c1+(n−1−i)n+j(n+1)| 1 ≤ j ≤ i}
.
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An important characterization of nonderogatory matrices is the following: A matrix A commutes
with a nonderogatory matrix B if and only if B can be written as a polynomial in A [?].

There are three approaches to the commutative matrix completion problem: polynomial, matrix
equation, and graph theoretic.

2.1. Polynomial Completions. The polynomial approach assumes that the given matrix A is
nonderogatory, and attempts to

Theorem 2.11. B’s theorem for admissible patterns

Theorem 2.12. B’s theorem for maximal admissible patterns

2.2. Matrix Equations Completions.

Theorem 2.13. B’s theorem for admissible patterns

Theorem 2.14. B’s theorem for maximal admissible patterns

2.3. Graph Theoretic Completions. The graph theoretic approach first appeared in [4] and
uses marked directed graphs (mardigraphs) to classify admissible patterns.

3. Patterns for one Jordan Block

Using the three approaches to the commutative completions, we characterize admissible patterns
for a Jordan block.

3.1. Polynomials.

Definition 3.1. Let Vd be an n×n matrix such that the (i, j) is 1 if j− i+ 1 = d and 0 otherwise
for 1 ≤ d ≤ n.

Definition 3.2. The d diagonal refers to the (i, j) position where d = j − i+ 1

Definition 3.3. Let vd = vec(Vd)

Lemma 3.4. Vectors v1...vn are linearly independent.

Proof. Recall that vd = vec(Vd) and Vd has 1’s in the dth diagonal. Since diagonals do not share
entry positions, there will be no non-zeros entries in the same positions. Thus v1...vn are linearly
independent vectors since none can be written as a linear combination of the other vectors. �

Lemma 3.5. V p2 = Vp+1 for 0 ≤ p ≤ n− 1

Proof. For the base case when p = 0

(3.1) V 0
2 = I = V1 = V0+1

Thus the lemma holds for the base case since all non-zero entires in I are in positions where i = j
or d = j − i+ 1 = 1 and so V1 = I

Now assume V p−12 = Vp for 1 ≤ k ≤ n Then V p2 = V2V
p−1
2 = V2Vp Let ep be a standard basis

vector, then V2 is in the form:

(3.2)


− eT

2 −
− eT

3 −
...

− eT
n −

− 0T −
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while Vp is in the form:

(3.3)

 | | | |
0 . . . 0 e1 . . . en−p+1

| | | |


where there are p− 1 columns of 0 before the e1 column. Thus

(3.4) V2Vp =


− eT

2 −
− eT

3 −
...

− eT
n −

− 0T −


 | | | |

0 . . . 0 e1 . . . en−p+1

| | | |



When multiplying, the first matrix’s rows are multiplied by the second matrix’s columns. so letting
ri be the ith row of V2 and letting cj be the jth column of Vk we know that entry (i, j) = ricj .
Both matrices can be expressed in terms of the standard basis vectors so eTs et is equal to 1 if s = t
and 0 if s 6= t. Since r1 = eT2 and cd = e2, the (1, d) entry is a 1. In general rq = eq+1 and
cd+q = eq+1 where 1 ≤ q ≤ n − 1. Then eTs et = 1 for all (i, j) entries where i = q and j = d + q.
Thus j − i + 1 = (d + q) − (q) + 1 = d + 1. Therefore since all 1’s will be in the d + 1 diagonal,

vd2 = V2V
d−1
2 = Vd+1 �

Lemma 3.6. Let J be an n× n Jordan block. Then the k + 1 column of Ψ(J) can be expressed as
linear combinations of vectors v1, ...,vn:

(3.5) ck+1 =

k∑
s=0

(
k

s

)
λk−svs+1

where 0 ≤ k ≤ n− 1

Proof. Since J is a Jordan block, it can be written as a linear combination of V1 and V2:

J = λV1 + V2

V1 commutes with V b2 for any b since V1 = I and thus we can use binomial theorem to express the
powers of J as linear combinations of the powers V1 and V2. Thus

(3.6) Jk = (λV1 + V2)k

(3.7) =

k∑
s=0

(
k

s

)
(λV1)k−sV s2

(3.8) =

k∑
s=0

(
k

s

)
(λ)k−sV s2

By Lemma 3.5, V s2 = Vs+1 so

(3.9) Jk =

k∑
s=0

(
k

s

)
(λ)k−sVs+1



MATRIX COMPLETION PROBLEM 5

Since vec is a linear operator and vk = vec(Vk),

(3.10) ck+1 = vec(Jk) =

k∑
s=0

(
k

s

)
(λ)k−svec(Vs+1) =

k∑
s=0

(
k

s

)
(λ)k−svs+1

where 0 ≤ k ≤ n− 1.
�

Theorem 3.7. Vectors v1...vp form a basis for the columnspace of Ψ(J)

Proof. Let the dimension of the columnspace of Ψ(J) be p where 1 ≤ p ≤ n. Then p linearly
independent vectors are needed to form the basis for columnspace of Ψ(J). By lemma 3.6 we will
have n vectors in the linear combination making up the n column of Ψ(J). Since v1...vp ⊆ v1...vn

we know by Lemma 3.4 that these vectors are linearly independent. Therefore since we have p
linearly independent vectors that are in the span of the columnspace, vectors v1...vp form a basis
for the columnspace of Ψ(J). �

Theorem 3.8. Let J be a Jordan block, then the following statements are equivalent:

(a) The columns of Ψ(J) for 0 ≤ k ≤ n− 1 can be expressed as:

(3.11) ck+1 =

k∑
s=0

(
k

s

)
λk−svs+1

(b) The rows of Ψ(J)T for 1 ≤ k ≤ n can be expressed as:

(3.12) rk =

k∑
s=1

(
k − 1

s− 1

)
λk−svs

(c) The ith entry in each row for the kth equivalence class for 1 ≤ i ≤ n can be expressed as:

(3.13)

(
i− 1

k − 1

)
λi−k

(d) The (i, j) entry of Jk can be written as

(3.14)

(
k

j − i

)
λk−(j−i)

if j − i < 0 then then entry is zero

Proof. This shows that (a) implies (b) Since the columns of Ψ(J) become the rows of Ψ(J)T it
follows that the formula for the rows of Ψ(J)T is the same as the formula for the columns of Ψ(J).
Starting the index at s = 1 instead of s = 0 will merely shift all indexed items as well as the range
of the index down by one. Using the same logic we can show the equivalence in the reverse direction.

This shows that (b) implies (c) Since the vs term is derived from Vs term where there is a 1
in the entry when j − i + 1 = s and a 0 in all other entries. Each equivalence class occurs when
k = i + (j − 1)n which is exactly when vs has a non-zero entry, more specifically, when the entry
is one. Thus, each entry of the row is going to be the same as the coefficient of the corresponding
vector in the rows of Ψ(J)T . The coefficient for vs is

(3.15)

(
k − 1

s− 1

)
λk−s
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The variables, however, must be changed. The k which referred to which column of Ψ(J) or row
of Ψ(JT ) was being looked at changes to an i since i refers to the entry in the row of Ψ(J) or
essentially, the column of Ψ(J). The s changes to a k since s was the index and referred to which
entry in the column of Ψ(J) and now becomes k to refer to which equivalence class or row of Ψ(J).
The formula then becomes:

(3.16)

(
i− 1

k − 1

)
λi−k

Using the same logic we can show equivalence in the reverse direction.

(a) implies (d) Since ck+1 = vec(Jk), vi+1 = vec(Vi+1), and vec is a linear operator, we can
vec−1 (a) to obtain:

(3.17) Jk =

k∑
s=0

λk−sVs+1

Since all Vp have non-zero entries in distinct positions, entry (i, j) depends solely on the coefficient

of Vp where p = j− i+ 1. From (a) we know the Vp coefficient is
(
k
p−1
)
λk−(p−1). Since p = j− i+ 1

we can substitute this into the expression for Vp in order to find the (i, j) entry. Thus the (i, j)
entry equals:

(3.18)

(
k

j − i

)
λk−(j−i)

Using the same logic, we can show equivalence in the reverse direction.
�

Lemma 3.9. If J is a n× n Jordan block, then the n equivalence classes for the rows of Ψ(J) are
r1, r2, ..., rn with

rk = {R(k−1)n+1+l(n+1)|0 ≤ l ≤ n− k}
for 1 ≤ k ≤ n where Rj is the jth row of Ψ(J).

Proof. Since rankΨ(J) = n, there are n linearly independent rows of Ψ(J). By Theorem 3.8 part
(d), the (i, j)th entry of Jm is

(
m
j−i
)
λm−(j−i) for 0 ≤ m ≤ n−1. (By convention, this is 0 if j− i < 0

or if j − i > m.) Since powers of J are upper triangular matrices, whenever j < i, the entry (i, j)
is 0. Hence, all the rows of Ψ(J) corresponding to the entries when j < i in powers of J are rows
of zeros. By definition of Ψ(J) and by the vec ordering bijection between the entry (i, j) of J and
the (i+ (j− 1)n) row of Ψ(J), the (i, j)th entry of Jm is the same as the (i+ (j− 1)n,m+ 1) entry
in Ψ(J). Hence, each row corresponding to (i, j) of J is of the form:

Ri+(j−1)n =
[ (

0
j−i
)
λ−(j−i)

(
1
j−i
)
λ1−(j−i) · · ·

(
n−1
j−i
)
λn−1−(j−i)

]
.

Then, the n rows in Ψ(J) corresponding to diagonal entries, i = j, are:

Ri+(i−1)n =
[

1 λ λ2 · · · λn−1
]

The n− 1 rows in Ψ(J) corresponding to entries when j = i+ 1 are:

Ri+((i+1)−1)n =
[

0 1
(
2
1

)
λ · · ·

(
n−1
1

)
λn−2

]
The n− 2 rows in Ψ(J) corresponding to entries when j = i+ 2 are:

Ri+((i+2)−1)n =
[

0 0 1 · · ·
(
n−1
2

)
λn−3

]
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...
The 1 row in Ψ(J) corresponding to the entry when j = i+ n− 1 is:

Ri+((i+n−1)−1)n =
[

0 0 · · · 0
(
n−1
n−1
)
λ0
]

Each of the n2 rows of Ψ(J) must be in one of these forms or it is a row of zeros. Note that
there are n possible forms for the nonzero rows.

The first equivalence class, r1, when j = i, consists of the rows of Ψ(J) of the form: Ri+(i−1)n
for 1 ≤ i ≤ n which can be rewritten as R(l+1)+((l+1)−1)n for 0 ≤ l ≤ n− 1.

The second equivalence class, r2, when j = i + 1, consists of the rows of Ψ(J) of the form:
Ri+((i+1)−1)n for 1 ≤ i ≤ n− 1 which can be rewritten as R(l+1)+((l+2)−1)n for 0 ≤ l ≤ n− 2.
The third equivalence class, r3, when j = i+2, consists of the rows of Ψ(J) of the form: Ri+((i+2)−1)n
for 1 ≤ i ≤ n− 2 which can be rewritten as R(l+1)+((l+3)−1)n for 0 ≤ l ≤ n− 3.
We can continue this to get that the nth equivalence class, rn, when j = i+n− 1, consisting of the
row of Ψ(J) of the form: Ri+((i+n−1)−1)n for 1 ≤ i ≤ 1 which can be rewritten as R(l+1)+((l+n)−1)n
for 0 ≤ l ≤ 0.
Then each equivalence class is of the form:

rk = {R(l+1)+((l+k)−1)n|0 ≤ l ≤ n− k}.

But R(l+1)+((l+k)−1)n = R(k−1)n+1+l(n+1). Hence, each equivalence class is of the form:

rk = {R(k−1)n+1+l(n+1)|0 ≤ l ≤ n− k} for 1 ≤ k ≤ n.

�

Lemma 3.10. If you take an element from each of the n equivalence classes, they form a linearly
independent set.

Proof. From Theorem 3.8 part (c), we know the ith entry in each row is
(
i−1
k−1
)
λi−k for 1 ≤ i ≤ n

where k is the kth equivalence class for 1 ≤ k ≤ n, and if i < k, the ith entry is 0. Suppose we take
one row from each of the n equivalences. Using

(
i−1
k−1
)
λi−k, the row taken from r1 has a 1 in the

first entry and nonzero entries everywhere else. The row taken from r2 has a 0 in the first entry,
a 1 in the second entry and nonzero entries everywhere else. Similarly, the row taken from r3 has
0’s in the first two entries, a 1 in the third entry and nonzero entries everwhere else. This goes on.
The row taken from rn−1 has 0’s in the first n− 2 entries, a 1 in the (n− 1) entry, and a nonzero
value in the last entry. Finally, the row taken from rn will have 0’s in the first (n− 1) entries and a
1 in the last entry. These n rows form an upper triangular matrix with 1’s in the diagonal. Clearly,
this matrix is invertible. Hence, the rows form a linearly independent set. �

Theorem 3.11. Let J be n× n Jordan block. An admissible pattern α is of the form

α = {(a1, a1), (a2, a2 + 1), ..., (an−1, an−1 + (n− 2)), (an, an + (n− 1))}

for 1 ≤ ak ≤ n− k + 1 and 1 ≤ k ≤ n iff rank(Ψ(J)α)=n.

-

Proof. Given a1, a2, ..., an with 1 ≤ ak ≤ n−k+1, the specified entries of an α partial matrix X are
(a1, a1), (a2, a2+1), ..., (an−1, an−1+(n−2)), (an, an+(n−1)). Each ordered pair (ak, ak+(k−1)) ∈ α
corresponds to the specified entry (ak + (ak + k − 2)n, 1) in vec(X) for 1 ≤ k ≤ n. Hence, if we



8TEAM: JENNIFER AGUAYO, UCSB, CALIFORNIA, USA, MATHEMATICS SCIENCES JHOVANY GUILLÉN, UAEH, HIDALGO, MÉXICO, MATHEMATICS RESEARCH CENTER (CIMA) ANGELA KRAFT, BETHANY LUTHERAN COLLEGE, MINNESOTA, USA, INSTITUTE OF MATHEMATICS EVAN MASON, UC BERKELEY, CALIFORNIA, ECONOMY AND MATHEMATICS CARISSA ROMERO, CSU CHANNEL ISLANDS, CALIFORNIA, USA, SCIENCE IN MATHEMATICS

have Ψ(J)
−→
C = vec(X) where

−→
C =


c1
c2
...
cn

 for some constants c1, c2, · · · , cn and n specified entries

of vecX, it would result in n equations and n unknowns. Now, let R1, R2, ..., Rn2 be the rows of
Ψ(J). Then each specified entry in X corresponds to an equation

R(ak+(ak+k−2)n)


c1
c2
...
cn

 = value in (ak, ak + (k − 1))

Let r1, r2, ..., rn be the equivalence relations between the rows of Ψ(J) as in Lemma for the Rows
of Ψ(J) 1. It follows that each Rak+(ak+k−2)n ∈ rk for 1 ≤ k ≤ n. By Lemma for the Rows of Ψ(J)
2, the n rows are linearly independent. In other words, the rank(αΨ(J)) = n. �
Conversely, suppose rank(αΨ(J)) = n. Then the specified entry locations in α correspond to n
linearly independent rows. We know the n equivalence classes between the rows of Ψ(J). If we take
more than one row from one of the rk’s in Lemma 3.1 for the n rows we choose, we’ll have at most
n− 1 linearly independent rows. In order to get n linearly independent rows, we must take a row
from each of the row equivalence classes so Lemma 3.2 holds. We know

R(k−1)n+1+l(n+1) ∈ rk
for 1 ≤ k ≤ n and 0 ≤ i ≤ n− k. R(k−1)n+1+l(n+1) corresponds to the specified entry (l + 1, l + k)
in the partial matrix X. Now, let ak = l + 1 so that the specified entries of X are of the form
(ak, ak + k − 1) for 1 ≤ ak ≤ n − k + 1. Therefore, α is of the form α = {(a1, a1), (a2, a2 +
1), ..., (an−1, an−1 + (n− 2)), (an, an + (n+ 1))} for 1 ≤ ak ≤ n− k + 1. �

3.2. Matrix Equation.

Lemma 3.12. Show that Si /∈ span{S0, S1, ..., Si−1, Si+1, ..., Sn−1}

Proof. We know that by definition Si = {c1+(n−1−i)n+j(n+1)| 0 ≤ j ≤ i} Each row of Ω(A) has at
most two nonzero entries. If it just has one nonzero entry, the corresponding column of this entry
in Si couldn’t be a linear dependence of the other columns of Sk for some k ∈ {0, 1, ..., k − 1, k +
1, ..., n− 1}. If it has two nonzero entries, we have that both columns corresponding to the entries
are inside of Si, for some i, because one of them is from −In and the other one is from A−λI. The
number of columns between them is n, and this is the characterization for Si. As in the 1

�

Ω(A) =


. . .

A− λI 0
−I A− λI

. . .



Lemma 3.13. Show that rank(span{Si}) = i
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=



. . .

0 1
0 1

. . .
. . .

0 1
0

−1 0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0

. . .


Figure 1. And each submatrix here is an element of space Mn×n

Proof. By definition, Si is the set that contains the linear dependencies between the columns of
Ω(A). We know the relationship between the columns. Hence, the elements in Si are of the form:

(3.19) c1+(1−i−j)n =

i∑
j=1

c1+(n−1−j)n+j(n+1) for0 ≤ j ≤ i

Therefore rank(span{Si}) ≤ i. If we look at the rows with two nonzero entries, the corresponding
columns of the entries are linear dependent. If we remove a column, we get a row with only one
nonzero entry. Let’s say this column is cp. WLOG let’s assume the fist column of Si was removed
and cp stays. Suppose rank(span{Si}) < i, we would get

i∑
j=1

kic1+(n−1−j)n+j(n+1) = 0

with some ki being nonzero, but we have a row with just one nonzero entry. The entry is in the
corresponding column cp, and cp is one element of the summation, for 1 ≤ p ≤ j. However, kp = 0
implies kp+(n+1) or kp−(n+1) are zero, as in 2. Finally, we get kj = 0 for all 0 ≤ j ≤ i which is a
contradiction. Hence all the columns in Si are linearly independent and rank(span{Si}) = i

�

Lemma 3.14. rank(Ω(J)) = rank(Ω(Jαc)) where α = {a0, a1, · · · , an−1} and cai ∈ Si for all
0 ≤ i ≤ n− 1.

Proof. We have ca0 =
−→
0 and by Lemma 3.5 ca0 , ca1 , ..., can−1

are linearly independent. then the
remaining columns of Ω(A), denoted ca′i ∈ α

c, are linearly independent and the size of αc is n2−n.

We know that rank(Ω(J)) = n2 − n and we get rank(Ω(J)αc) = n2 − n
∴ rank(Ω(J)) = rank(Ω(J)αc) �
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. . .

−1
n︷︸︸︷. . . 1

n

{
...

−1
n︷︸︸︷. . . 1

...

. . . −1
n︷︸︸︷. . . 1

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
Figure 2. Number of columns between the entries of a row with two entries nonzero

3.3. Graph Theoretic.

Definition 3.15. The graph of alpha, denoted G(α), is G(α) = (V,E,M) where V = {1, · · · , n},
E = (e1, · · · , en−1) where ei ∈ Ei, and M = {v}, where v ∈ V .

Definition 3.16. Consider the following subsets of edges in a directed graph with n vertices:
E0 = V
E1 = {(1, 2), (2, 3), (3, 4), · · · , (n− 1, n)}
E2 = {(1, 3), (2, 4), (3, 5), · · · , (n− 2, n)}
E3 = {(1, 4), (2, 5), (3, 6), · · · , (n− 3, n)}
...
En−2 = {(1, n− 1), (2, n)}
En−1 = {(1, n)}

Lemma 3.17. Let α be a pattern for an n × n Jordan Block. The pattern has the form α =
{(a1, a1), (a2, a2+1), · · · , (an−1, an−1+(n−2)), (1, n)} for 1 ≤ ai ≤ n−i+1 if and only if the graph
corresponding to alpha has the form G(α) = (V,E,M) with V = {1, . . . , n}, E = {e1, . . . , en−1}
with ei ∈ Ei, and M={v} with v ∈ V .

Proof. 3⇔ 4
(i.) ⇒ | Suppose α = {(a1, a1), (a2, a2 +1), · · · , (an−1, an−1 +(n−2)), (1, n)} for 1 ≤ ai ≤ n− i+1.
By definition, G(α) = (V,E,M) is a marked, directed graph where V = {1, · · · , n}, E = {(i, j)|i, j ∈
α, i < j}, and M = {i|(i, i) ∈ α}. Also, by definition, E is the set of subsets in a directed graph
with n vertices. E0 = v, E1 = {(1, 2), (2, 3), · · · , (n−1, n)}, E2 = {(1, 3), (2, 4), · · · , (n−2, n)}, · · · ,
En−2 = {(1, n− 1), (2, n)}, En−1 = {(1, n)}. The diagonal ordered pair (a2, a2 + 1) ∈ E1. The next
off-diagonal ordered pair (a3, a3+2) ∈ E2, · · · . Then, the ordered pair (an−1, an−1+(n−2)) ∈ En−2,
and the ordered pair (1, n) ∈ En−1. Therefore, G(α) = ({1, · · · , n}, {e1, · · · , en−1}, {v}), where
ei ∈ Ei for 1 ≤ i ≤ n− 1 and v ∈ {1, · · · , n}.
(ii.) ⇐ | Suppose G(α) = ({1, · · · , n}, {e1, · · · , en−1}, {v}), where ei ∈ Ei for 1 ≤ i ≤ n − 1
and v ∈ {1, · · · , n}. By definition, of Et = {(i, i + j)} where 1 ≤ t ≤ n − 1, 1 ≤ i ≤ n − t,
and 1 ≤ j ≤ n − 1. Letting 1 ≤ ai ≤ n − i + 1 and 1 ≤ j ≤ n − 1, generates all elements
of Et. Therefore, (ai, ai + j) ∈ Ej where 1 ≤ ai ≤ n − i + 1 and 1 ≤ j ≤ n − 1. Thus,
α = {(a1, a1), (a2, a2 + 1), · · · , (an−1, an−1 + (n− 2)), (1, n)} for 1 ≤ ai ≤ n− i+ 1. �
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3.4. Characterization of admissible patterns for one Jordan block. We collect the results
in this section in the following result.

Theorem 3.18. Let J be an n× n Jordan block. Then, the following are equivalent:

(1) α is an maximal admissible pattern

(2) Rank(Ω(J)αc) = n2 − n

(3) α = {(a1, a1), (a2, a2 + 1), · · · , (an−1, an−1 + (n− 2)), (1, n)} for 1 ≤ ai ≤ n− i+ 1

(4) G(α) = (V,E,M) with V = {1, . . . , n}, E = {e1, . . . , en−1} with ei ∈ Ei, and M={v} with
v ∈ V .

(5) Rank(αΨ(J)) = n

Proof. Therefore it is true by consequence of being true. �

4. Building Patterns

Goal for this section is to describe how to build new admissible patterns. We have three methods
for building new admissible patterns: direct sums of patterns, permutation similarity, and using
the nullspace of Ω(A).

4.1. Direct sum of patterns.

Definition 4.1. ?? Let α be a pattern of specified entries for an n1×n1 matrix and β be a pattern
of specified entries for an n2 × n2 matrix.
α = {(a1, b1), (a2, b2), · · · , (ak, bk)|1 ≤ ai ≤ n1, 1 ≤ bj ≤ n1 for 1 ≤ i, j ≤ k}
β = {(c1, d1), (c2, d2), · · · , (cm, dm)|1 ≤ ci ≤ n2, 1 ≤ dj ≤ n2 for 1 ≤ i, j ≤ m}
The directed sum, denoted α⊕ β, is
α⊕ β = α ∪ {(c1 + n1, d1 + n1), (c2 + n1, d2 + n1), · · · , (cm + n1, dm + n1)}.

Lemma 4.2. Let α be an admissible pattern for a m×m matrix A and β be an admissible pattern
for a n × n matrix B. The partial matrix pattern α ⊕ β is an admissible pattern for the matrix
A⊕B.

Proof. Since α is an admissible pattern for A, then an α-partial matrix X of the same size commutes
with A. Similarly, since β is an admissible pattern for B, then a β-partial matrix Y of the same
size commutes with B. By [?, pg. 24], if A commutes with X and B commutes with Y, then A⊕B
commutes with X⊕Y . Hence, the pattern of the partial matrix X⊕Y is admissible. By Definition
??, this pattern is α⊕ β. �

We can obtain the graphs for these direct sum patterns with a disjoint union of the component
graphs.

Definition 4.3. Let G1 and G2 be marked directed graphs. G1 = (V1, E1,M1), where V1 =
{1, · · · , n1}, and G2 = (V2, E2,M2), where V2 = {1, · · · , n2}. The fusion of G1 and G2, denoted
G1 ]G2, is G1 ]G2 = (V ′, E′,M ′), where
V ′ = V1 ∪ {i+ n1|i ∈ V2}, E′ = E1 ∪ {(i+ n1, j + n1)|(i, j) ∈ E2}, and M ′ = M1 ∪ {i+ n1|i ∈M2}.
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Lemma 4.4. G(α) ]G(β) = G(α⊕ β)

Proof. Let α be a pattern for an n1 × n1 matrix where α = {(a1, b1), (a2, b2), · · · , (ak, bk)},
and let β be a pattern for an n2 × n2 matrix where β = {(c1, d1), (c2, d2), · · · , (cm, dm)}.
The direct sum, α⊕ β = α ∪ {(c1 + n1, d1 + n1), (c2 + n1, d2 + n1), · · · , (ck + n1, dk + n1)}.
Then G(α ⊕ β) = (V,E,M), where the vertex set V = {1, 2, · · · , n1 + n2}, the edge set E =
{(a1, b1), · · · , (ak, bk), (c1 + n1, d1 + n1), · · · , (cm + n1, dm + n1)}, and the marked set
M = {(1, 1), (2, 2), · · · , (n1, n1), · · · , (n2 + n1, n2 + n1)}.
The fusion, G(α) ] G(β) = (V ′, E′,M ′), where the vertex set V ′ = {1, 2, · · · , n1 + n2}, the edge
set E′ = {(a1, b1), · · · , (ak, bk), (c1 + n1, d1 + n1), · · · , (cm + n1, dm + n1)}, and the marked set
M ′ = {(1, 1), (2, 2), · · · , (n1, n1), · · · , (n2 + n1, n2 + n1)}.
Since V = V ′, E = E′, and M = M ′, G(α⊕ β) = G(α) ]G(β).

�

4.2. Permutations of patterns.

Definition 4.5. A n×n permutation matrix Q is obtained by permuting the rows of the n×n
Identity Matrix. Every column and every row of Q has exactly one nonzero entry, that entry is a 1.

Definition 4.6. A permutation σ associated with a permutation matrixQ−1 is defined as σ(j) = i
if the entry Q−1i,j is 1.

Note: The entry (σ(i), σ(j)) in an n× n matrix A = Q−1JQ is the same as the entry (i, j) in a
n × n Jordan block J where σ is the associated with Q−1 because of what Q−1 does to the rows
and columns of J.

Theorem 4.7. Suppose α = {(a1, a1), (a2, a2 + 1), ..., (an, an + (n − 1))} is an admissible pattern
for a n×n Jordan block, J. Then β = {(σ(a1), σ(a1)), (σ(a2), σ(a2+1)), ..., (σ(an), σ(an+(n−1)))}
is an admissible pattern for a n× n matrix A that is permutation equivalent to J. In other words,
A = Q−1JQ where Q is n× n permutation matrix and σ is the permutation associated with Q−1.

Proof. Suppose α is an admissible pattern for J. By the Classification Theorem, the rank αΨ(J) = n.
Since Q is a permutation, it preserves all the entry values of matrices, but not their positions.
Therefore, since A = Q−1JQ, Ak = Q−1JkQ for all k ≥ 0. By definition,

Ψ(J) =

 | | | | |
J0 J1 J2 · · · Jn−1

| | | | |

 and Ψ(A) =

 | | | | |
A0 A1 A2 · · · An−1

| | | | |

. Now, the entry

(i, j) in Jk is the same as the entry (σ(i), σ(j)) in Ak for k ≥ 0. So for each entry (ai, ai+(i−1)) ∈ α,

Rai+(ai+i−2)n in Ψ(J) = Rσ(ai)+(σ(ai+(i−1))−1)n in Ψ(A) for 1 ≤ i ≤ n

In other words,

αΨ(J) =


− Ra1+(a1−1)n −
− Ra2+(a2)n −
...

...
...

− Ran+(an+n−2)n −

 =


− Rσ(a1)+(σ(a1)−1)n −
− Rσ(a2)+(σ(a2+1)−1)n −
...

...
...

− Rσ(an)+(σ(an+(n−1))−1)n −

 =β Ψ(A)

In particular, rank αΨ(J)=rank βΨ(A)=n. By Theorem 6.2 (3), β is an admissible pattern for
A. �
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Corollary 4.8. If B⊕A = QT (A⊕B)Q and α⊕β is an admissible pattern for A⊕B, then γ is an
admissible pattern for B⊕A with (σ(i), σ(j)) ∈ γ for each (i, j) ∈ α⊕β where σ is the permutation
associated with QT .

4.3. Obtaining pattern from the nullspace of Ω(A).

Definition 4.9. The reduced basis, b1...bq, is the basis for a space which is formed by transposing
the matrix of all the basis vectors, row reducing it, and transposing them back into a column
vectors.

Lemma 4.10. Let b1...bq be a basis for the nullspace of matrix A and let k be a non-zero entry
of a basis vector, b1, of the nullspace of matrix A. Then the span of the basis vectors b2...bp with
entry k removed from each is equal to the nullspace of matrix A with the k column removed. That
is to say:

span{kCb2...kCbq} = null(AkC )

Proof. Proof goes here. �

Lemma 4.11. An m × n matrix with all rows being linearly independent in reduced row echelon
form will have exactly one non-zero entry in at least m columns for m ≤ n.

Proof. Since all the matrix’s rows are linearly independent and m ≤ n, the matrix will have exactly
m pivot positions. By the properties of reduced row echelon form, each pivot column will have the
property that exactly one entry is 1 and all other entries in that column are 0. Since there are m
pivot positions, this means that in reduced row echelon form there will be at least m columns with
exactly 1 non-zero entry. �

Let A be any n× n matrix and let the rank of Ω(A) be p. Then the dimension of the nullspace
of Ω(A) is n2 − p and the reduced basis for the nullspace is b1...bn2−p. Let a1 be any non-zero
entry in b1 and let ai be any nonzero entry of bi such that ai is not equal to any previous a. Let
α = {a1...ai}. Then the following lemma is true:

Lemma 4.12.
rank(Ω(AαC )) = rank(Ω(A)) = n2 − p

Proof. Let A be any n × n matrix and let the rank of Ω(A) be p. Then the dimension of the
nullspace of Ω(A) is n2 − p and the reduced basis for the nullspace is b1...bn2−p. Let a1 be any
non-zero entry in b1 and let ai be any nonzero entry of bi such that ai is not equal to any previous
a. Let α = {a1...ai}. Each basis in the reduced nullspace shows a dependence relationship from
the columns of Ω(A). Thus by choosing a1 to correspond to a non-zero entry in b1 the removal
of a1 from Ω(A) will not reduce the rank since a1 is part of a linearly dependent set. By Lemma
4.10, span{aC1 b2...kCbn2−p} = null(Ω(A)aC1 ). Thus the removal of any vector does not affect the
linear dependencies in the other basis vectors. By the same reasoning the rank held after choosing
a1, choosing a2...an2−p will also not reduce the rank since the reduced basis vectors maintain the
same linear dependencies after removal of the previous a. Thus the same pattern of choosing one
non-zero entry from each reduced basis vector will not reduce the rank. By Lemma 4.11 we know
that since our reduced basis is in transposed reduced row echelon form, there will be at most one
non-zero entry in at least n2 − p rows. Since there are n2 entries in each basis vector and only
n2 − p basis vectors, since n2 − p ≤ n2 there will always be enough entries for a distinct entry to
be chosen from each column. Thus each column will have at least one entry distinct from all the
other columns so it will always be possible to choose an entry ai such that ai is not equal to any
previous a. ∴ rankΩ(AαC ) = Ω(A) = n2 − p. �
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Theorem 4.13. There exists a maximal admissible pattern for any square n × n matrix A which
can be constructed from the reduced basis for the nullspace of the omegamatrix.

Proof. Let A be any n × n matrix and the reduced basis for the nullspace is b1...bn2−p. Let a1
be any non-zero entry in b1 and let ai be any nonzero entry of bi such that ai is not equal to any
previous a. Let α = {a1...ai} where 1 ≤ i leqn2 − p. Then by Lemma 4.12 the rank of Ω(AαC ) is
equal to the rank of Ω(A) and thus by Lemma (Buhls) α is an admissible pattern. When i = n2−p,
α is a maximal admissible pattern for A since by Lemma 4.10 and Lemma 4.12 it follows that since
there are n2 − p vectors in the nullspace, the nullspace of Ω(AαC ) will have a dimension of zero
since the nullspace is equal to the span of the basis vectors b1...bn2−p with n2 − p basis vectors
removed. Thus the columns of Ω(AαC ) are linearly independent and therefore by definition, when
i = n2 − p α is maximally admissible since there is no way to choose more specified entries and
have rank(Ω(AαC )) = rank(Ω(A)) still hold. �

Theorem 4.14. Let J be an k × k Jordan block, and A a n× n matrix in Jordan canonical form,
and let γ be an admissible pattern for J and α be an admissible pattern for A. Then, the following
are equivalent:

(1) α⊕ γ is an admissible pattern for A⊕ J

(2) Rank(Ω(A⊕ J)α⊕γc) = (n+ k)2 − (n+ k)

(3) α⊕γ = {(a1, a1), (a2, a2 +1), · · · , (an−1, an−1 +(n−2)), (1, n), (b1 +n, b1 +n), ((b2 +n, b2 +
1 + n), · · · , (bk−1 + n, bk−1 + (k − 2) + n), (1 + n, k + n)

(4) G(α) ] G(γ) is a directed, acyclic graph with n − 1 edges. Its edges are of the form (i, j)
such that i = j or i < j.

(5) Rank(α⊕γΨ(A⊕ J)) = n+ k

5. Maximal Admissible Patterns for Jordan Canonical Form

If a n×n matrix A is nonderogatory, the space of matrices that commute with A is n dimensional,
and the size of a maximal admissible pattern for A is n. In this section, we discuss how to generalize
our results for one Jordan block to obtain maximal admissible patterns for matrices in Jordan
canonical form without that assumption that these matrices are nonderogatory.
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Lemma 5.1. Let J be a Jordan block with eigenvalue λ and size n× n. The relationship between
the columns of Ω (J) is

c1+(n−1)n = 0

c1+(n−2)n = c1+(n−1)+1

...

c1+n =

n−2∑
i=1

c1+n+i(n+1)

c1 =

n−1∑
i=1

c1+i(n+1)

or on a condensed formula:

(5.1)

n−1−j∑
i=0

c1+jn+i(n+1) = 0

for j such as 0 ≤ j ≤ n− 1.

By induction.
• Case n = 1
In this case:

j = 0

J =
[
a11

]
Ω (J) =

[
0
]

We apply the formula and we have:

c1 =

0∑
i=1

c1+i(2) = 0

• Assume the case n = k true:

(5.2) c1+jk =

k−1−j∑
i=1

c1+jk+i(k+1)

Ω(J) = I⊗ J − JT ⊗ I

=



J − λI
−I J − λI

−I
. . .

. . . J − λI
−I J − λI


The following pattern is the same inside of Ω(J)[
J − λI 0
−I J − λI

]



16TEAM: JENNIFER AGUAYO, UCSB, CALIFORNIA, USA, MATHEMATICS SCIENCES JHOVANY GUILLÉN, UAEH, HIDALGO, MÉXICO, MATHEMATICS RESEARCH CENTER (CIMA) ANGELA KRAFT, BETHANY LUTHERAN COLLEGE, MINNESOTA, USA, INSTITUTE OF MATHEMATICS EVAN MASON, UC BERKELEY, CALIFORNIA, ECONOMY AND MATHEMATICS CARISSA ROMERO, CSU CHANNEL ISLANDS, CALIFORNIA, USA, SCIENCE IN MATHEMATICS

This is:

0 1
0 1

. . .
. . .

0 1
0 0

−1 0 1
−1 0 1

. . .
. . .

. . .

−1 0 1
−1 0


• Let′s prove the case n = k + 1
The columns i (k + 1) for 1 ≤ i ≤ k are linear independent of others columns of Ω (J) because the
entries Ω (J)(i+1)(k+1),i(k+1) for 1 ≤ i ≤ k are the only one entries in the row (i+ 1) (k + 1) different

of 0. Given the linear dependencies from Ω (Jk×k) we need to change into the Ω
(
J(k+1)×(k+1)

)
,

and we just change k by k + 1. Finally we see the linear dependencies of the last k + 1 columns of
Ω
(
J(k+1)×(k+1)

)
:

c1+([k+1]−1)(k+1) = 0

c1+([k+1]−2)(k+1)+[k+1]+1 = c1+([k+1]−2)(k+1)

...

c1+(k+1)+(k−1)([k+1]+1) = c1+(k+1) −
[
c1+(k+1)+[k+1]+1 + · · ·+ c1+(k+1)+k([k+1]+1)

]
c1+k([k+1]+1) = c1 −

[
c1+[k+1]+1 + · · ·+ c1+(k−1)([k+1]+1)

]
This is

(5.3) c1+j(k+1) =

k−j∑
i=1

c1+j[k+1]+i([k+1]+1)

for 1 ≤ j ≤ k

Ω(Jk+1,k+1) =



0 1
0 1

. . .
. . .

0 1
0 1 0

0 0 0
−1 0 1

−1 0 1
−1 0 1

−1 0 1
−1 0 1

−1 0


And each submatrix here is an element of space Mn×n
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�

Lemma 5.2. Let A be a matrix of size n, and let Ji be Jordan blocks for i ≤ i ≤ k such as

A =

k⊕
i=1

Ji.

Given a entry p (1 ≤ p ≤ mi
2) in a Jordan block Ji, we get the corresponding column in Ω(A) as:

cp = cp+n
∑i−1

r=1mi+(t+1)
∑i−1

r=1mi+t
∑k

i+1mi

with mi = dimJi and t = bp−imi
c1

Wlog we are going to work on Ji Jordan block.
The dimension of Ji is mi. And we want to find the corresponding column on Ω(A) of an entry p
such as cp is from the relationship of linear dependence in Ji.
We consider all columns before the corresponding set of Ji, as A − λiI is a matrix of size n and
according with the dimension of each Ji, (1 ≤ j ≤ k) we have a set of n(mi) for its entries. We need
add n(m1 + · · ·+mi−1) columns to reach the set where the diagonal has entries zero corresponding

at Ji Jordan block, this is n
∑i−1
r=1mi.

For each entry in Ji we have a corresponding column in the matrix Ω(A), where each set
∑k
r=1mi

of columns denoted as T, we have a column from each Jordan block inside of each set like this. But
we have the size of T equal to all columns on the Jordan blocks, so we need to add the corresponding
columns of the Jj : j 6= i, for this, we can locate the column corresponding to p in Ji, we need to
subtrack one unit to p(to get the number such as 0 ≤ p ≤ mi) and do the quotient of this difference
and the size of mi and this is t, but we need to add 1 to t to get the column, because the fist
mi can’t be in the column zero. We can separate the set of columns Jj : j 6= i as following sets:
T1 = {Jj |1 ≤ j ≤ i− 1} and T2 = {Jj |i + 1 ≤ j ≤ mi}, we need to add t + 1 times the columns
corresponding to Jordan block before at Ji and t times the columns corresponding to Jordan block
after at Ji among the set of columns T corresponding at Jordan block Ji where the diagonal have

entries equal to zero, in total we have to add (t+ 1)
∑i−1
r=1mi + t

∑k
i+1mi columns to p to get the

corresponding column on Ω(A)

Lemma 5.3. Let A be a matrix of size n, and let Ji be Jordan blocks for 1 ≤ i ≤ k such as

A =

k⊕
i=1

Ji. with eigenvalues λi.

If the eigenvalues λi and λj are such that λi 6= λj for all i ≤ j, the relationship of linear dependence
of Ω(A) is the same as all Ji in the corresponding columns in Ω(A)

Proof. We have in Ω(A) two different kind of matrix: −I and A − λiI, for this reason (figure 3),
we have in some place in the matrix entries equal to zero, corresponding at Jordan block Ji, others
columns have entries different of zero in the diagonal and they are linearly independent, for this
reason if we erase these columns and the rows corresponding at complement of Ji we get the matrix
Ω(Ji) but this is for all i, we know the relationship between the columns in each Ji denoted as Ji
and each Ji is linearly independent to Jj for all i 6= j (figure 4). Using the lemma 5.1 we obtain
the relationship between the columns for all Ji and using lemma 5.2 we obtain the corresponding
columns on Ω(A) (figure 5). �

1bc is the Step Function
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A =

 J1
. . .

Jk

 =



λ1 1
. . .

. . .

. . . 1
λ1

. . .

λk 1
. . .

. . .

. . . 1
λk


Figure 3. Each subblock has a size n×mi

Ω(A) =

A− λ1I

−I
. . .

. . .
. . .

−I A− λ1I
. . .

A− λiI

−I
. . .

. . .
. . .

−I A− λiI
. . .

A− λkI

−I
. . .

. . .
. . .

−I A− λkI


Figure 4. Difference of the matrices, Each subblock in this matrix has size n×mi

6. Further Research

[h] Future research can entail exploring the types of patterns that are admissible for matrices of
a specific class such as upper triangular, nonsingular, singular, symmetric, etc. Future work can
also be done on permutations of admissible patterns for other nonderogatory matrices, instead of
just permutations of a Jordan block. In general, the process of classifying admissible patterns for
any matrix can be simplified.

[h]
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A−λiI =



λ1 − λi 1
. . .

. . .

. . . 1
λ1 − λi

. . .

0 1
. . .

. . .

. . . 1
0

. . .

λk − λi 1
. . .

. . .

. . . 1
−I λ1 − λi


Figure 5. We have on the diagonal entries equal to zero when the eigenvalues of
the difference are the same
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