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Abstract. In this paper, a complete solution on the suboptimal feedback control law
synthesis for underactuated systems, based on the general optimization framework of the
Dynamic Programming Theory is introduced. Control method proposed keeps the general
structure of a suboptimal control approach, while the functional defining performance
index is based on the underactuated system energy. Some numerical simulations illustrate
our proposed methodology.
Keywords: Non holonomic systems, Passivity, Dynamic Programming Theory, Euler-
Lagrange model.

1. Introduction. Since the late 1970s, trends in controlling degraded systems (under-
actuated), yielding a non-holonomic system, has grown interest in many fields.

An underactuated system can be found in different dynamical systems for instance:
Flexible systems, degraded controlled systems, manipulator and spacecraft degraded un-
derwater vehicles, or systems designed as underactuated systems due to restrictions of
cost weight, and complexity, as well as, some reliability advantages.

Underactuated system control schemes have different targets as regulation, trajectories
tracking, obstacles avoidance, stabilization in an equilibrium point designed as a security
zone among others. One approach addressing these issues is the optimal control on which
present analysis is carried out.

In this paper, a synthesis of a suboptimal control for underactuated systems is pro-
posed, which is based on the complete system energy analysis, the underactuated passiv-
ity properties, and the Lyapunov stabilization theory. The main contribution lies on the
integration of dynamic programming theory, by introducing a functional defining perfor-
mance index based on the complete system energy, which is used in the whole closed loop
system control. I.e., it is used only one synthesized control law in the complete system
workspace.
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2. Problem Statement and Preliminaries. The main control problem for vertical
underactuated robots is to swing it up to its upright position (top unstable equilibrium
position) and stabilize it about the vertical axis. For the swinging up control, Spong
and Block [16] used partial feedback linearization techniques and for the balancing and
stabilizing controller, used linearization about the desired equilibrium point by a LQR.
Nevertheles, a stability analysis is not provided, and the authors used concepts such
as. The author used concepts such as partial feedback linearization, zero dynamics, and
relative degree.
By combining Lyapunov theory with passivity properties and energy shaping, a non-

linear control for some underactuated systems is proposed by Fantoni and Lozano in [13],
where Lyapunov Theory takes an important role in controller design and system con-
vergence analysis. Underactuated systems have been investigated and controlled under
different approaches a such system as the Acrobot [16], the Pendubot [18], the rotating
pendulum, the cart and pole system, the inertial wheel pendulum [13, 17], and other
underactuated systems.
In the analysis and control synthesis framework of non holonomic systems, many ap-

proaches have been proposed [7]. Recently, in the optimal control framework there are
some interesting works. For instance, in [9], a nonlinear predictive control to design op-
timal surfaces for sliding model control of underactuated nonlinear surfaces is proposed.
The main drawback is that the optimization is achieved by fixing some numerical values
and finding some redundant parameters. Consequently, an extension or a generalization
of this method seems to be not straightforward.
In [3], an approach to the motion control and trajectory planning of three interconnected

links possessing two unactuated joints, is introduced. It is based on the approximation
for an ”optimal control” with an approximation of the Fourier basis parameters. A per-
formance index involving states and the control input is minimized by using quadratic
programming based on the Taylor approximation and a Newton-like method.
In [11], a procedure to swing up a double pendulum mounted on a cart is presented. The

trajectory (called quasi-zero torque trajectory) to be followed for the system is obtained by
interpolation using splines trough the optimization of an initial trajectory (minimization
of the torques applied to the unactuated joints). This trajectory is tracked using a kind
of gain scheduling scheme based on a linear quadratic optimal controller (LQR) along the
swing up trajectory. A ”judiciously” choice of all gains matrices Q an R must be made.
Finally, in [10] a technique solving an optimal feedback control law of a particular sys-

tem (underactuated Heisenberg system or a non-holonomic integrator) is proposed. This
method states the problem as a typical optimal control formulation (hard constraint prob-
lem with a performance index based on the control input) and consequently a two point
boundary value problem arise by the initial and final values of the system trajectories.
Once the initial states are given, the optimal trajectory is evaluated by simple forward
integration of the system.
In this contribution, a control methodology is designed for two degree of freedom vertical

underactuated robots. Our control approach involves a suboptimal analysis and conse-
quently, a switching criteria between the swing-up control and the stabilization control is
not required since only one control law is necessary to be applied.

2.1. Euler-Lagrange model properties and Control. The dynamic equation for the
robot manipulator can be obtained via the Newton laws approach, for n-DOF joint anal-
ysis, or as in this case, from the Euler-Lagrange .
These equations are obtained by the system Lagrangian equation:



SUB-OPTIMAL FEEDBACK CTRL. LAW SYNTH. OF UNDERACTUATED SYST. 2793

L = K − U , (1)

where K are kinetic energy sum for each coordinate, and U are the potential energy
respectively. System Kinetic energy K is obtained by:

K =
1

2

n∑
i=1

miv
2
i =

1

2
q̇TD(q)q̇, (2)

where mi ∈ R are the i-th mass of the i-th link, vi ∈ Rn are the i-th velocity of the i-th
link, q̇ ∈ Rn - are the speed generalized coordinates, and the n× n matrix D(q) is the
inertial matrix.

The system potential energy U is obtained by:

U =
n∑

i=1

mihig, (3)

where mi ∈ R are the i-th mass of the i-th link, hi ∈ Rn are the i-th height of the i-th
link respect to mass center and g is a gravitational constant.

From (1), (2) and (3), Euler-Lagrange equations follows:

d

dt

[
∂L(q, q̇(t))

∂q̇(t)

]
− ∂L(q, q̇(t))

∂q(t)
+ F (q̇) = τ, (4)

or the equivalent form:

d

dt

[
∂L(q, q̇)

∂q̇i

]
− ∂L(q, q̇)

∂qi
+ Fi(q̇) = τi,

where Fi(q̇) are the tribology vector forces, for the i − th link, i = 1, 2, 3, ..., n where τi
are the control forces, and n indicates the degree of freedom (DOF).

From (4) we obtain the generalized Euler-Lagrange equation for manipulator robots as:

D(q)q̈ + C(q, q̇)q̇ +G(q) + F (q̇) = τ. (5)

The position coordinates q ∈ Rn with associated velocities q̇ and accelerations q̈ are
controlled via the driving forces τ ∈ Rn. The generalized moment of inertia n× n matrix
D(q), the coriolis and centripetal forces n×1 vector C(q, q̇)q̇, and the gravitational forces
G(q) all vary along the trajectories. Note that (5) is a nonlinear differential equation,

C(q, q̇)q̇ = Ḋ(q)q̇ − 1

2

∂

∂q

[
q̇TD(q)q̇

]
, (6)

G(q) =
∂U(q)
∂q

, (7)

where G(q) is a n × 1 gravitational forces vector, and τ is a n × 1 control forces vector.
From the Euler-Lagrange formulation one can obtain the mathematical model as:

d

dt

[
q
q̇

]
=

[
q̇

D(q)−1 [τ − C(q, q̇)q̇ −G(q)− F (q̇)]

]
. (8)

Observe that (8) can be generally written as follows:

ẋ = f(x) + g(x)u (9)
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where x ∈ M ⊆ R2n and u ∈ Rm is the control input. Since our problem formulation is
given for stability around an equilibrium point, xeq, then nonlinear system (9) is stated
as follows:

˙̃x = f(x̃) + g(x̃)u (10)

where x̃ = x− xeq.

Proposition 2.1. The linear approximation of nonlinear system (10) can be expressed as

˙̃x = Ax̃+Bu (11)

where A = ∂f
∂x̃
|x̃=xeq , and B = ∂g

∂u
|x̃=xeq . The pair (A,B) is controllable and there exists a

matrix Q = HHT such that the pair (A,H) is observable.

2.2. Properties of Euler-Lagrange systems. The dynamic equation for manipula-
tor robots (4) have the following interesting properties. Inertial matrix D(q) is positive
definite, and D(q) and C(q, q̇) have the following properties [12, 15]:

• There exists some positive constant α such that

D(q) ≥ αI ∀q ∈ Rn,

where I denotes the n × n identity matrix. Then, matrix D(q)−1 exists and it is
positive definite.

• The matrix C(q, q̇) have a relationship with the inertial matrix as follows:

zT
[
1

2
Ḋ(q)− C(q, q̇)

]
z = 0 ∀q, q̇, z ∈ Rn.

In fact, 1
2
Ḋ(q) − C(q, q̇) is the skew-symmetric property. And C(q, q̇) is a matrix,

univocally defined by D(q), which satisfies

Ḋ(q) = C(q, q̇) + C(q, q̇)T .

Furthermore skew-symmetric matrix property satisfies the relationship:

q̇T
[
1

2
Ḋ(q)− C(q, q̇)

]
q̇ = 0 ∀q, q̇ ∈ Rn.

• The Euler-Lagrange system have the total energy as:

E = K + U (12)

which is a Lagrangian like equation L. By differentiating (12) we obtain

Ė = q̇TD(q, q̇)q̇ + 1
2
q̇T Ḋ(q, q̇)q̇ + q̇TG(q)

= q̇T (−C(q, q̇)−G(q) + τ) + 1
2
q̇T Ḋ(q, q̇)q̇ + q̇TG(q)

= q̇T τ.

(13)

• From the passivity property

V (x)− V (x0) ≤
t∫

0

yT (x̃)u(x̃)dx̃, (14)

where V (x) is a storage function, y(x̃) is the output, and u(x̃) is the input of the
system. By using (13) in the Euler-Lagrange system, energy function E as the storage
function, the following holds:

E(t)− E(0) ≤
t∫

0

q̇T τdt (15)



SUB-OPTIMAL FEEDBACK CTRL. LAW SYNTH. OF UNDERACTUATED SYST. 2795

where q̇ is the output, and τ is the input of the system, i.e. system verifies the
passivity property.

Then, these Euler-Lagrange system properties will be useful in establishing the stability
control analysis.

3. The Hamilton-Jacobi Equation. Some methodologies have been proposed in dif-
ferent underactuated systems control schemes, for instance, nonlinear feedback control,
open loop control, small amplitude periodically time varying forcing control, continuous
time varying feedback law, or optimal approach [1, 4] among others.

In this paper the Dynamic Programming approach [2] is used and the aim is to find an
admissible control u∗(t), in order to achieve (10) follows a trajectory x∗ by minimizing a
performance index:

J =

∫ ∞

0

[f0 (x̃, u)]dt, (16)

where f0(·) is a positive definite specified function. The control u∗ is called the optimal
control. Different kinds of approaches have been employed in order to find u∗, see for
example [4] and [1]. Specifically we use the sufficient conditions of optimality [1], [8] to
derive a suboptimal control law u.

Theorem 3.1. [8] If there exist a positive definite function V ∗(x̃(t)), which is continuously
differentiable and satisfies

dV ∗(x̃(t))

dt
|(10) + f0 (x̃

∗(t), u∗(t)) = 0, (17)

then u∗ is the optimal control.

Equation (17) is the well known Hamilton Jacobi Bellman (HJB) equation which im-
mediately leads to an optimal control in feedback form. The following classical result
states sufficient conditions for a local minimum for a scalar function.

Theorem 3.2. [4] Let L(x, u) be a scalar single valued function of the variables x and u.

Let ∂2L(x,u∗)
∂u2 exists and be bounded and continuous. Also assume that

∂L(x, u∗)

∂u
= 0 (18)

and
∂2L(x, u∗)

∂u2
> 0. (19)

Then u∗ is a local minimum.

4. Control Approach Proposed. Our control method proposes the suboptimal con-
trol of underactuated systems based on the system energy balance. As in suboptimal
control problems, a functional, which can be minimized according to the desired criteria,
is proposed. This functional consists of the total energy equation of the system; (terminal
error function) and the energy delivered to the actuator. Despite being formulated in
the general optimization framework of the Hamilton-Jacobi theory, the analytical solu-
tion of suboptimal control problem is obtained without a computation of any differential
equation.

Observe that one problem in dynamic programming approach for nonlinear control
systems is to construct or to find the Bellman functional valid. In this contribution, we
propose a first approximation of Bellman functional as a Lyapunov functional.
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We pointed out that this contribution is relatively easy generalizable to any non holo-
nomic mechanical system.

In order to have a linear regulator control for the linearized system (11), and given the
Proposition 2.1 [5], it is possible to solve the algebraic Riccati equation

ATP − PBR−1BTP + PA = −Q, (20)

and to obtain the P matrix, where Q,R are positive definite real symmetric matrices.

4.1. Suboptimal control problem approach. In order to formulate the suboptimal
control problem, the following function is defined as :

V (x̃) =
1

2
kEẼ(x̄1, x̄2)

2 +
1

2
x̃T

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

x̃, (21)

x̃ =

[
x̄1

x̄2

]
,

where x̄1 is the error function, x̄1 = q̃ = q − qd and x̄2 = ˙̃q = q̇ − q̇d, x̃ =
[
q̃T ˙̃qT

]T
=[

x̄T x̄T
2

]T
, the 2n × 2n matrix A is a strictly symmetric and positive definite matrix,

where the elements are n×n positive definite matrices, i.e. A11 = AT
11 > 0, A12 = AT

21 > 0
and A22 = AT

22 > 0, kE ∈ R, is a strictly positive definite constant, Ẽ(q, q̇) is an energy
error function, given by:

Ẽ(x̄1, x̄2) = E(x̄1, x̄2)− Ed(x̄1, x̄2). (22)

By differentiating (21) along the trajectories of (10), it follows:

V̇ (x̃) = kE Ẽ(x̄1, x̄2)
˙̃E(x̄1, x̄2) +

1
2
x̃T

[
A11 A12

A21 A22

]
˙̃x

+1
2
˙̃xT

[
A11 A12

A21 A22

]
x̃,

(23)

which can be rewritten as:

V̇ (x̃) = kEẼ(x̄1, x̄2)
˙̃E(x̄1, x̄2) + x̃T

[
A11 A12

A21 A22

]
˙̃x. (24)

Remark 4.1. Given the error dynamics, and by symmetric and definite positive matrix
properties, the following holds:

˙̃E(q, q̇) = 1

2
˙̃qTD(q)¨̃q +

1

2
˙̃qT Ḋ(q) ˙̃q +

1

2
¨̃qTD(q) ˙̃q − ˙̃qTG(q) (25)

Since that D(q) = DT (q), D(q) > 0:

˙̃E(q, q̇) = ˙̃qTD(q)¨̃q +
1

2
˙̃qT Ḋ(q) ˙̃q − ˙̃qTG(q). (26)

From the Euler-Lagrange equations (5), whether there does not exists tribology forces,
system equation follows:

D(q)¨̃q + C(q, q̇) ˙̃q +G(q) = τ, (27)

and then (26) can be written as:
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˙̃E(q, q̇) = ˙̃qT
{
τ − C(q, q̇) ˙̃q −G(q)

}
+

1

2
˙̃qT Ḋ(q) ˙̃q + ˙̃qTG(q), (28)

which implies

˙̃E(q, q̇) = ˙̃qT τ − ˙̃qTC(q, q̇) ˙̃q + 1
2
˙̃qT Ḋ(q) ˙̃q,

= ˙̃qT τ + ˙̃qT
[
1

2
Ḋ(q)− C(q, q̇)

]
˙̃q︸ ︷︷ ︸

skew−symmetric−property

,

˙̃E(q, q̇) = ˙̃qT τ .

(29)

Since Ẽ is the system energy error function, let us verify the passivity property (14), by
integrating (29)

t∫
0

˙̃E(q, q̇)dt =
t∫

0

˙̃qT τdt, ⇒ Ẽ(q, q̇)− Ẽ(0, 0) =
t∫

0

˙̃qT τdt, (30)

where ˙̃q is take as the input and τ ia the system output.

Then (24) can be rewritten as:

V̇ (x̃) = kEẼ(x̄1, x̄2)x̄
T
2 τ + x̃T

[
A11 A12

A21 A22

]
˙̃x (31)

I.e.

V̇ (x̃) = kEẼ(x̄1, x̄2)x̄
T
2 τ + x̄T

1A11x̄2 + x̄T
2A21x̄2 + x̄T

1A12 ˙̄x2 + x̄T
2A22 ˙̄x2 (32)

and by introducing (27) in (32), it follows:

V̇ (x̃) = kEẼ(x̄1, x̄2)
T τ + x̄T

1A11x̄2 + x̄T
2A21x̄2

+
(
x̄T
1A12 + x̄T

2A22

)
D−1(x̄1) (τ − C(x̄1, x̄2)x̄2 −G(x̄1))

(33)

By applying the Bellman optimization principle, where the performance index, is defined
as:

J =
1

2

tf∫
0

(
x̃TQx̃+ uTRu

)︸ ︷︷ ︸
f0(x̃,u)

dt (34)

and by applying the dynamic programming, i.e.

min
u

{
dV (x̃)

dt

∣∣∣∣
10

+ f0(x̃, u)

}
(35)

where V (x̃) is given by (21), dV x̃
dt

∣∣
10

is given by (33) and f0 is given by (34), u
∆
= τ , the

2n×2n matrix Q, verifies Q = QT , Q > 0, the n×n matrix R is a symmetric and strictly
positive definite matrix. Then, (35) can be written as:

min
u

 kEẼ(x̄1, x̄2)
Tu+ x̄T

1A11x̄2 + x̄T
2A21x̄2

+
(
x̄T
1A12 + x̄T

2A22

)
D−1(x̄1) (u− C(x̄1, x̄2)x̄2 −G(x̄1))
+x̃TQx̃+ uTRu

 . (36)

By using Theorem 3.2, it follows:
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∂
∂u

 kEẼ(x̄1, x̄2)
Tu+ x̄T

1A11x̄2 + x̄T
2A21x̄2

+
(
x̄T
1A12 + x̄T

2A22

)
D−1(x̄1) (u− C(x̄1, x̄2)x̄2 −G(x̄1))
+x̃TQx̃+ uTRu

 = 0

kEẼ(x̄1, x̄2)x̄
T
2 +

[
x̄T
1A12 + x̄T

2A22

]
D−1(x̄1) + uTR = 0

(37)

and since, xTy = yTx:

kEẼ(x̄1, x̄2)x̄2 +D−1(x̄1)
[
AT

12x̄1 + AT
22x̄2

]
+Ru = 0. (38)

Finally, by solving for u:

u = −R−1
{
kEẼ(x̄1, x̄2)x̄2 +D−1(x̄1)

[
AT

12x̄1 + AT
22x̄2

]}
. (39)

Remark 4.2. The choice of kE is achieved heuristically. The term multiplying by kE
becomes zero when the state tends to the equilibrium point.

Note: By differentiating once again equation (39) (i.e. taking ∂2

∂2u

(
dV (x̃)
dt

∣∣∣
(10)

+ f0(x̃, u)

)
),

condition (19) holds.
Now we are able to state the following propositions:

Proposition 4.1. Consider the nonlinear system (10) and the function V (x̃) given by
(21). Then a suboptimal control for the system (10) is given by (39).

Proposition 4.2. Consider the nonlinear system (10) and the function V (x̃) given by
(21). Then the time derivative of the function V (x̃) along to the trajectories of the closed
loop system (10) with the suboptimal control law u is negative if:

∥γ(x̃)∥ − λminQ̃(x) < 0 (40)

where γ(x̃) = −x̄T
1A12D

−1 (C(x̄1, x̄2)x̄2 +G(x̄1))+x̄T
1A11x̄2−x̄T

2A12D
−1 (C(x̄1, x̄2)x̄2 +G(q))+

x̄T
2A21x̄2 and λminQ̃(x) =

√
2λmaxQ2

22 − 3λmaxQ11Q12.

Proof. In the former section we propose that V (x̃) is semi definite positive function, in
order to conclude this fact, we need to analyze the closed loop system. This is given by
the following equation:

V̇ (x̃) = kEẼ(x̄1, x̄2)x̄
T
2 τ + x̃T

[
A11 A12

A21 A22

]
x̃,

= kEẼ(x̄1, x̄2)x̄
T
2 τ + x̄T

1A11x̄2 + x̄T
2A21x̄2 + x̄T

1A12 ˙̄x2 + x̄T
2A22 ˙̄x2,

(41)

then (41) can be:

V̇ (x̃) = −γ(x̃)− x̃T Q̃(x)x̃ (42)

where

γ(x̃) =
−x̄T

2A12D
−1(x̄1)C(x̄1, x̄2)x̄2 − x̄T

1A12D
−1(x̄1)G(x̄1)− x̄T

2A22D
−1(x̄1)C(x̄1, x̄2)x̄2

−x̄T
2A22D

−1(x̄1)G(x̄1) + x̄T
1A11x̄2 + x̄T

2A21x̄2,
(43)

Q̃(x) =

[
Q11 Q12

Q21 Q22

]
(44)

Q11 = A12R
−1D−1(x̄1)A12

Q12 = Q21 = kEẼ(x̄1, x̄2)
(
2R−1D−1(x̄1)A12

)
Q22 = kEẼ(x̄1, x̄2)R

−1
(
kEẼ(x̄1, x̄2) + 2D−1(x̄1)A22

)
+A22D

−1(x̄1)R
−1D−1(x̄1)A22



SUB-OPTIMAL FEEDBACK CTRL. LAW SYNTH. OF UNDERACTUATED SYST. 2799

and we have that, some positive scalars βi(i = 0, 1..., 5) such that [15]:

∥D(x̄1)∥ ≥ λm (D(x̄1)) > β0 > 0
∥D(x̄1)∥ ≤ λM (D(x̄1)) < β1 < ∞

∥C(x̄1, x̄2)∥ ≤ β2 ∥x̄2∥
∥G(x̄1)∥ ≤ β3

∥E(x̄1, x̄2)∥ ≤ ∥K(x̄1, x̄2)∥+ ∥U(x̄1)∥ ≤ β1 + β4 ≤ β5

∥D−1(x̄1)∥ ≥ λM (D−1(x̄1)) > β6 > 0

(45)

From γ(x̃) we obtain:

γ(x̃) = −q̃TA12D
−1(x̄1)

(
C(x̄1, x̄2) ˙̃q +G(q)

)
+ q̃TA11

˙̃q
− ˙̃qTA12D

−1(x̄1)
(
C(x̄1, x̄2) ˙̃q +G(q)

)
+ ˙̃qTA21

˙̃q

then

∥γ(x)∥ ≤ ∥x̄1D
−1(x̄1)A12∥ ∥C(x̄1, x̄2)x̄2 +G(x̄1)∥+ ∥x̄1∥ ∥A11∥ ∥x̄2∥

+ ∥x̄2D
−1(x̄1)A22∥ ∥C(x̄1, x̄2)x̄1 +G(x̄1)∥+ ∥x̄1∥ ∥A21∥ ∥x̄2∥

≤ ∥q̃∥ β0λMA12 (β2 ∥x̄2 + x̄eq∥+ β3) + ∥x̄1∥λMA11 ∥x̄2∥
+ ∥x̄2∥ β0λMA22 (β2 ∥x̄2 + x̄2eq∥+ β3) + ∥x̄2∥λMA21 ∥x̄2∥

≤ η (x̄2, x̄1, βi)

where η (x̄1, x̄2, βi) is an non negative function.
Since that λmax(Q̃(x)), and λmin(Q̃(x)), is given by:

λMQ̃(x) =
√
λMQ2

11 − λMQ11Q12 + 3/2λMQ2
22

λmQ̃(x) =
√

2λMQ2
22 − 3λMQ11Q12

then Q̃(x) > 0 only if λm > 0, then:

2λMQ2
22 > 3λMQ11Q12

and obviously this inequality holds. Then the sufficient condition for V̇ (x̃) < 0 is:

∥γ(x̃)∥ − λmQ̃(x) < 0

thus we conclude that the system (4) in closed loop with (39) is stable.

5. Illustrative examples: Study Case of 2-DOF systems. In a sake of clarity and
compactness, in the following, let us constraint the analysis of the system dimension to

only two DOF, i.e.
[
x̄T
1 x̄T

2

]T
=

[
qT q̇T

]T
= [q1 q2 q̇1 q̇2]

T . and a constant regulation
set point, i.e. x1eq = qd1 = c1, x2eq = qd2 = c2, x3eq = x3eq = q̇d3 = q̇d4 = 0, then

x̄1 =

[
q̃1
q̃2

]
, x̄2 =

[
˙̃q1
˙̃q2

]
.

q̃1 = q1 − c1, ˙̃q1 = q̇1, ¨̃q1 = q̈1,
q̃2 = q2 − c2, ˙̃q2 = q̇2, ¨̃q1 = q̈2.

(46)

since and n = 2, then the 2n× 2n matrix A reads:

A =



a11 a12
a21 a22︸ ︷︷ ︸

A11

a13 a14
a23 a24︸ ︷︷ ︸

A12

a31 a32
a41 a42︸ ︷︷ ︸

A21

a33 a34
a43 a44︸ ︷︷ ︸

A22

 , (47)
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and a possible n× n matrix R follows:

R =

[
r1 0
0 r2

]
. (48)

Then, the control law (39), applied to a 2-DOF gives:[
u1

u2

]
= −kE Ẽ(q,q̇)

r1r2

[
r2 ˙̃q1
r1 ˙̃q2

]
− 1

(r1r2) det(D(q))

(
(r2d22a13 − r2d21a14) q̃1 + (r2d22a23 − r2d21a24) q̃2
(r1d11a14 − r1d21a13) q̃1 + (r1d11a24 − r1d12a23) q̃2

)
− 1

(r1r2) det(D(q))

(
(r2d22a33 − r2d21a34) ˙̃q1 + (r2d22a43 − r2d21a44) ˙̃q2
(r1d11a34 − r1d21a33) ˙̃q1 + (r1d11a44 − r1d12a43) ˙̃q2

) (49)

or

[
u1

u2

]
= −

[
r1 0
0 r2

]−1
{
kEẼ(q, q̇) ˙̃q +D−1(q)

[[
a13 a14
a23 a24

]T
q̃ +

[
a33 a34
a43 a44

]T
˙̃q

]}
,

(50)
which can be rewritten as:

[
u1

u2

]
= −kEẼ(q, q̇)

r1r2

[
r2 ˙̃q1
r1 ˙̃q2

]
−

(
k11(q, q̇) k12(q, q̇) k13(q, q̇) k14(q, q̇)
k21(q, q̇) k22(q, q̇) k23(q, q̇) k24(q, q̇)

)
q̃1
q̃2
˙̃q1
˙̃q2

 ,

(51)
and

(
k11(q, q̇) k12(q, q̇) k13(q, q̇) k14(q, q̇)
k21(q, q̇) k22(q, q̇) k23(q, q̇) k24(q, q̇)

)T

=


(r2d22a13−r2d21a14)

(r1r2) det(D(q))
(r1d11a14−r1d21a13)

(r1r2) det(D(q))
(r2d22a23−r2d21a24)

(r1r2) det(D(q))
(r1d11a24−r1d12a23)

(r1r2) det(D(q))
(r2d22a33−r2d21a34)

(r1r2) det(D(q))
(r1d11a34−r1d21a33)

(r1r2) det(D(q))
(r2d22a43−r2d21a44)

(r1r2) det(D(q))
(r1d11a44−r1d12a43)

(r1r2) det(D(q))

 .

(52)
I.e., the control law to be applied for each link can be obtained as follows:
For first link, we have:

u1 = −kEẼ(q, q̇)
r1r2

r2∆q̇1 −
(
k11(q, q̇) k12(q, q̇) k13(q, q̇) k14(q, q̇)

)
q̃1
q̃2
˙̃q1
˙̃q2

 , (53)

and

u2 = −kEẼ(q, q̇)
r1r2

r1∆q̇2 −
(
k21(q, q̇) k22(q, q̇) k23(q, q̇) k24(q, q̇)

)
q̃1
q̃2
˙̃q1
˙̃q2

 . (54)

Remark 5.1. Underactuated systems solution. The control law (53), and (54) have
a particular structure, if they are linearized (11) around an equilibrium point (stable or
unstable), the closed loop system can be controlled via LQR compensator, and this solution
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is given by (20), since the control law follows a reference given by Ẽ(q, q̇), q̃ and ˙̃q, and
around the equilibrium point, the system solution tends to zero, and then, it follows:

lim
x→xeq

− rjkE Ẽ(q,q̇)
r1r2

˙̃qi −
(
ki1(q, q̇) ki2(q, q̇) ki3(q, q̇) ki4(q, q̇)

)
q̃1
q̃2
˙̃q1
˙̃q2

 ,


= − lim

x→xeq

(
rjkE Ẽ(q,q̇)

r1r2
˙̃qi

)
− lim

x→xeq

(
ki1(q, q̇) ki2(q, q̇) ki3(q, q̇) ki4(q, q̇)

)
q̃1
q̃2
˙̃q1
˙̃q2

 ,


≈ 0− lim

x→xeq

(
ki1(q, q̇) ki2(q, q̇) ki3(q, q̇) ki4(q, q̇)

)
q̃1
q̃2
˙̃q1
˙̃q2

 ,

 ≈ −R−1BTP


q̃1
q̃2
˙̃q1
˙̃q2

 .

(55)
Then, the following terms are almost equivalents:

(
k11(q, q̇) k12(q, q̇) k13(q, q̇) k14(q, q̇)

)∣∣
q→qeq

≈ R−1BTP (56)

and the control law can be obtained from (56). This is a solution from Riccati equation
as for the linear systems, is the LQR solution.1

6. Numerical Example. In order to illustrate our control law approaches, let us give a
numerical simulation which is applied in the 2-DOF robot platforms called the Pendubot
and the Rotatory Pendulum.

6.1. The Pendubot system. The pendubot as shown in Figure 1, is a benchmark
system [14] for an underactuated robot, consisting of a double pendulum with only an
actuator at the first joint. The pendubot has some parameters, the total mass of link 1
is m1 = 1.9008m, the total mass of link 2 is m2 = 0.7175m, the moment of inertia of link
1 is I1 = 0.004Kg ·m2, the moment of inertia of link 2 is I1 = 0.005Kg ·m2, the distance
to center of mass of link 1 is lc1 = 0.185m, the distance to center of mass of link 2 is
lc2 = 0.062m, the length of link 1 is m1 = 0.2m, the length of link 2 is m2 = 0.2m and the
acceleration of gravity constant g = 9.81m/seg2. The model of the motion dynamics is a
set of 2 rigid bodies connected and described by a set of generalized coordinates q ∈ R2.
The derivation of the motion equations is given by (4), and by applying the methods of
the Lagrange theory, involving explicit expressions of kinetic energy and potential energy
we obtain the standard general equation (5). Where the angular positions are involved in
q, and angular velocities in q̇, and the accelerations is q̈.

1This solution gives the a13, a14, a23, a24, a33, a34, a43 and a44 values.
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Figure 1. Pendubot system.

From the Euler-Lagrange dynamical model one has:

D(q) =

[
θ1 + θ2 + θ3 cos(q2) θ2 + θ3 cos(q2)

θ2 + θ3 cos(q2) θ2

]
,

C(q, q̇) = θ3sin(q2)

[
−q̇2 −q̇1 − q̇2
−q̇1 0

]
,

G(q) =

[
θ4g cos(q1) + θ5g cos(q1 + q2)

θ5g cos(q1 + q2)

]
,

q =

[
q1
q2

]
, u =

[
u1

u2

]
,

(57)

where the following five parameter equations are introduced as follows:
θ1 = m1l

2
c1 +m2l

2
1 + I1

θ2 = m2l
2
c2 + I2

θ3 = m2l1lc2
θ4 = m1lc1 +m2l1
θ5 = m2lc2

(58)

Whether only u1 can drive the system (i.e. u2 ≡ 0) such a system is called the Pendubot,
while if u1 ≡ 0 the system becomes drive by u1 and it is called an Acrobot.
Note that D(q) is symmetric. Moreover

d11 = θ1θ2 + 2θ3cosq2
= m1l

2
c1 +m2l

2
1 + I1 +m2l

2
c2 + I2 + 2m2l1lc2cosq2

≥ m1l
2
c1 +m2l

2
1 + I1 +m2l

2
c2 + I2 − 2m2l1lc2

≥ m1l
2
c1 + I1 + I2 +m2(l1 − l2c2)

2 > 0,

(59)

and then

det(D(q)) = θ1θ2−2θ23cos
2q2 = (m1l

2
c1+I1)(m2l

2
c2+I2)+m2l

2
1I2+m2

2l
2
1l

2
c2sin

2q2 > 0, (60)

Therefore D(q) is positive definite for all q. From (57) it follows that

Ḋ(q)− 2C(q, q̇) = θ3 sin q2(2q̇1 + q̇2)

[
0 1
−1 0

]
, (61)
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which is a skew-symmetric matrix. The potential energy of the pendubot can be defined
as

U(q) = θ4sinq1 + θ5sin(q1 + q2). (62)

Note that U is related to g(q) as follows:

G(q) =
∂L
∂q

=

[
θ4g cos q1 + θ5g cos(q1 + q2)

θ5g cos(q1 + q2)

]
. (63)

For the planar two-link, when u ≡ 0, in the Euler-Lagrange system has four equilibrium
points. The first one (q1, q2, q̇1, q̇2) = ((π/2), 0, 0, 0) and the second one (q1, q2, q̇1, q̇2) =
(−(π/2), π, 0, 0) are two unstable equilibrium points (respectively, top position and mid
position). We wish to reach the top position. The third one, (q1, q2, q̇1, q̇2) = ((π/2), π, 0, 0)
is an unstable equilibrium position, and finally the fourth one (q1, q2, q̇1, q̇2) = (−(π/2), 0, 0, 0)
is the stable equilibrium position what e want to avoid them. The total energy L(q, q̇) is
different for each of one the four equilibrium positions:

Top positions for both links

E((π/2), 0, 0, 0) = ETop = (θ4 + θ5)g. (64)

Low positions for both links

E(−(π/2), 0, 0, 0) = El1 = −(θ4 + θ5)g. (65)

Mid position: low for link 1 and up for link 2

E(−(π/2), π, 0, 0) = Emid = (−θ4 + θ5)g. (66)

Position: up for link 1 and low for link 2.

E((π/2), π, 0, 0) = El2 = (θ4 − θ5)g. (67)

6.1.1. Control approach. Since, the pendubot system, then u2 = 0, and for this case, the
desired position is given by the top position2 then control approach is given by (53), where
the energy error is given by Ẽ = E(q, q̇)−ETop r1 = r2, d21 = θ2+ θ2 cos(q2), d22 = θ2, and
det(D(q)) = θ1θ2 − 2θ23cos

2q2, and from (9) the dynamic g(x)u is given by:

g(x) =


0
0
θ2

θ1θ2−2θ23 cos(q2)
−θ2−θ3 cos(q2)

θ1θ2−2θ23 cos(q2)

 (68)

applying the proposition (2.1), one obtains

B =


0
0
θ2

θ1θ2−2θ23
−θ2−θ3
θ1θ2−2θ23


By taking the linearization system (11), in the top position of the system, it follows:

2Top position for pendubot is (q1, q2, q̇1, q̇2) = (π/2, 0, 0, 0).
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−
(
k11(q, q̇) k12(q, q̇) k13(q, q̇) k14(q, q̇)

)
x̃ ≈

− 1
r1

[
0 0 θ2

θ1θ2−2θ23

−θ2−θ3
θ1θ2−2θ23

]
p11 p12 p13 p14
p12 p22 p23 p24
p13 p23 p33 p34
p14 p24 p34 p44

 x̃
(69)

then

− 1
r1

[
0 0 θ2

θ1θ2−2θ23

−θ2−θ3
θ1θ2−2θ23

]
p11 p12 p13 p14
p12 p22 p23 p24
p13 p23 p33 p34
p14 p24 p34 p44

 x̃ =

−
(
k1 k2 k3 k4

)
x̃ = −Kx̃

(70)

and the pendubot system in the top position, with (52), can be approximated at:(
k11(q, q̇) k12(q, q̇) k13(q, q̇) k14(q, q̇)

)∣∣
f(q,q̇)→f(0,0)

≈
(
k1 k2 k3 k4

)
(71)

where
(
k1 k2 k3 k4

)
= K are obtained from Riccati equation solution (in the linear

systems, is the LQR solution), and this solution gives the a13, a14, a23, a24, a33, a34, a43
and a44 values.
Since the solution of matrix the A gives four equations and seven unknown parameters,

we propose the following parameters, a13 = 5, a24 = 2 and a34 = 6, and then, the
parameters of matrix A are obtained as follows:

a14 =
(k1−a13B3)

B4
, a33 =

(k3−a34B4)
B3

,

a23 =
(k2−a24B4)

B3
, a44 =

(k4−a34B3)
B4

,
(72)

where

K =
(
k1 k2 k3 k4

)
=

[
0 0 G1(q) G2(q)

]
P (73)

and the parameters a11 = 100, a12 = 0, a21 = 0 and a22 = 100 are proposed such that the
matrix A > 0.

6.1.2. Numerical simulation. In the numerical simulation, the linear gains for LQR solu-
tion proposed as:

Q =


8 0 0 0
0 11.5 0 0
0 0 5 0
0 0 0 5

 , R = diag(2.5).

Then, the Riccati equation:

P =


844.7295 745.8431 155.8352 88.8254
745.8431 674.6714 138.8006 79.3100
155.8352 138.8006 29.1716 16.6128
88.8254 79.3100 16.6128 9.5215

 ,

and by trial error a possible kE gain is found as:

kE = 49.8

We start the numerical simulation with the following initial conditions:

q1 = −π/2, q̇1 = 0
q2 = 0, q̇2 = 0

(74)
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6.1.3. Numerical results. Figure 2, and Figure 3 show the to be stabilized around time
t ≃ 1 second, i.e. q1 = −π/2, q̇1 = 0 q2 = 0, q̇2 = 0, and the control signal and the total
energy is shown in the Figure 4.

0 1 2 3 4 5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time [sec]

A
ng

le
 [r

ad
]

Joint positions.

First link position
Second link position

Figure 2. The pendubot joint positions.
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Figure 3. The pendubot joint velocities.

6.1.4. Stability analysis. By using Proposition 4.1, we conclude the stability for the pen-
dubot system, imposed by V̇ (x̃) < 0, the Lyapunov function (32) in closed loop with (53)
and u2 = 0, and condition (40), gives the following:

λmD
−1(q) = 13.5516, λmR

−1 = 0.4, λMA22 = 16.81,
λMA11 = 100, λMA12 = 3.5,

Since are solved, the system parameters are known, we substituting this results in the
equation (42), (43) and (44) are solved, and since that βi are functions strictly positive
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Figure 4. The pendubot, in-out energy.

definite, we obtain the following result:

λmQ̃(x) = 1.4029× 103
√
β2
5 + 934.3β5 + 89981.09

and

∥γ(x)∥ = 222.88β2 ∥q̇∥ ∥q̃∥+ 222.88β2 ∥q̇∥
∥∥ ˙̃q∥∥− 3.5β3

(
∥q̃∥+

∥∥ ˙̃q∥∥) .
By applying (40), we start the system at the initial conditions (74), which are sufficient
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Figure 5. Lyapunov functions.

conditions in order to conclude that the closed loop holds on the Lyapunov condition,
and this involving an appropriate value for kE large enough such that x̃ converges into
neighborhood ε > 0 with radius r > 0 centered in the equilibrium qd, (the Lyapunov
functions can be seen in Figure 5). Another application can be seen in the appendix.
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7. Conclusions. In this paper a control approach for underactuated systems is pre-
sented. This approach is a general methodology for 2 − DOF Euler-Lagrange systems
and becomes more involved when the system under analysis has a higher degree (more
than 2 − DOF ). The main reason is because the gains choices is not straightforward.
A comparative study shows that the control law does not require a switching control for
the equilibrium point. This is because the Hamilton-Jacobi-Bellman principle holds in
the whole system workspace, i.e. the Lyapunov function V̇ (x̃) < 0 for all x̃ ∈ M ⊆ Rn.
The control design is based on the solution of Hamilton-Jacobi-Bellman equations with a
performance index given by (16). This approach is a suboptimal control because it holds
only for the sufficient condition to conclude the complete system stability.

The future work aims to apply this approach to underactuated experimental robot
platforms.
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Appendix A. The Rotatory Pendulum System. The Rotatory Pendulum as shown
in Figure 6, consisting of a double pendulum with an actuator at only the first joint. Using
the Rotatory pendulum, one can mainly investigate the set-point regulation, including
swinging up and balancing, as well as trajectories tracking. The Rotatory pendulum has
been studied as a typical example of underactuated mechanical systems see e.g. [13, 14].
We considered the rotatory pendulum parameters as: the total mass of link 1 m1 = 1.9008
m, the total mass of link 2 m2 = 0.7175 m, the moment of inertia of link 1 I1 = 0.004
Kg ·m2, the moment of inertia of link 2 I1 = 0.005 Kg ·m2, the distance to center of mass
of link 1 lc1 = 0.185 m, the distance to center of mass of link 2 lc2 = 0.062 m, the length
of link 1 m1 = 0.2 m, the length of link 2 m2 = 0.2 m and the acceleration of gravity
g = 9.81 m/seg2.

Figure 6. Rotatory pendulum system.

In this case, the kinetic energy K(q, q̇) = K1(q, q̇) +K2(q, q̇) where K1(q, q̇) y K2(q, q̇)
are associated with the rotational arm and the pendulum link respectively as follows:

K1 =
1

2
I1θ̇

2
1, (75)

and the kinetic energy :

K2 =
1
2
J2θ̇

2
2 +

1
2
m2L

2
1θ̇

2
1 +

1
2
m2l

2
2θ̇

2
2 +

1
2
m2l

2
2sen

2θ2θ̇
2
1

+m2L1l2 cos θ2θ̇1θ̇2.
(76)

The potential energy of the pendubot can be defined as:

U(q) = m2l2g (cos θ2 − 1) (77)

It follows a model stated by (5) where:

D (q) =

[
I1 +m2 (L

2
1 + l22sen

2θ2) m2l2L1 cos θ2
m2l2L1 cos θ2 J2 +m2l

2
2

]
, (78)

C (q, q̇) =

[
1
2
m2l

2
2sen (2θ2) θ̇2

1
2
m2l

2
2sen (2θ2) θ̇1 −m2l2L1senθ2θ̇2

−1
2
m2l

2
2sen (2θ2) θ̇1 0

]
, (79)

G (q) =

[
0

−m2l2gsenθ2

]
. (80)

Note that D(q) is symmetric. Moreover
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det (D(q)) =
(
I1 +m2

(
L2
1 + l22 sin

2 θ2
))

(J1 +m2l
2
1)−m2

2l
2
2L

2
1 cos θ2

=
(
I1 +m2l

2
2 sin

2 θ2
)
(J2 +m2l

2
2) + J2m2L

2
1 +m2

2l
2
2L

2
1 sin θ2 > 0

(81)

Therefore D(q) is positive definite for all θ. From (78 it follows that:

Ḋ(q)− 2C(q, q̇) = m2l2

(
l2 sin (2θ2) θ̇1 − L1 sin θ2θ̇2

)[
0 −1
1 0

]
(82)

which is a skew-symmetric matrix.
For the rotatory pendulum system with τ ≡ 0 in the Euler-Lagrange system note that

(4) has two equilibrium points. (θ1, θ2, θ̇1, θ̇2) = (π, ∗, 0, 0) the stable equilibrium point

and (θ1, θ2, θ̇2, θ̇2) = (0, ∗, 0, 0) is the stable equilibrium position that also we want to
avoid. The control objective is to stabilize the system around its top unstable equilibrium
position.

A.1. Control approach. For control design we have the rotatory pendulum system,
then u2 = 0, then control approach is given by (53), where r1 = r2, d21 = I1 +
m1

(
L2
1 + l22 sin

2 θ2
)
, d22 = J2 + m2l

2
2 and det(D(q)) =

(
I1 +m2l

2
2 sin

2 θ2
)
(J2 +m2l

2
2) +

J2m2L
2
1 +m2

2l
2
2L

2
1 sin θ2, and from (9) the dynamic g(x)u is given by:

g(x) =


0
0

J2+m2l22

(I1+m2l22 sin
2 θ2)(J2+m2l22)+J2m2L2

1
−m2l2L1 cos θ2

(I1+m2l22 sin
2 θ2)(J2+m2l22)+J2m2L2

1

 (83)

by applying (2.1), we obtain the following equation:

B =


0
0

J2+m2l22
I1(J2+m2l22)+J2m2L2

1
−m2l2L1

I1(J2+m2l22)+J2m2L2
1


A.1.1. Numerical simulation. Using (69), (70), and (71) we propose the follow lineal gains
for LQR solution as:

Q =


35.5 0 −17.75 0

−17.75 35.5 0 0
0 0 35.5 −17.75
0 0 −17.75 35.5

 , R = diag(2.5),

then, we obtain the Riccati equation:

P =


844.7295 745.8431 155.8352 88.8254
745.8431 674.6714 138.8006 79.3100
155.8352 138.8006 29.1716 16.6128
88.8254 79.3100 16.6128 9.5215


and propose the kE gain as:

kE = 10

We start the numerical simulation with the follow initial conditions:

θ1 = π, θ̇1 = 0

θ2 = 0.5, θ̇2 = 0
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And we obtain:
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Figure 7. The rotatory pendulum, joint positions.
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Figure 8. The rotatory pendulum joint velocities.

A.1.2. Stability analysis. By using the proposition 4.1, we conclude the stability for the
Rotatory pendulum system, and we required the Lyapunov function (32) in closed loop
with (53) and u2 = 0, and condition (40), and we obtain:

λmD
−1(q) = 13.0.258, λmR

−1 = 0.4, λMA11 = 1,
λMA12 = 7.2, λMA22 = 6.51,

since we know the system parameters, we substituting this results in the equation (42),
(43) and (44), and since that the βi are constants strictly positive definite, we obtain the
follow result:

λmQ̃(x) = 1.4029× 103
√
β2
5 + 934.3β5 + 89981.09
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Figure 9. The rotatory pendulum, in-out energy.
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Figure 10. Lyapunov function.

and
∥γ(x)∥ = 222.88β2 ∥q̇∥ ∥q̃∥+ 222.88β2 ∥q̇∥

∥∥ ˙̃q∥∥− 3.5β3

(
∥q̃∥+

∥∥ ˙̃q∥∥)


