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 In this paper we proposed a solution to the 
JobShop Scheduling Problem using the Traveling 
Salesman Problem solved by Genetic Algorithms. 
Different tests are performed to solve the 
Traveling Salesman Problem with the two types of 
selection (tournament and roulette) under 
different parameters: number of individuals, 
number of iterations, crossover probability and 
mutation probability.  Then the best type of 
selection and the best parameters are used to 
solve the Job-Shop Scheduling Problem through 
the Traveling Salesman Problem. Different cases 
in the literature are solved to compare results. 



 Introduction 

 The Travel Salesman Problem solved with 
Genetic Algorithms 

 The Job Shop Scheduling solved as a Travel 
Salesman Problem 

 Conclusions 



 This research modeled the Traveling 
Salesman Problem (TSP) through integer 
programming  to analyze the number of cities 
that was feasible to solved by this method.  

 Then we proposed a Genetic Algorithm which 
was tested with some examples where the 
solution was found through integer 
programming. 

 



 Also  we used Genetic Algorithms to solve 
some examples where the solution could not 
be found by integer programming because 
the number of constraints grows 
exponentially as the number of cities visited. 

 

 The TSP solved by genetic algorithms (GA) 
was used to solve the Job Shop Problem (JSP).  

 



 The  conventional methods such as integer 
programming report a border in time to 
determine the optimal sequence in the JSP in 
a reasonable computational time (Tamilarasi 
and Anantha, 2010).  

 Through the resolution of TSP with GA  a 
method for solving it is validated. 



 The TSP is a combinatorial optimization 
problem in which a salesman visits only once 
each of the cities and back to the starting 
point, the problem consist in locate the path 
with the shortest distance and it is known as 
the optimal route. 



 The Traveling Salesman has been studied 
extensively especially with metaheuristics, 
see for example, the work of Dorigo (1997) 
with the ant colony method, Cerny (1985) 
with the Monte Carlo method; Jog et al. 
(1991) Chatterjee et al. (1996), Larrañaga et 
al. (2000), Moon et al. (2002), Fogel (2004) 
etcwith Genetic Algorithms with very good 
results.  William Cook, Vasek Chvátal and 
Applegate (Applegate, 2006) have solved the 
problem for 24, 978 cities in 2004. 
 
 

 
 



 The Traveling Salesman Problem consists in 
choosing the route that minimizes the 
distance between cities 1, 2, 3,. . ., N. For i ≠ 
j, Cij  is the distance from city i to city j and  
Cii = M, where M is a very large number 
(relative to the actual distances of the 
problem). 

 



 The following explains how the experiment 
was performed with the distance matrix 
proposed by Winston (2005), shown below: 

 

 
City 1  City 2 City 3  City 4  City  5  

City 1  M  132  217  164  58  

City 2  132  M  290  201  79  

City 3  217  290  M  113  303  

City 4  164  201  113  M  196  

City 5  58  79  303  196  M  

Table 1. Distance matrix (Winston,2005). 



 

 
(1,5) 58 

(2,4) 201 

(3,1) 217 

(4,3) 113 

(5,2) 79 

Table 2. Solution with integer 

 programming 

 

Figure 1. Optimal Route for the Winston 

(2005) Problem . 

 

Optimal solution=668 units 



 To begin is required to have a square matrix that represents 

the cost of the distance to travel from the city i to j; 
generating an initial population of a certain number of 
individuals with random routes, for example, in Table 3 are 
10 individuals with five alleles (each allele is a city) and their 
respective fitness (fitness). 

 

 

 

Table 3. Random routes 

Individual Route Cost Fitness 

1 1-2-3-4-5 132+290+113+196+58 789 

2 5-3-1-2-4 303+217+132+201+196 1049 

3 3-4-5-2-1 113+196+79+132+217 737 

4 2-4-5-1-3 201+196+58+217+290 962 

5 3-1-4-2-5 217+164+201+79+303 964 

6 5-2-3-1-4 79+210+217+164+196 946 

7 2-1-5-3-4 132+58+303+113+201 807 

8 3-2-1-5-4 290+132+58+196+113 789 

9 1-2-5-4-3 132+79+196+113+217 737 

10 5-4-1-3-2 196+164+217+290+79 946 



 To perform the tournament selection  two random permutations of 

equal size to the number of individuals are generated, for example, 
P1 = 6-3-7-8-5-1-2-4-9-10 first permutation, the second 
permutation P2 = 2-4-9-10-6-3-7-8-5-1,  6 and 2 compete and 
the best (less fitness)  is selected. The result can be seen in Table 4. 

 

 

 

Table 4. Tournament 

Competitors Winner Route Fitness 

6,2 6 5-2-3-1-4 946 

3,4 3 3-4-5-2-1 737 

7,9 9 1-2-5-4-3 737 

8,10 8 3-2-1-5-4 789 

5,6 6 5-2-3-1-4 946 

1,3 3 3-4-5-2-1 737 

2,7 7 2-1-5-3-4 807 

4,8 8 3-2-1-5-4 789 

9,5 9 1-2-5-4-3 737 

10,1 1 1-2-3-4-5 789 



 After ordering the table is performed  the crossover.    For crossover 
an arrangement is randomly generated, the rows are the number of 
individuals  between two, the  columns are always two. In the 
example are 5x2 with permutations in each column. Column 1 are 
the Possible Father 1 and column 2 the Possible Father 2.  A 
crossover probability is generated, for example, 0.6 and a random 
number for each couple also, if it is less than the crossover 
probability then, the couple formed by the first line of the column 
Possible Father 1 and the first element the second column of the 
Possible Father 2 are selected for the crossover. 

 

 

 

Father 1= 5 2 3 1 4

Father 2= 1 2 5 4 3

Child 1= 5 2 5 4 4

Child 2= 1 2 3 1 3

Figure 2. Crossover. 



  

 

 

 

Figure 3. Crossover, corrected subtours  

Individual Route Fitness 

1 1-2-5-4-3 737 

2 4-2-1-5-3 807 

3 3-4-5-2-1 737 

4 3-4-5-2-1 737 

5 3-2-1-5-4 789 

6 3-5-2-1-4 791 

7 1-2-3-4-5 789 

8 2-1-5-3-4 807 

9 5-2-3-1-4 946 

10 5-2-3-1-4 946 

 Table 5 .Population after Crossover 

Child 1= 5 2 3 1 4 =Individual  9

Child 2= 1 2 5 4 3 =Individual 1



 The last operator is the mutation, this is done by selecting a 
probability of mutation, in this case 0.1, and generating a random 
number  for each individual. After generating a random number the 
only one that turned out to be less than 0.1 was individual 2. For 
this particular individual, two points are selected for example 2 and 
5 position are exchanged. 

 

 

 

 

 

 

 

 

 

 

Individual 2= 4 2 1 5 3

Mutation= 4 3 1 5 2
Figure 4. Mutation 



  

 

 

 

Table 6 .Population after  Mutation 

Individual Route Fitness 

1 1-2-5-4-3 737 

2 4-3-1-5-2 668 

3 3-4-5-2-1 737 

4 3-4-5-2-1 737 

5 3-2-1-5-4 789 

6 3-5-2-1-4 791 

7 1-2-3-4-5 789 

8 2-1-5-3-4 807 

9 5-2-3-1-4 946 

10 5-2-3-1-4 946 

 



  

 

 

 

Figure 5 . Comparation between a) Tournament Selection b) Roulette Selection 
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Best Fitness by generation (100 individuals, 100 Generations, crossover probability 0.6, mutation probability 1/10) 

a)Offline Performance-Tournament Selection 

a)Offline Performance-Roulette Selection 

Best Fitness by generation (100 individuals, 100 Generations, crossover probability 0.6, mutation probability 1/10) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 From these examples it can be concluded that the tournament selection is the 
best, it is necessary to consider a relatively large number of individuals in the 
population with a moderate number of iterations (at a ratio of 10 individuals for 
one iteration approximately) as we can observe in examples BZ, AT and AJ. The 
crossover probability works best is the 0.6 and low mutation probability (1 / n), 
where n is the number of individuals 

Table 7. Results 

Experiment 

(Number of  

Cities) 

Selection Individual Generation Crossover 

probability 

Mutation 

Probability 

Time 

(seconds) 

Experiment  

Result 

Best 

result in 

literature 

(Winston,2005): 

5  

 

Tournament 

 

100 

 

100 

 

0.6 

 

0.1 

 

2 

 

668 

 

668 

5  Roulette 100 100 0.6 0.1 2 668 668 

(Gerhard,2006): 

10  

 

Tournament 

 

100 

 

100 

 

0.6 

 

1/10 

 

3 

 

1185 

 

1185 

10  Roulette 100 100 0.6 1/10 3 1185 1185 

10  Tournament 100 100 0.6 0.1 3 7392 8914 

10  Roulette 100 100 0.6 0.1 3 7392 8914 

15  Tournament 100 100 0.6 0.05 5 1692 1513 

15  Roulette 100 100 0.6 0.05 5 1757 1513 

20  Tournament 100 100 0.6 1/20 7 1700 1688 

20  Roulette 100 100 0.6 1/20 7 1854 1688 

21  Tournament 100 100 0.6 0.05 8 2042 2042 

21  Roulette 100 100 0.6 0.05 8 2077 2042 

280 Cities  (Gerhard, 2006) 

AO  Tournament 100 20000 0.6 0.1 420 6213.25 2579 

BT  Roulette 100 20000 0.6 0.1 900 7968.55 2579 

AP  Tournament 500 20000 0.6 0.1 2220 6750.22 2579 

BU  Roulette 1000 20000 0.6 0.1 13680 8686.33 2579 

AQ  Tournament 1000 20000 0.6 0.1 4200 5656.54 2579 

CA  Roulette 1000 20000 0.6 0.1 13980 8686.33 2579 

AR  Tournament 2000 20000 0.6 0.1 8400 6424.03 2579 

BX  Roulette 2000 20000 0.6 0.1 28860 10820.19 2579 

AS  Tournament 5000 20000 0.6 1/280 46810 5325.67 2579 

BI  Roulette 5000 20000 0.6 1/280 76680 7433.69 2579 

BZ  Tournament 20000 1000 0.6 1/280 3600 7205.13 2579 

AT  Roulette 20000 1000 0.6 1/280 21600 5509.59 2579 

BJ  Tournament 50000 1000 0.6 1/280 81140 4724.52 2579 

 



 
 Among the authors who have used 

metaheuristics for their solution stand 
Yamada and Nakano (1998) and Sivanandam 
and Deepa (2008) with genetic algorithms, 
Bozejko et al. (2009) with simulated 
annealing, Huang (2004) and Ge et al. (2007) 
hybrid algorithms ( genetic algorithms and 
optimization particles) and Anantha & 
Tamilarasi (2010) with a hybrid genetic 
algorithm and simulated annealing, etc. 
 
 



 The Job Shop Problem is to schedule a set of 
jobs in a set of machines, subject to the 
constraint that each machine can handle one 
job in a time.  The objective is to schedule 
the jobs so as to minimize the maximum of 
their completition times. 

 



 This is an exampled presented in Anantha y 
Tamilarasi (2010): 

 

 

 

  

 The optimal result is 17 units of makespan 
with their method. 

 

 

O1=J1M1= 2 O2=J1M3=3 O3=J1M2=4 

O4=J2M2=1 O5=J2M1=5 O6=J2M3=2 

O7=J3M3= 4 O8=J3M1=6 O9=J3M2=4 

 Table 8. JSP with 3  jobs and 3 Machines [4]. 

 



 To solve the JSP like a TSP,  each operation of 
the JSP is consider as a city of the of the TSP. 

  
1 2 3 4 5

Tiempo

O1=JIMI

O2=J1M3

 
1 2 3 4 5

Tiempo

O1=JIMI

O6=J2M3

Time 

Time 

Figure 6: JSP as a TSP  



 The distance matrix the TSP is: 

   O1  O2  O3  O4  O5  O6  O7  O8  O9  

O1  M 5 6 2 7 2 4 8 4 

O2  5 M 7 3 5 5 7 6 4 

O3  6 7 M 5 5 4 4 6 8 

O4  2 3 5 M 6 3 4 6 5 

O5  7 5 5 6 M 7 5 11 5 

O6  2 5 4 3 7 M 6 6 4 

O7  4 7 4 4 5 6 M 10 8 

O8  8 6 6 6 11 6 10 M 10 

O9  4 4 8 5 5 4 8 10 M 

 
Table 9. Distance matrix  



 Solving the problem with GA in Matlab  the 
same result is obtained, the route of 
operations for the TSP is: 

 

Figure 7. Route for the JSP of  Tamilarasi y Anantha (2010). 



 The route can be converted as a JSP: 

 

Figure 8. Makespan for  the JSSP of Tamilarasi y Anantha (2010) 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

J1 M1 M2             M3         

J2 M3             M1       M2     

J3     M1 M3 M2       

 



 A comparative table is presented with the results of the 
problems founded in Tamilarasi y Anantha (2010) y Ruiz 
(2010)  and all of them  belong to JSP bechmark problems of 
Beasley (1990). 

 

 

Table 10: Comparative results for the JSP . 

Experiment Individual Generation Crossover 

probability 

Mutation 

Probability 

Time 

(seconds) 

Result 

obtained in 

the 

experiment 

Best 

result  

(Ruiz, 

2011) 

Tamilarasi y 

Anantha 

(2010) 

1000 100 0.6 1/9 120 17 17 

FT06  (Ruiz, 

2011) 

1000 100 0.6 1/36 180 55 55 

LA04 (Ruiz, 

2011) 

60000 300 0.6 1/50 64800 621  590 

FT10 (Ruiz, 

2011) 

50000 1000 0.6 1/100 41230 1156 930 

LA02 (Ruiz, 

2011) 

50000 1000 0.6 1/50 40120          768 655 

LA03 (Ruiz, 

2011) 

50000 1000 0.6 1/50 40100 699 597 

LA12 (Ruiz, 

2011) 

70000 1250 0.6 1/50 110801 1412 1039 

LA 13 (Ruiz, 

2011) 

50000 1000 0.6 1/100 75900 1520 1150 

 



 
The parameters of the GA for solved the TSP that 

were founded are  
 The tournament selection has better performance 

than the roulette selection. 
 The number of individuals is greater than the 

number of iterations in a proportion of 10 
individuals for approximately one iteration. 

 Crossover probability shows the best results in 
0.6  

 The probability of mutation used was relatively 
low 1 / n, where n represents the number of 
cities in the problem. 
 
 



 

 Solve the JSP through the TSP is an alternative 
to address this problem.  

 The JSP has been good results solve with 
metaheuristics. 

 In the experiments of JSP, we reach certain 
results but mostly we just approach the 
solution found in scientific articles. 

 



Applegate, D., 2006. The Traveling Salesman Problem. Princeton University Press, Estados Unidos de América. 
Beasley, J., 1990.OR-Library: Distributing test problems by electronic mail. Journal of the Operational Research Society, 11, 1069-1072. 
Bozejko, W., Pempera J. and Smuntnicki C., 2009. Parallel simulated annealing for the Job Shop Scheduling problem. Biological Cybernetics, 60, 139-144. 
Cerny, V., 1985. Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm. Lecture note in computer science Proceedings  of the 9th 

Intenational Conference on Computational Science, 5544, 631-640. 
Chambers, L., 1998. Genetic Algorithms. University Western Press, Australia. 
Chatterjee, S., Carrera C., y Linch L.,  1996. Genetic Algorithms and traveling salesman problems. Siam Journal of Optimation, 515-529. 
Delgado E.,  2005. Aplicación de Algoritmos Genéticos para la Programación de Tareas de una celda de manufactura. Ingeniería e Investigación: Universidad 

Nacional de Colombia, 24-31. 
Dorigo, M.,  1997.  Ant colonies for the traveling salesman problem. Universidad Libre de Bruselas, Bélgica. 
Fogel, D., 1998. An evolutionary approach to the traveling salesman problem. Biological Cybernetics, 60, 139-144. 
Ge, H., Du W., y Quian F.,  2007. A hybrid algorithm based on swarm optimization and simulated annealing for job shop scheduling. Proceedings of the Third International 

Conference on Natural Computation, 3, 715-719. 
Gerhard, R., 2006. Discrete and Combinatorial Optimization. Universidad de Heidelberg-Instituto de Ciencias de la Computación, Alemania. 
Goldberg, D., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Corporation, Estados Unidos de América. 
Holland, J., 1992. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge, Estados Unidos de América. 
Jog, P., Kim J., Suh J., y Gucht D.,  1991. Parallel Genetic Algorithms Applied to the Traveling Salesman Problem. European Journal of Operational Research, 490-510. 
Juang, C., 2004. A hybrid genetic algorithm and particle swarm optimization for recurrent network design. IEEE Transactions on Evolutionary Computation, 34, 997-1006. 
Larrañaga, P., Kuijpers C., Murga R., Inza I., y Dizdarevic S., 1999. Genetic Algorithms for the Traveling Salesman Problem: A review of Representations and Operators. Artificial 

Intelligence Review, 129–170.  
Moon, C., Kim J., Choi G., y Seo Y.,  2002. An efficient genetic algorithm for the traveling salesman problem with precedent constraints. European Journal of Operational 

Research, 606-617.  
Ruiz , J., 2011. Complexity Indicators Applied to the Job Shop Scheduling Problem. International Journal of Combinatorial Optimization Problems and Informatics, 25-31. 
Sivanamdam, S. y Deepa S, 2008. Introduction to Genetic Algorithms. Springer, Estados Unidos de América. 
Tamilarasi, A. y Anantha K., 2010. An enhanced genetic algorithm with simulated annealing for jobshop scheduling. International Journal of Engineering Science 

and Technology 2, 144–151.  

Winston, W., 2005. Investigación de Operaciones: Aplicaciones y Algoritmos. Indiana University Press, Estados Unidos de América. 
Yamada T., y Nakano R.,  1997. Genetic Algorithms for Job Shop Scheduling. Proceedings of Modern Heuristic for Decision Support, UNICOM Seminar London, 67-81 


